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Abstract

In this note, we give a necessary condition for the primality of (2p + 1)/3.

1 Introduction

Let p be an odd prime and Mp := 2p − 1. For n ≥ 0 define the sequence {Sn}n≥0 by

S0 = 4,

Sk+1 = S2
k − 2, k ≥ 0.
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The celebrated Lucas-Lehmer test states:

Theorem 1. Mp is prime if and only if Sp−2 ≡ 0 (mod Mp).

The numbers Mp have interested experts and non-experts throughout history. See [7]
for an interesting mathematical and historical account. These numbers have been a popular
focus among those searching for large primes because of their unique set of convenient prop-
erties for primality testing, the most important of these being the Lucas-Lehmer test, given
in Theorem 1. Indeed, via Lucas-Lehmer test, the determination of the primality of Mp is
achieved through the calculation of p − 2 (< log Mp) squares modulo Mp. Furthermore, the
reduction of a 2p-bit integer modulo Mp is very fast compared to the reduction modulo any
other number of a similar size.

Observe that Mp = φp(2), where φp(X) is the p-th cyclotomic polynomial. In this paper,
we look at primes of the form

Np := φp(−2) =
2p + 1

3
.

For p a prime, the family of numbers {Np}p≥3 shares some of the properties that make the
numbers {Mp}p≥3 interesting to searchers of large primes. For instance, if Np is prime, then
p must be a prime. Additionaly, divisors of Np are congruent to 1 modulo 2p, an observation
that helps in the search for small prime divisors of Np. Furthermore, Melham proved the
following theorem (see Theorem 7 in [5]), to which we will refer as Melham’s probable prime
test for Np.

Theorem 2. Let p be an odd prime. Define the sequence {Sn}n≥0 by

S0 = 6,

Sk+1 = S2
k − 2, k ≥ 0.

If Np is prime then Sp−1 ≡ −34 (mod Np).

Similar congruences involving Fibonacci numbers and more general Lucas sequences in-
stead of only Mersenne numbers appear in [1] and [3].

It is easy to see that the reduction of a 2p-bit number modulo Np is also very fast.
However, it is not known whether the numbers {Np}p≥3 have a very important property
enjoyed by the numbers {Mp}p≥3. Specifically, it is not known if Sp−1 ≡ −34 (mod Np)
implies that Np is prime.

The numbers {Np}p≥3 were studied by Bateman, Selfridge, and Wagstaff, Jr. [2] who
proposed the following conjecture.

Conjecture 3. If two of the following statements about an odd positive integer p are true,

then the third one is also true.

• p = 2k ± 1 or p = 4k ± 3;

• Mp is prime;

• Np is prime.
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Currently, there are forty known primes/probable primes Np, sometimes called Wagstaff
primes/PRP. See, for example, [8]. Probable primes Np can be discovered via any of the
known pseudoprime tests. Examples of such tests are the strong pseudoprime test (or the
Miller-Rabin test [6]), and the Grantham test [4]. They can also be discovered with the use
of Melham’s probable prime test, given in Theorem 2 above. This test has the computational
advantadge of involving the computation of only p − 1 modular squares, the subtraction of
2 in each step being neglected.

Melham’s probable prime test for Np can be derived by the application of a Frobenius
test to 1 +

√
2 in the finite field K := Z[

√
2]/Np. The application of the Frobenius test is

equivalent to the determination of the quadratic character of 1 +
√

2 in K.
Similarly, we will see that, by the application of a Frobenius test to 2+

√
2, one can obtain

the following weaker variant of Melham’s test: If Np is prime, then the sequence given by

R0 = 4,

Rk+1 = R2
k − 22k+1, k ≥ 0,

satisfies R2
p−1 ≡ 64 (mod Np) (see Lemma 5 below).

Curiously, we noticed experimentally that whenever Np is prime, then Rp−1 ≡ 8 (mod Np)
holds. The object of this paper is to show that this is indeed the case. Our proof hinges on
the determination of the biquadratic character of 2 +

√
2 in K, a problem that we consider

to be interesting in its own right.

2 The Main Result

Theorem 4. If p > 3 is prime, and Np is prime, then Rp−1 ≡ 8 (mod Np).

Let α := 2 +
√

2 and β := 2−
√

2. It is easy to see, by induction on n, that the formula

Rn = α2n

+ β2n

holds for all n ≥ 0. (1)

Since p > 3, it follows easily that Np ≡ 3 (mod 8). In particular,
(−1

Np

)

=

(

2

Np

)

= −1, (2)

where, as usual, for integers a, and q ≥ 3 odd, we write

(

a

q

)

for the Jacobi symbol of a

with respect to q.

We start by giving a short proof of a somewhat weaker congruence using nothing else
but the properties of the Frobenius automorphism.

Lemma 5. Let p > 3 be prime. If Np is prime, then R2
p−1 ≡ 64 (mod Np).

Proof. Assume that q := Np is prime. Again let K := Fq[
√

2]. By equation (2), it follows
that K is a finite field with q2 elements. Since α 6∈ Fq, we have that αq = β in K. Then
α3q = β3. Since 3q = 2p + 1, it follows that

α2p

= β3α−1.
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Conjugating the above relation, we get

Rp = α2p

+ β2p

= β3α−1 + α3β−1 =
α4 + β4

αβ
= 68,

where we have used the relations

α4 = 68 + 48
√

2, β4 = 68 − 48
√

2, αβ = 2.

However, again by formula (2), we have

2(q−1)/2 = −1 in Fq.

Since (q − 1)/2 = (2p−1 − 1)/3, we conclude that

22p−1−1 = −1. (3)

Thus, 22p−1+1 = −4. The desired relation now follows because

R2
p−1 = Rp + 22p+1 = 68 − 4 = 64,

which is what we wanted.

Let us now go to the proof of Theorem 4. We shall assume that p > 3, since for p = 3
the congruence can be verified directly. We keep the previous notations. Let i be a fixed
square-root of −1 in K. Put

γ := 1 + i +
√

2.

Let
σ := 1 + i −

√
2 and τ := 1 − i +

√
2.

Note that none of the elements γ, σ, τ is in Fq. Indeed, assume say, that τ ∈ Fq. Then by
writing −i +

√
2 = a with some a ∈ Fq, rearranging the above relation and squaring it, we

get
−1 = (−i)2 = (a −

√
2)2 = a2 − 2a

√
2 + 2,

so that a
√

2 ∈ Fq, which is possible only if a = 0. However, with a = 0 the above relation
becomes −1 = 2, which is false because q = Np > 3.

Observe now that

στ = 1 − (i −
√

2)2 = 2i
√

2 = 2
√
−2 ∈ Fq,

where the last relation follows from the fact that −2 is a quadratic residue modulo q. Thus,
(στ)q−1 = 1. Since (q2 − 1)/4 = (q − 1)((q + 1)/4) is a multiple of q − 1, we see that
(στ)(q2−1)/4 = 1, which can be rewritten as

(γτ)(q2−1)/4 = (γσ)(q2−1)/4
(

τ 2
)(q2−1)/4

. (4)

Now,
γσ = (1 + i)2 − 2 = 2(i − 1), and γτ = (1 +

√
2)2 − i2 = 2α. (5)
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Observe that 2(i − 1) = −2
√

2ω, where ω = (1 − i)/
√

2 is a root of unity of order 8. Since
p ≥ 5, it follows that q ≡ 3−1 ≡ 11 (mod 32), which implies easily that (q2 − 1)/4 ≡ −2
(mod 8). Thus, the left side of formula (4) is

(γσ)(q2−1)/4 = (−2
√

2)(q2−1)/4ω(q2−1)/4 = (−1)(q2−1)/423(q2−1)/8ω−2 = −i. (6)

Next, observe that

(τ 2)(q2−1)/4 =
(

τ q+1
)(q−1)/2

.

By Frobenius, we have that τ q+1 = τ qτ = στ = 2i
√

2. Thus,

(τ 2)(q2−1)/4 = (2i
√

2)(q−1)/2 = i(q−1)/22(q−1)/2(
√

2)(q−1)/2 = −i(
√

2)(q−1)/2, (7)

where we have used the fact that (q − 1)/2 ≡ 1 (mod 4), which follows easily from the fact
that q ≡ 11 (mod 32). Inserting (6) and (7) into (4), and using also (5), we obtain

(2α)(q2−1)/4 = (−i)(−i)(
√

2)(q−1)/2 = −(
√

2)(q−1)/2.

Using now 2(q2−1)/4 = (2q−1)(q+1)/4 = 1, and αq−1 = αqα−1 = β/α, we deduce that

(

β

α

)(q+1)/4

= α(q2−1)/4 = (2α)(q2−1)/4 = −(
√

2)(q−1)/2.

Now, (q + 1)/4 = (2p + 4)/12 = (2p−2 + 1)/3. Thus,

(

β

α

)2p−2

= −(
√

2)3(q−1)/2

(

α

β

)

.

Applying the Frobenius automorphism, and summing the resulting relations, we arrive at

(

β

α

)2p−2

+

(

α

β

)2p−2

= −(
√

2)3(q−1)/2

(

α

β
− β

α

)

.

In the line immediately above, the left side is Rp−1/(αβ)2p−2

= Rp−1/2
2p−2

. The right side is

−(
√

2)3(q−1)/2

(

α2 − β2

αβ

)

= −(
√

2)3(q−1)/24
√

2 = −2(3q+7)/4.

Since (3q + 7)/4 = 2p−2 + 2, we obtain

Rp−1

22p−2
= −22p−2+2,

which finally leads to Rp−1 = −22p−1+2. Using (3), we obtain the desired result.
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