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Abstract

The Fibonacci numbers and the Pell numbers can be interpreted as the number
of tilings of a (1 × n)-board by colored squares and dominoes. We explore the tilings
of (2 × n)-boards by colored squares and dominoes. We develop a recurrence relation
and prove several combinatorial identities in the style of recent work by Benjamin and
Quinn. We also give a bijection between these (2 × n)-tilings and a set of weighted
(1 × n)-tilings.

1 Introduction

The Fibonacci numbers (A000045) count the tilings of a (1 × n)-board with dominoes and
squares. Benjamin and Quinn [2] have used this interpretation to provide tiling proofs of

1All correspondence should be directed to this author.
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many Fibonacci identities. The Pell numbers (A000129) count the tilings of a (1×n)-board
with dominoes and two colors of squares, and Benjamin, Plott, and Sellers [1] used this
interpretation to prove still more combinatorial identities. What if we expand the board–
what can we say about tilings of a (2 × n)-board by squares and dominoes?

McQuistan and Lichtman [5] studied such tilings in the context of placing dimers on
a lattice. They found a recurrence relation and a generating function and looked at some
statistical questions for large values of n. Grimson [4] studied the generating function for q
dominoes on a (2 × n)-board.

In Section 2, we generalize McQuistan and Lichtman’s recurrence to tilings by a colors
of squares and b colors of dominoes and give a direct combinatorial proof in the style of
Benjamin and Quinn. In Section 3, we prove several combinatorial identities, and in Section
4, we provide a correspondence between these tilings and an equivalent set of weighted
(1 × n)-tilings.

2 A Recurrence Relation

Let kn count the number of tilings of a (2 × n)-board using (1 × 1) squares and (1 × 2)
dominoes. The sequence (A030186 in the Online Encyclopedia of Integer Sequences [6])
begins with k0 = 1, k1 = 2, k2 = 7, and k3 = 22. More generally, let ka,b

n be the number of
tilings of a (2×n)-board using a colors of squares and b colors of dominoes. Below is a table
of some values of ka,b

n .

n 0 1 2 3 4 5 6 7 8
kn 1 2 7 22 71 228 733 2356 7573
k2,3

n 1 7 82 877 9565 103960 1130701 12296275 133724242
k4,2

n 1 18 392 8408 180560 3877120 83253056 1787684480 38386770432

Table 1: Some values of kn and ka,b
n .

McQuistan and Lichtman [5] proved that for n ≥ 3,

kn = 3kn−1 + kn−2 − kn−3. (1)

Their proof used repeated applications of other recurrence relations. Here we generalize
their relation to ka,b

n and offer a more direct proof in the style of Benjamin and Quinn [2].

Theorem 1. Let ka,b
n count the number of tilings of a (2× n)-board with a colors of squares

and b colors of dominoes. Then ka,b
0 = 1, ka,b

1 = a2 + b, ka,b
2 = a4 +4a2b+2b2, and, for n ≥ 3,

ka,b
n = (a2 + 2b)ka,b

n−1 + a2bka,b
n−2 − b3ka,b

n−3. (2)

Proof. First we verify the initial conditions. We define ka,b
0 = 1. On a (2 × 1)-board, there

are a2 tilings with two squares and b tilings with one vertical domino, giving ka,b
1 = a2 + b.
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On a (2× 2)-board, there are a4 tilings with four squares, 4a2b tilings with two squares and
one domino, and 2b2 tilings with two dominoes, giving ka,b

2 = a4 + 4a2b + 2b2.
Now we turn to the recurrence relation for (2×n)-boards, n ≥ 3. There are a2ka,b

n−1 tilings

of a (2 × n)-board that end with two squares in column n and bka,b
n−1 tilings that end with

a vertical domino in column n. There are a2bka,b
n−2 tilings that end with two squares in the

top row and a horizontal domino in the bottom row. We need to show that the remaining
tilings are counted by bka,b

n−1 − b3ka,b
n−3.

The tilings that remain to be counted are those ending in two horizontal dominoes, those
ending with a horizontal domino in the top row and a square in the bottom row, and those
ending with a horizontal domino in the bottom row, a square in column n of the top row,
and a horizontal domino in columns n − 2 and n − 1 of the top row. These endings can be
seen below in Figure 1.

Figure 1: The endings counted by bka,b
n−1 − b3ka,b

n−3.

We will show that the (2×n)-tilings with these endings correspond to certain (2×(n−1))-
tilings. In particular, there are b2ka,b

n−3 tilings of a (2 × (n − 1))-board that end with two
horizontal dominoes in the last two columns. So we need to show that each (2×(n−1))-tiling
that does not end in two horizontal dominoes corresponds to b tilings of a (2×n)-board that
end as in Figure 1.

A (2 × (n − 1))-tiling that does not end in two horizontal dominoes may end with a
vertical domino, with a square in column n − 1 of the top row, or with a horizontal domino
in columns n− 2 and n− 1 of the top row and a square in column n− 1 of the bottom row.

If our (2 × (n − 1))-tiling ends in a vertical domino, create a (2 × n)-tiling by turning
the vertical domino into a horizontal domino in columns n− 1 and n of the bottom row and
filling in columns n − 1 and n of the top row with any of the b colors of dominoes.

If our (2 × (n − 1))-tiling ends with a square in column n − 1 of the top row, create a
(2 × n)-tiling by moving the square to column n of the bottom row and filling in columns
n − 1 and n of the top row with any of the b colors of dominoes.

If our (2 × (n − 1))-tiling ends with a horizontal domino in the top row and a square in
the bottom row, create a (2 × n)-tiling by moving the square to column n of the top row
and filling in columns n − 1 and n of the bottom row with any of the b colors of dominoes.
This mapping can be seen in Figure 2 below.
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Figure 2: Mapping (2 × (n − 1))-tilings to (2 × n)-tilings.

These one-to-b mappings reverse to b-to-one mappings, and this correspondence completes
the proof of (2). McQuistan and Lichtman’s recurrence relation (1) is the special case
a = b = 1.

Using standard methods (see, for example, Brualdi’s discussion [3, Chapter 7]), we can
find that the generating function for ka,b

n is

Ga,b(x) =
1 − x

1 − (a2 + 2b)x − a2bx2 + b3x3
. (3)

3 Combinatorial Identities

The tilings of a (1×n)-board by squares and dominoes are counted by the Fibonacci number
usually denoted Fn+1, with F0 = 0 and F1 = 1. Because we would like our subscript to match
our board size, we follow the notation of Benjamin and Quinn [2] and define fn = Fn+1, with
f0 = 1, f1 = 1, and fn = fn−1 + fn−2. We also note that fn = k0,1

n ; that is, fn counts the
tilings of a (2×n)-board by dominoes. To see this, notice that the top row of a (2×n)-tiling
by dominoes is just a (1 × n)-tiling by dominoes and squares, and that the top row of a
(2×n)-tiling by dominoes completely determines the bottom row. In this case, equation (1)
becomes the Fibonacci identity fn = 2fn−1 + fn−3. Because of these connections, we expect
that many Fibonacci-style identities will apply to (2 × n)-tilings.

To prove some of these identities, we need the notion of breakability. We say that a tiling
of a (2 × n)-board is breakable at column m (1 ≤ m ≤ n − 1) if it can be separated into a
tiling of a (2 × m)-board and a tiling of a (2 × (n − m))-board. A tiling is unbreakable if
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it is not breakable at any column. First we consider the case a = b = 1. Both tilings of a
(2 × 1)-board are unbreakable, and three of the tilings of a (2 × 2)-board are unbreakable
(the ones with at least one horizontal domino). For n ≥ 3, there are two unbreakable (2×n)
tilings, each consisting of n − 1 staggered horizontal dominoes and one square in the first
column and one square in the last column. See Figure 3. If n is even, the two squares will
be in the same row, and if n is odd, they will be in different rows.

Figure 3: The two unbreakable tilings of length 8.

In the general case of a colors of squares and b colors of dominoes, there are a2 + b
unbreakable tilings of a (2 × 1)-board, 2a2b + b2 unbreakable tilings of a (2 × 2)-board, and
2a2bn−1 unbreakable tilings of a (2 × n)-board for n ≥ 3.

We now offer several identities with proofs using breakability. The first generalizes the
usual Fibonacci recurrence.

Identity 1.

(i) kn = 2kn−1 + 3kn−2 + 2
n−3∑

i=0

ki.

(ii) ka,b
n = (a2 + b)ka,b

n−1 + (2a2b + b2)ka,b
n−2 + 2a2

n−3∑

i=0

bn−i−1ka,b
i .

Proof. We prove statement (ii) by conditioning on the location of the rightmost break;
statement (i) is just the case a = 1, b = 1. Say this break occurs at column i; we allow i = 0
if the tiling is unbreakable. The tiling begins with one of the ka,b

i tilings of a (2 × i)-board
and ends with an unbreakable tiling of a (2 × (n − i))-board. If n − i = 1, there are a2 + b
such unbreakable tilings. If n − i = 2, there are 2a2b + b2 unbreakable tilings. Finally, if
n − i ≥ 3, there are 2a2bn−i−1 unbreakable tilings.

In the special case a = 0, b = 1, identity (ii) reduces to the Fibonacci recurrence
fn = fn−1 + fn−2. Identity 1 (ii) can be used to give an alternative proof of Theorem 1:
begin with the identity, add and subtract bka,b

n−1 on the right-hand side, use the identity again

to expand −bka,b
n−1, and simplify.

Benjamin and Quinn [2] prove the Fibonacci identity fm+n = fmfn + fm−1fn−1 by con-
sidering whether or not a tiling is breakable at column m. We use the same technique to
prove the next identity.
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Identity 2. For m,n ≥ 0,

(i) km+n = kmkn + km−1kn−1 + 2
m−1∑

i=0

m+n∑

j=m+1

kikm+n−j

(ii) ka,b
m+n = ka,b

m ka,b
n + b2ka,b

m−1k
a,b
n−1 + 2a2

m−1∑

i=0

m+n∑

j=m+1

bj−i−1ka,b
i ka,b

m+n−j.

Proof. We prove statement (ii) here; statement (i) is just the case a = 1, b = 1. There
are ka,b

m ka,b
n tilings of a (2 × (m + n))-board that are breakable at column m. If a tiling is

not breakable at column m, then look for the last break before column m (say it occurs at
column i) and the first break after column m (say it occurs at column j). Then the tiling is
breakable at columns i and j (0 ≤ i ≤ m− 1, m + 1 ≤ j ≤ m + n) and unbreakable between
these columns. We allow i = 0 when the tiling has no breaks to the left of column m and
j = m + n when the tiling has no breaks to the right of column m. When i = m − 1 and
j = m + 1, there are 2a2b + b2 possible unbreakable tilings of the two columns in between,
and therefore there are (2a2b+ b2)ka,b

m−1k
a,b
n−1 tilings with these values of i and j. For all other

choices of i and j, there are 2a2bj−i−1 unbreakable tilings between columns i and j, and
therefore there are 2a2bj−i−1ka,b

i ka,b
m+n−j tilings with the chosen values of i and j. We sum

over all possible values of i and j to get the identity. If a = 0 and b = 1, identity (ii) reduces
to the Fibonacci identity above.

The remaining four identities all follow from counting tilings that contain at least one of
a certain kind of tile. We begin by considering tilings that contain at least one domino.

Identity 3. For n ≥ 0,

kn − 1 = kn−1 + 2
n−2∑

i=0

(n − i)ki.

Proof. The left-hand side counts the number of tilings of a (2 × n)-board with at least one
domino, since there is only one tiling using all squares. We will show that the right-hand
side counts the same thing. We condition on the location of the rightmost break in the tiling
that still has at least one domino to its right. Say this break occurs at column i; we allow
i = 0 if there is no such break within the tiling. There are ki ways to fill in the first i columns
of such a tiling. The remaining n − i columns begin with an unbreakable tiling of length j
(1 ≤ j ≤ n − i) containing at least one domino and end with n − i − j columns of squares.
If j = 1, the only appropriate unbreakable tiling is a vertical domino. If j = 2, there are
three unbreakable tilings, and if j ≥ 3, there are two unbreakable tilings. (See Figure 3.) If
we sum these possibilities over all j, we get 1 in the case i = n − 1 and 2(n − i) in the case
0 ≤ i ≤ n − 2 . This gives us the right-hand side of the identity.

The next identity counts tilings that contain at least one square.
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Identity 4. For n ≥ 1,

kn − fn =
n−1∑

i=0

ki(fn−i−1 + 2
n−i∑

j=2

fn−i−j) (4)

=
n−1∑

i=0

ki(fn−i+2 − 2). (5)

Proof. The left-hand side of (4) counts the number of tilings of a (2×n)-board with at least
one square, since there are fn tilings using only dominoes. We will show that the right-hand
side of (4) counts the same thing. We condition on the location of the rightmost break in
the tiling that still has at least one square to its right. Say this break occurs at column i;
we allow i = 0 if there is no such break within the tiling. There are ki ways to fill in the first
i columns of such a tiling. The remaining n − i columns begin with an unbreakable tiling
of length j (1 ≤ j ≤ n − i) containing at least one square and end with a tiling of length
n − i − j using only dominoes. If j = 1, the only appropriate unbreakable tiling is a pair of
squares. If j = 2, there are two unbreakable tilings with at least one square (a horizontal
domino in one row and two squares in the other). If j ≥ 3, there are two unbreakable tilings.
There are fn−i−j tilings of length n− i− j using only dominoes. If we sum over all j, we get
the right-hand side of (4).

We get (5) by applying the identity
∑n−i

j=2
fn−i−j = fn−i − 1 to get

kn − fn =
n−1∑

i=1

ki(fn−i−1 + 2
n−i∑

j=2

fn−i−j)

=
n−1∑

i=1

ki(fn−i−1 + 2fn−i − 2)

=
n−1∑

i=1

ki(fn−i+2 − 2).

The next identity counts tilings which contain at least one vertical domino. After the
last vertical domino, such a tiling will fall into two (1 × j)-tilings for some j. Benjamin,
Plott, and Sellers [1] noted that the tilings of a (1 × n)-board by dominoes and two colors
of squares are counted by the Pell number Pn+1. They introduced the notation pn = Pn+1

with p0 = 1, p1 = 2, and pn = 2pn−1 + pn−2 (analogous to the Fibonacci notation fn), and
we follow that notation here.

Identity 5. For n ≥ 0,

(i) kn − (fn)2 =
n∑

m=1

km−1(fn−m)2 (6)

(ii) k2,1
n − (pn)2 =

n∑

m=1

k2,1
m−1(pn−m)2. (7)
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Proof. Identity (i) is due to Cipra and stated without proof in Sloane [6]. In both (i) and
(ii), the right- and left-hand sides represent two different ways of counting the number of
tilings of a (2×n)-board with at least one vertical domino. A tiling with no vertical dominoes
breaks into two (1×n)-tilings; there are (fn)2 such tilings in the case a = 1, b = 1 and (pn)2

in the case a = 2, b = 1. This gives us the left-hand sides in (i) and (ii), respectively.
To get the right-hand sides, condition on the position of the last vertical domino. Say it
is in column m. This domino is preceded by a tiling of a (2 × (m − 1))-board, of which
there are km−1 in case (i) and k2,1

m−1 in case (ii). This domino is followed by a tiling of a
(2 × (n − m))-board with no vertical dominoes, of which there are (fn−m)2 in case (i) and
(pn−m)2 in case (ii).

This identity can be generalized for any second order linear recurrence ln = aln−1 + bln−2

which has l0 = 1 and l1 = a.
Our last identity counts tilings which contain at least one horizontal domino.

Identity 6. For n ≥ 2,

(i) kn − 2n =
n−2∑

i=0

ki(2
n−i−2 + 2n−i

− 2)

(ii) ka,b
n − (a2 + b)n =

n−2∑

i=0

ki(b
2(a2 + b)n−i−2 + 2(b(a2 + b)n−i−1

− bn−i)).

Proof. Once again, statement (i) is the case a = 1, b = 1 of statement (ii). The left-hand
side counts the number of tilings with at least one horizontal domino. If a tiling has no
horizontal dominoes, then each column contains either a vertical domino or two squares.
There are n columns and a2 + b possibilities for each column, so there are (a2 + b)n such
tilings. The right-hand side also counts tilings with at least one horizontal domino. To show
this, we condition on the rightmost break with at least one horizontal domino to its right.
Say this break occurs at column i; we allow i = 0 if there is no such break within the tiling.
There are ka,b

i ways to fill in the first i columns of such a tiling. If the n − i columns after
this break begin with two stacked horizontal dominoes, we have b2 possibilities for these first
two dominoes and (a2 + b)n−i−2 possibilities for the remaining columns.

Otherwise, the tiling of the last n− i columns begins with an unbreakable tiling of length
j (j ≥ 2) containing two squares and j − 1 dominoes. Let’s consider the case when the first
of the two squares appears in the top row; the case when the first square appears in the
bottom row is handled in the same way and accounts for the factor of 2 in the right-hand
side of (ii). To make these tilings easier to count, turn this unbreakable segment into j − 1
vertical dominoes followed by one column of two squares. The mth horizontal domino in
the unbreakable tiling becomes the mth vertical domino in the new tiling, and the first and
second squares in the unbreakable tiling become the top and bottom squares, respectively,
in column j of the new tiling. Finally, append the remaining n− i−j columns of the original
tiling to this new tiling. Now we have a tiling of a (2 × (n − i))-board that begins with a
vertical domino and contains no horizontal dominoes.

This process is almost invertible. Start with a tiling of a (2× (n− i))-board that begins
with a vertical domino and has no horizontal dominoes; there are b(a2 + b)n−i−1 such tilings.
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Say it starts with l consecutive columns of vertical dominoes (l ≥ 1) followed by a column of
two squares. Turn these l dominoes and two squares into an unbreakable tiling of length l+1,
putting the top square in the first column of the unbreakable tiling and the bottom square in
the last column and turning the mth vertical domino into the mth horizontal domino. Append
the remaining n − i − l − 1 columns to create a (2 × (n − i))-board with an unbreakable
tiling of length l +1 followed by n− i− l− i columns with no horizontal dominoes. The only
tilings that cannot undergo this process are those that do not begin with some number of
vertical dominoes followed by a column of two squares. These are the tilings that use only
vertical dominoes, and there are bn−i of these. Thus we have the right-hand side.

In the case a = 0, b = 1, this is the Fibonacci recurrence fn − 1 =
∑n−2

i=0
fi.

4 Equivalent Tilings on a (1 × n)-board

Benjamin and Quinn [2, Section 3.5] give an interpretation of any jth order linear recurrence
in terms of weighted (1×n)-tilings. In this setting, McQuistan and Lichtman’s recurrence in
equation (1) describes the tilings of a (1 × n)-board with squares of three colors, dominoes
of one color, and (3 × 1) trominoes of one color with the following condition: if the tile
in column 1 is a square, it can be Color 1 or Color 2 but not Color 3. The weight of an
individual tiling is 1 if the tiling has an even number of trominoes and −1 if it has an odd
number of trominoes. A tiling with a negative weight counts negatively toward the total
number of (1×n)-tilings. For example, when n = 3 there are 24 unweighted tilings: 2×3×3
with three squares, 2 × 1 with one square followed by one domino, 1 × 3 with one domino
followed by one square, and 1 with one tromino. Since the tiling with a single tromino has
weight −1, the total number of weighted tilings is 22, which is indeed k3.

Because these two types of tilings are both counted by kn, we looked for a correspondence
between them.

Theorem 2. There is a one-to-one correspondence between the tilings of a (2×n)-board with

squares and dominoes and the weighted tilings of a (1 × n)-board described above which do

not contain either a tromino or a domino followed immediately by a square of Color 3. The

weights of the (1 × n)-tilings which do contain a tromino or a domino followed immediately

by a Color 3 square sum to 0.

Proof. We begin with a (1 × n)-tiling with does not contain either a tromino or a domino
followed immediately by a square of Color 3 and use it to construct a tiling of a (2×n)-board
with squares and dominoes. See Figure 4 for an example.

1. If column i of the (1 × n)-tiling contains a Color 1 square then put two squares in
column i of the (2 × n)-board.

2. If column i of the (1 × n)-tiling contains a Color 2 square then put a vertical domino
in column i of the (2 × n)-board.

3. If columns i and i + 1 of the (1 × n)-tiling contain a domino then put two horizontal
dominoes across columns i and i + 1 of the (2 × n)-board.
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4. If column i in the (1 × n)-tiling is a Color 3 square then the action depends on what
is in column i− 1 of the (1×n)-tiling. (Recall that a Color 3 square will never appear
in column 1.)

(a) If column i − 1 in the (1 × n)-tiling contains a Color 1 square, then remove the
lower square in column i−1 of the (2×n)-tiling, place a horizontal domino in the
bottom row of columns i − 1 and i, and place a square in the top row of column
i.

(b) If column i − 1 in the (1 × n)-tiling contains a Color 2 square, then remove the
vertical domino in column i − 1 of the 2 × n tiling, place a horizontal domino
in the top row of columns i − 1 and i, and place squares in the bottom row of
columns i − 1 and i.

(c) If column i−1 in the (1×n)-tiling contains another Color 3 square and if column
i− 2 contains a Color 1 or Color 2 square, then column i− 1 of the (2× n)-tiling
contains one square in one row and the second half of a horizontal domino in the
other row. (See (a) and (b) above.) Remove the square and use a horizontal
domino to fill in this position and the neighboring position in column i. Fill
the remaining position in column i with a square. Because this operation leaves
column i with a square and the second half of a horizontal domino, we can continue
to apply this operation for any number of Color 3 squares in a row, creating an
unbreakable segment in the (2 × n)-tiling. Since a sequence of Color 3 squares
must be preceded by either a Color 1 square or a Color 2 square, we have covered
all possibilities.

This procedure is invertible, so we have a one-to-one correspondence. Now we need to
show that the weights of the (1×n)-tilings which do contain a tromino or a domino followed
immediately by a Color 3 square sum to 0. Given such a (1 × n)-tiling, find the rightmost
occurrence of either a tromino or a domino followed by a Color 3 square. If it is a tromino,
replace it with a domino and Color 3 square, and vice versa. The original tiling and the new
tiling have weights of opposite sign, since one has one more tromino than the other. Since
all the tilings under consideration can be paired this way, their weights sum to 0.

Figure 4: A transformation of a (1 × 10)-board to a (2 × 10)-board by the rules above.
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5 Future Work

In this paper, we have extended earlier work on (2 × n)-tilings to colored tilings, proved
several identities, and connected (2 × n)-tilings to weighted (1 × n)-tilings. There is still
more to be learned about the sequences kn and ka,b

n . We have begun exploring the roots of
the characteristic equation x3−(a2+2b)x2−a2bx+b3 = 0, which lead to an expression for ka,b

n

that is analogous to the Binet formula for the Fibonacci numbers. Since limn→∞ ka,b
n+1/k

a,b
n

is one of these roots, we would like to be able to say more about them for various values of
a and b. We would also like to know more about the arithmetic properties of kn and ka,b

n .
Identity 3 shows that the parity of kn alternates. It is straightforward to use the recurrence
relation in Theorem 1 to check the behavior of the parity of ka,b

n for different combinations
of odd and even a and b, but we expect there is a good deal more to be said in this area.
Finally, this general approach should extend to boards of other shapes and sizes.
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