

Overpseudoprimes, and Mersenne and Fermat Numbers as Primover Numbers

Vladimir Shevelev
Department of Mathematics
Ben-Gurion University of the Negev
Beer-Sheva 84105
Israel
shevelev@bgu.ac.il

Gilberto García-Pulgarín Universidad de Antioquia Calle 67 No. 53–108 Medellín, Antioquia Colombia

gigarcia@ciencias.udea.edu.co

Juan Miguel Velásquez-Soto
Departamento de Matemáticas
Universidad del Valle
Calle 13 No. 100-00
Cali, Valle del Cauca
Colombia

 ${\tt jumiveso@univalle.edu.co}$

John H. Castillo
Departamento de Matemáticas y Estadística
Universidad de Nariño
Calle 18 Carrera 50
San Juan de Pasto, Nariño
Colombia
jhcastillo@gmail.com

Abstract

We introduce a new class of pseudoprimes, that we call "overpseudoprimes to base b", which is a subclass of the strong pseudoprimes to base b. Letting $|b|_n$ denote the

multiplicative order of b modulo n, we show that a composite number n is an overpseudoprime if and only if $|b|_d$ is invariant for all divisors d > 1 of n. In particular, we prove that all composite Mersenne numbers $2^p - 1$, where p is prime, are overpseudoprimes to base 2 and squares of Wieferich primes are overpseudoprimes to base 2. Finally, we show that some kinds of well-known numbers are "primover to base b"; i.e., they are primes or overpseudoprimes to base b.

1 Introduction

We recall some definitions and fix some notation. Let b an integer greater than 1 and N a positive integer relatively prime to b. Throughout, we denote by $|b|_N$ the multiplicative order of b modulo N. For a prime p, $\nu_p(N)$ means the greatest exponent of p in the prime factorization of N.

Fermat's little theorem implies that $2^{p-1} \equiv 1 \pmod{p}$, where p is an odd prime p. An odd prime p, is called a Wieferich prime if $2^{p-1} \equiv 1 \pmod{p^2}$,

We recall that a *Poulet number*, also known as Fermat pseudoprime to base 2, is a composite number n such that $2^{n-1} \equiv 1 \pmod{n}$. A Poulet number n which verifies that d divides $2^d - 2$ for each divisor d of n, is called a Super-Poulet pseudoprime.

Sometimes the numbers $M_n = 2^n - 1$, n = 1, 2, ..., are called Mersenne numbers, although this name is usually reserved for numbers of the form

$$M_p = 2^p - 1 \tag{1}$$

where p is prime. In this form numbers M_p , at the first time, were studied by Marin Mersenne (1588–1648) around 1644; see Guy [3, §A3] and a large bibliography there.

In the next section, we introduce a new class of pseudoprimes and we prove that it just contains the odd numbers n such that $|2|_d$ is invariant for all divisors greater than 1 of n. In particular, we show that it contains all composite Mersenne numbers and, at least, squares of all Wieferich primes. In the fourth section, we give a generalization of this concept to arbitrary bases b > 1 as well. In the final section, we put forward some of its consequences.

We note that, the concept of overpseudoprime to base b was found in two independent ways. The first one in 2008, by Shevelev [7] and the second one, by Castillo et al. [1], using consequences of Midy's property, where overpseudoprimes numbers are denominated Midy pseudoprimes.

The first sections of the present work is a revised version of Shevelev [7]. In the last section, we present a review of Shevelev [8], using results from Castillo et al. [1].

The sequences $\underline{A141232}$, $\underline{A141350}$ and $\underline{A141390}$ in [9], are result of the earlier work of Shevelev.

2 A class of pseudoprimes

Let n > 1 be an odd number. When we multiply by 2 the set of integers modulo n, we split it in different sets called *cyclotomic cosets*. The cyclotomic coset containing $s \neq 0$ consists of $C_s = \{s, 2s, 2^2s, \ldots, 2^{m_s-1}s\}$, where m_s is the smallest positive number such that $2^{m_s} \cdot s \equiv s$

(mod n). Actually, it is easy to see that $m_s = |2|_{\frac{n}{\gcd(n,s)}}$. For instance the cyclotomic cosets modulo 15 are

$$C_1 = \{1, 2, 4, 8\},\$$
 $C_3 = \{3, 6, 12, 9\},\$
 $C_5 = \{5, 10\},\$ and
 $C_7 = \{7, 14, 13, 11\}.$

Denote by r = r(n), the number of distinct cyclotomic cosets of 2 modulo n. From the above example, r(15) = 4.

Note that, if C_1, \ldots, C_r are the different cyclotomic cosets of 2 modulo n, then

$$\bigcup_{j=1}^{r} C_j = \{1, 2, \dots, n-1\} \text{ and } C_{j_1} \cap C_{j_2} = \emptyset, \ \ j_1 \neq j_2.$$
 (2)

We can demonstrate that

$$|2|_n = \text{lcm}(|C_1|, \dots, |C_r|).$$
 (3)

If p is an odd prime the cyclotomic cosets have the same number of elements, because for each $s \neq 0$ we have $m_s = |C_s| = |2|_{\frac{p}{\gcd(p,s)}} = |2|_p$. So

$$|C_1| = \dots = |C_r|. \tag{4}$$

Therefore, when p is an odd prime, we obtain

$$p = r(p)|2|_p + 1. (5)$$

This leave us to study composite numbers such that the equation (5) holds.

Definition 1. We say that an odd composite number n is an overpseudoprime to base 2 if

$$n = r(n)|2|_n + 1. (6)$$

Note that if n is an overpseudoprime to base 2, then $2^{n-1} = 2^{r(n)|2|_n} \equiv 1 \pmod{n}$. Thus, the set of overpseudoprimes to base 2 is a subset of the set of Poulet pseudoprimes to base 2.

Theorem 2. Let $n = p_1^{l_1} \cdots p_k^{l_k}$ be an odd composite number. Then n is an overpseudoprime to base 2 if and only if

$$|2|_n = |2|_d, (7)$$

for each divisor d > 1 of n.

Proof. Let s, different from zero, be an arbitrary element of \mathbb{Z}_n . Take $u_s = \gcd(n, s)$ and $v_s = \frac{n}{u_s}$. Then $s = au_s$, for some integer a relatively prime with n. As we said before, $|C_s| = |2|_{v_s}$.

Note that when s runs through a set of coset representatives modulo n, v_s runs through the set of divisors of n. So the value of $|C_s|$ is constant if and only if $|2|_d$ is invariant for each divisor d > 1 of n, which proves the theorem.

A direct consequence of the last theorem is the following.

Corollary 3. Two overpseudoprimes to base 2, N_1 and N_2 such that $|2|_{N_1} \neq |2|_{N_2}$, are relatively primes.

Corollary 4. For a prime p, $M_p = 2^p - 1$ is either a prime or an overpseudoprime to base 2.

Proof. Assume that M_p is not prime. Let d > 1 be any divisor of M_p . Then $|2|_d$ divides p and thus $|2|_d = p$.

Corollary 5. Every overpseudoprime to base 2 is a Super-Poulet pseudoprime.

Proof. Let n be an overpseudoprime to base 2 and take d an arbitrary divisor of n. By Theorem 2, d is either prime or overpseudoprime to base 2. In any case, we have $2^{d-1} \equiv 1 \pmod{d}$.

Example 6. Consider the super-Poulet pseudoprime, see <u>A178997</u> in [9], $96916279 = 167 \cdot 499 \cdot 1163$. We know that, cf. <u>A002326</u> in [9], $|2|_{167} = 83$, $|2|_{499} = 166$ and $|2|_{1163} = 166$. Thus the reciprocal of the above corollary is not true.

Assume that p_1 and p_2 are primes such that $|2|_{p_1} = |2|_{p_2}$. Then $|2|_{p_1p_2} = \text{lcm}(|2|_{p_1}, |2|_{p_2})$. In consequence, $n = p_1p_2$ is an overpseudoprime to base 2. With the same objective, we get the following.

Theorem 7. Let p_1, \ldots, p_k be different primes such that $|2|_{p_i} = |2|_{p_j}$, when $i \neq j$. Assume that $p_i^{l_i}$ is an overpseudoprime to base 2, where l_i are positive integers, for each $i = 1, \ldots, k$. Then $n = p_1^{l_1} \cdots p_k^{l_k}$ is an overpseudoprime to base 2.

3 The (w+1)-th power of Wieferich prime of order w is overpseudoprime to base 2

Knauer and Richstein [4], proved that 1093 and 3511 are the only Wieferich primes less than 1.25×10^{15} . More recently, Dorais and Klyve [2] extend this interval to 6.7×10^{15} .

We say that a prime p is a Wieferich prime of order $w \ge 1$, if $\nu_p(2^{p-1}-1) = w+1$.

The following result, from Nathanson [6, Thm. 3.6], give us a method to calculate $|b|_{p^t}$ from $|b|_p$.

Theorem 8. Let p be an odd prime not divisor of b, $m = \nu_n(b^{|b|_p} - 1)$ and t a positive integer, then

$$\left. \left| b \right|_{p^t} = \begin{cases} \left| b \right|_p, & \text{if } t \leq m; \\ \\ p^{t-m} \left| b \right|_p, & \text{if } t > m. \end{cases} \right.$$

Theorem 9. A prime p is a Wieferich prime of order greater than or equal to w if and only if p^{w+1} is an overpseudoprime to base 2.

Proof. Suppose that p is a Wieferich prime of order greater than or equal to w. Then $p^{w+1} \mid 2^{p-1} - 1$ and thus $|2|_{p^{w+1}}$ is a divisor of p - 1.

By Theorem 8, $|2|_{p^{w+1}} \stackrel{\cdot}{=} p^r |2|_p$ for some non-negative integer r. So, r=0. Therefore, p^{w+1} is an overpseudoprime to base 2. The reciprocal is clear.

Theorem 10. Let n be an overpseudoprime to base 2. If n is not the multiple of the square of a Wieferich prime, then n is squarefree.

Proof. Let $n = p_1^{l_1} \dots p_k^{l_k}$ and, say, $l_1 \geq 2$. If p_1 is not a Wieferich prime, then $|2|_{p_1^2}$ divides $p_1(p_1-1)$ but does not divide p_1-1 . Thus, $|2|_{p_1^2} \ge p_1$. Since $|2|_{p_1} \le p_1-1$, then $|2|_{p_1^2} > |2|_{p_1}$ and by Theorem 2, n is not an overpseudoprime to base 2.

Overpseudoprime to base b 4

Take b a positive integer greater than 1. Denote by $r = r_b(n)$ the number of cyclotomic cosets of b modulo n. If C_1, \ldots, C_r are the different cyclotomic cosets of b modulo n, then $C_{j_1} \cap C_{j_2} = \emptyset$, $j_1 \neq j_2$ and $\bigcup_{j=1}^r C_j = \{1, 2, \dots, n-1\}$. Let p be a prime which does not divide b(b-1). Once again, we get $r_b(p)|b|_p = p-1$.

Definition 11. We say that a composite number n, relatively prime to b, is an overpseudoprime to base b if it satisfies

$$n = r_b(n)|b|_n + 1. (8)$$

The proof of the next theorem follows similarly as in Theorem 2.

Theorem 12. Let n be a composite number such that gcd(n,b) = 1. Then n is an overpseudoprime to base b if and only if $|b|_n = |b|_d$, for each divisor d > 1 of n.

Definition 13. A prime p is called a Wieferich prime in base b if $b^{p-1} \equiv 1 \pmod{p^2}$. A Wieferich prime to base b is of order $w \ge 1$, if $\nu_p(b^{p-1}-1) = w+1$.

With this definition in our hands, we can generalize Theorems 9 and 10. The respective proofs, are similar to that ones.

Theorem 14. A prime p is a Wieferich prime in base b of order greater than or equal to w if and only if p^{w+1} is an overpseudoprime to base b.

Theorem 15. If n is overpseudoprime to base b and is not a multiple of a square of a Wieferich prime to base b, then n is squarefree.

Let us remember that an odd composite N such that $N-1=2^rs$ with s an odd integer and (b, N)=1, is a strong pseudoprime to base b if either $b^s \equiv 1 \pmod{N}$ or $b^{2^is} \equiv -1 \pmod{N}$, for some $0 \leq i < r$. The following result shows us, that the overpseudoprimes do not appear more frequently than the strong pseudoprimes.

Theorem 16. If n is an overpseudoprime to base b, then n is a strong pseudoprime to the same base.

Proof. Let n be an overpseudoprime to base b. Suppose that $n-1=2^rs$ and $|b|_n=2^ts_1$, for some odd integer s, s_1 and nonnegative integers r, t. Since n is an overpseudoprime, then $|b|_n|n-1$. Thus $t \leq r$ and s_1 divides s. Assume t=0. So $|b|_n$ is a divisor of s and thus

$$b^s \equiv 1 \pmod{n}$$
.

Then n is a strong pseudoprime to base b.

On the other hand, assume that $t \geq 1$ and write $A = b^{s_1} = b^{\frac{|b|_n}{2^t}}$. Note that

$$(A-1)(A+1)(A^2+1)(A^{2^2}+1)\cdots(A^{2^{t-1}}+1)=A^{2^t}-1\equiv 0\pmod{n}.$$

We claim that for any i < t-1 the greatest common divisor $\gcd(n, A^{2^i}+1)$ is 1. Indeed, assume that d > 1 divides both n and $A^{2^i}+1$. Since n is an overpseudoprime to base b, we have $|b|_d = |b|_n$ and the congruence $A^{2^i} = b^{2^i s_1} \equiv -1 \pmod{d}$, leave us to a contradiction with the definition of $|b|_d$. Thus, $\gcd(A^{2^i}+1,n)=1$. Similarly $\gcd(A-1,n)=1$ and we obtain

$$A^{2^{t-1}} + 1 \equiv 0 \pmod{n}.$$

Consequently, $b^{2^{t-1}s} \equiv -1 \pmod{n}$. Therefore, n is a strong pseudoprime to base b. \square

Note that there are strong pseudoprimes to base b such that $|b|_n = 2^t s_1$ and $b^{2^i s_1} \not\equiv -1 \pmod{n}$ for i < t - 1, but n is not an overpseudoprime to base b. For example n = 74415361 and b = 13.

As before, where we have proved that every overpseudoprime to base 2 is super-Poulet pseudoprime, using Theorem 12 we can prove the following statement.

Theorem 17. Every overpseudoprime n to base b is a superpseudoprime, that is

$$b^{d-1} \equiv 1 \pmod{d},\tag{9}$$

for each divisor d > 1 of n.

Theorem 18. If n is an overpseudoprime to base b, then for every two divisors $d_1 < d_2$ of n, including 1 and n, we have

$$|b|_n|d_2 - d_1. (10)$$

Proof. By the equation (9), we have $|b|_{d_i} = |b|_n$ divides $d_i - 1$, for i = 1, 2, and thus (10) follows.

5 Primoverization Process

Note that, if n is an overpseudoprime to base b, a divisor of n is either prime or overpseudoprime to base b. In this section we study some kinds of numbers which satisfy this property.

In the sequel, we denote by $\Phi_n(x)$ the *n*-th cyclotomic polynomial. We recall the following theorems from Castillo et al. [1].

Theorem 19. A composite number N with $gcd(N, |b|_N) = 1$, is an overpseudoprime to base b if and only if $\Phi_{|b|_N}(b) \equiv 0 \pmod{N}$ and $|b|_N > 1$.

Theorem 20. Let N > 2 and $P_N(b) = \frac{\Phi_N(b)}{\gcd(N, \Phi_N(b))}$. If $P_N(b)$ is composite, then $P_N(b)$ is an overpseudoprime to base b.

The last theorem leads us to the next definition.

Definition 21. A positive integer is called *primover* to base b if it is either prime or an overpseudoprime to base b.

By Theorem 12, we know that each divisor greater than 1, of a overpseudoprime to base b is primover to the same base b. By Corollary 2, M_p is primover to base 2.

Theorem 20 suggests that we need to know the value of $\gcd(N, \Phi_N(b))$. To that objective, we recall a result from Motose [5, Th. 2].

Theorem 22. We set $n \geq 2$, $a \geq 2$. Then p is a prime divisor of $\Phi_n(b)$ if and only if gcd(b,p) = 1 and $n = p^{\gamma}|b|_p$ where $\gamma \geq 0$. A prime divisor p of $\Phi_n(b)$ for $n \geq 3$ has the property such that $n = |a|_p$ or $\nu_p(\Phi_n(b)) = 1$ as $\gamma = 0$ or not.

Let p be the greatest prime divisor of N. We claim that either $\gcd(N, \Phi_N(b)) = 1$ or p. Indeed, assume that there is a prime q < p divisor of N and $\Phi_N(b)$. Thus, Theorem 22 implies that $N = q^{\gamma}|b|_q$. But as p divides N, we obtain a contradiction. So $\gcd(N, \Phi_N(b))$, is either 1 or a power of p. If $\gcd(N, \Phi_N(b)) > 1$, then $N = p^l|b|_p$. Since l > 0, Theorem 22 implies that p^2 does not divide $\Phi_N(b)$. Therefore, we get the following corollary.

Corollary 23. Let N > 1 and p the greatest prime divisor of N. Then $gcd(N, \Phi_N(b)) = 1$ or p.

In the sequel, we prove that some known kinds of numbers are primovers to some base b.

Theorem 24. A generalized Fermat number, $F_n(b) = b^{2^n} + 1$, with n a positive integer and b even; is primover to base b.

Proof. It is well known that if p is prime, then $\Phi_{p^r}(x) = \frac{x^{p^r} - 1}{x^{p^{r-1}} - 1}$. Since $\gcd(2^{n+1}, \Phi_{2^{n+1}}(b)) = 1$, we have $P_{2^{n+1}}(b) = F_n(b)$ and the result follows from Theorem 20.

Theorem 25. A generalized Mersenne number, $M_p(b) = \frac{b^p - 1}{b - 1}$, with p a prime such that gcd(p, b - 1) = 1, is primover to base b.

Proof. Note that $\Phi_p(b) = M_p(b)$ and $\gcd(p, \Phi_p(b)) = 1$. So $P_p(b) = M_p(b)$ and the result follows from Theorem 20.

By Theorems 18 and 25, once again, we can prove that the numbers $M_p(b)$ satisfy a similar property of the Mersenne numbers M_p .

Corollary 26. If gcd(p, b - 1) = 1, then for every pair of divisors $d_1 < d_2$ of $M_p(b)$, including trivial divisors 1 and $M_p(b)$, we have

$$p|d_2 - d_1.$$
 (11)

The following corollary give us an interesting property of $M_r(b)$.

Corollary 27. Let r be a prime with gcd(r, b - 1) = 1. Then $M_r(b)$ is prime if and only if the progression $(1 + rx)_{x>0}$ contains just one prime p such that $|b|_p = r$.

Proof. Assume that $M_r(b)$ is prime. If there exists a prime p, such that $|b|_p = r$, then $p = M_r(b)$. Since r|p-1, i.e., p is the unique prime in the progression $(1+rx)_{x>0}$.

Conversely, assume that there exists only one prime of the form p = 1 + rx, with $x \ge 0$, such that $|b|_p = r$. So p divides $M_r(b)$. If $M_r(b)$ is composite, then it is overpseudoprime to base b and thus to other prime divisor q of $M_r(b)$ we obtain $|b|_q = r$. This contradicts our assumption.

The next result shows that Fermat numbers to base 2 are the only ones, of the form $2^m + 1$, which are primover to base 2.

Theorem 28. The following properties hold.

- 1. Assume that b is even. Then $P_m(b) = b^m + 1$ is primover to base b if and only if m is a power of 2.
- 2. Suppose that gcd(n, b-1) = 1. Then $M_n(b) = \frac{b^n 1}{b-1}$ is primover to base b if and only if n is prime.

Proof. Sufficient conditions were proved in Theorems 24 and 25.

Now assume that m has an odd prime divisor. So b+1 is a divisor of $P_m(b)$ and thereby it is not a prime. Since, $|b|_{b+1}=2$ and $|b|_{b^m+1}=2m$; also it is not an overpseudoprime to base b.

To prove the necessity of the second part, suppose that n is not prime. Thus for a prime p divisor of n, we have $M_n(b)$ is composite and $b^p - 1$ is one of its proper divisors. As $|b|_{b^p-1} = p$ and $|b|_{M_n(b)} = n$, we get that $M_n(b)$ is not an overpseudoprime to base b.

We note that, for p and q primes with q < p, $|b|_{\Phi_{pq}(b)} = pq$.

Theorem 29. If q < p are primes, then

$$N = \frac{(b-1)(b^{pq}-1)}{(b^p-1)(b^q-1)}$$

is primover to base b if and only if N is not multiple of p.

Proof. It is clear that, $N = \Phi_{pq}(b)$. Assume that N is not a multiple of p. Corollary 23 implies that $\gcd(pq, \Phi_{pq}(b)) = 1$ and the result follows from Theorem 20.

Conversely assume that N is primover to base b and p divides N. Thereby, $|b|_p$ divides q and as $|b|_N = pq$, we get a contradiction.

Corollary 30. With the above notation, if p divides N, then $\frac{N}{p}$ is primover to base b.

Once again, using Corollary 23 and Theorem 20 we can prove the following theorems.

Theorem 31. If p is prime, then

$$N = \frac{b^{p^n} - 1}{b^{p^{n-1}} - 1}$$

is primover to base b if and only if N is not multiple of p.

Theorem 32. Let $n = p_1 p_2 \cdots p_t$, where $p_1 < p_2 < \cdots < p_t$ are primes and let

$$N = \prod_{e|n} (b^e - 1)^{\mu(e)\mu(n)}.$$

If $gcd(N, p_t) = 1$, then N is primover to base b. In other case, $\frac{N}{p_t}$ is primover to base b.

References

- [1] J. H. Castillo, G. García-Pulgarín, and J. M. Velásquez-Soto, Pseudoprimes stronger than strong pseudoprimes, 2012, submitted. Available at http://arxiv.org/abs/1202.3428.
- [2] F. G. Dorais and D. Klyve, A Wieferich prime search up to 6.7×10^{15} , J. Integer Seq. 14 (2011), Article 11.9.2.
- [3] R. K. Guy, *Unsolved Problems in Number Theory*, third ed., Problem Books in Mathematics, Springer-Verlag, 2004.
- [4] J. Knauer and J. Richstein, The continuing search for Wieferich primes, *Math. Comp.* **74** (2005), no. 251, 1559–1563 (electronic).
- [5] K. Motose, On values of cyclotomic polynomials. II, Math. J. Okayama Univ. 37 (1995), 27–36 (1996).
- [6] M. B. Nathanson, Elementary Methods in Number Theory, Graduate Texts in Mathematics, Vol. 195, Springer-Verlag, 2000.
- [7] V. Shevelev, Overpseudoprimes, Mersenne numbers and Wieferich primes, preprint. Available at http://arxiv.org/abs/0806.3412.
- [8] V. Shevelev, Process of "primoverization" of numbers of the form $a^n 1$, preprint. Available at http://arxiv.org/abs/0807.2332.

[9] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org.

2010 Mathematics Subject Classification: Primary 11A51; Secondary 11A41, 11A07. Keywords: Mersenne numbers, cyclotomic cosets of 2 modulo n, order of 2 modulo n, Poulet pseudoprime, super-Poulet pseudoprime, overpseudoprime, Wieferich prime.

(Concerned with sequences <u>A002326</u>, <u>A141232</u>, <u>A141350</u>, <u>A141390</u> and <u>A178997</u>.)

Received June 4 2012; revised version received September 6 2012. Published in *Journal of Integer Sequences*, September 8 2012.

Return to Journal of Integer Sequences home page.