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Abstract

Aleksandrov, Kolmogorov and Lavrent’ev state that x
5+x−a is nonsolvable for a =

3, 4, 5, 7, 8, 9, 10, 11, . . .. In other words, these polynomials have a nonsolvable Galois

group. A full explanation of this sequence requires consideration of both reducible and

irreducible solvable quintic polynomials of the form x
5 +x− a. All omissions from this

sequence due to solvability are characterized. This requires the determination of the

rational points on a genus 3 curve.

1 Introduction

Let f(x) be a polynomial with rational coefficients. The polynomial f(x) is solvable if its
Galois group is solvable. Equivalently, the zeroes of f(x) can be expressed in radical form.
Dummit [6] provides a description of this process for quintic polynomials. Aleksandrov,
Kolmogorov and Lavrent’ev [1] state that “the equation x5 +x−a = 0, where a is a positive
whole number, in most cases cannot be solved by radicals. For example, it is not solvable in
radicals for a = 3, 4, 5, 7, 8, 9, 10, 11, . . . ”. The purpose of this paper is to give a complete
explanation of this sequence for all integers. Our main Theorem is

1All correspondence should be directed to this author.
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Theorem 1. Let f(x) = x5 + x − a where a is an integer. Then f(x) is not solvable by

radicals unless
a = r5 + r for some integer r,

or a = ±1,±6.

In Section 2 we give some preliminary results we shall need for the proof of our theorem,
which is given in Section 3.

2 Preliminary Results

If the polynomial f(x) = x5 +x−a is reducible over Q then f(x) is solvable by radicals since
the factors have degree at most four. In this section we begin by enumerating the values of
the integer a for which f(x) is reducible over Q. The first class of reducibility is the easiest
and is described in the following lemma, where the proof is obvious and thus omitted.

Lemma 1. Let f(x) = x5 + x − a where a is an integer. If f(x) has a rational zero, say r,
then r is an integer and a = r5 + r.

For the second class of reducible polynomials Rabinowitz [7] provides us with the following
result:

Proposition 1. The only integers a for which x5 + x − a factors into the product of an

irreducible quadratic and an irreducible cubic are a = ±1 and a = ±6.

Now we need a characterization of solvable irreducible quintic trinomials x5 + x− a. This is
given by a Theorem of Dummit [6], specialized to our polynomials.

Proposition 2. The irreducible quintic x5 + x− a ∈ Q[x] is solvable by radicals if and only

if the resolvent sextic polynomial

t6 + 8t5 + 40t4 + 160t3 + 400t2 + (512 − 3125a4)t + 256 − 9375a4 (1)

has a rational zero t.

To finish this section we give a determination of the set of rational points on a genus 3
curve. This result will be required in the proof of our theorem.

Lemma 2. The affine curve y2 = (20x4 − 1)(5x4 + 1) has no rational points.

Proof. The computational method of proof used here is described in depth, with examples,
by Bremner and Tzanakis [3]. We shall work in the number field K = Q(θ) where θ is a zero
of z4 +3z2 +1. The number field K is a bicyclic quartic field, specifically K = Q

(√
−1,

√
5
)

.
The maximal order OK of K is Z[θ], the class number of OK is 1, and the fundamental unit
of OK is ε = 1 + θ2. Let (x, y) = (X/Z, Y/Z4) where X,Y, Z ∈ Z and gcd(X,Z) = 1 with
Z 6= 0. This gives us the following equation:

Y 2 = (20X4 − Z4)(5X4 + Z4). (2)
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If X and Z are both odd then (2) reduces to Y 2 ≡ 2 (mod 4), which is impossible. If X is
even and Z is odd then (2) reduces to Y 2 ≡ 3 (mod 4), which is also impossible. Therefore,
we may assume throughout the remainder of this proof that X is odd and Z is even. We
also observe that X 6= 0. Factoring (2) over K gives

F1F2 = 25Y 2.

where
F1 = (10X2 + (2θ2 + 3)Z2)(5X2 + (θ3 + 4θ)Z2),

F2 = (10X2 − (2θ2 + 3)Z2)(5X2 − (θ3 + 4θ)Z2).
(3)

Now we have the following factorization of ideals in OK

〈2〉 = ℘2

2
, 〈5〉 = ℘2

51
℘2

52
.

We also have the identities

(−10X2 + (2θ3 + 2θ2 + 8θ + 3)Z2)F1 + (10X2 + (2θ3 + 2θ2 + 8θ + 3)Z2)F2

= 10Z6(θ3 − 4θ2 + 4θ − 6),

and
((10θ3 + 10θ2 + 40θ + 15)X2 − (5θ3 + 10θ)Z2)F1

+((10θ3 + 10θ2 + 40θ + 15)X2 + (5θ3 + 10θ)Z2)F2

= 500X6(2θ3 + 2θ2 + 8θ + 3).

Then since X and Z are relatively prime and the norms of the elements (θ3 − 4θ2 + 4θ − 6)
and (2θ3 +2θ2 +8θ+3) from K to Q are both equal to 54 we see that the gcd ideal of F1 and
F2 involves only prime ideals dividing 2 and 5. Recalling the observation stated just after
equation (2) that X is odd and Z is even, we see from equation (3) that ℘4

2
‖ F1F2, ℘2

2
‖ F1

and ℘2

2
‖ F2. Furthermore, if 5 ∤ Z then as ideals, 〈2θ2 + 3〉 = 〈θ3 + 4θ〉 = ℘51℘52, so that

(3) implies ℘4

51
℘4

52
‖ F1F2, ℘2

51
℘2

52
‖ F1, and ℘2

51
℘2

52
‖ F2. Finally, if 5 | Z then 5 ∤ X so that

(3) gives ℘8

51
℘8

52
‖ F1F2, ℘4

51
℘4

52
‖ F1 and ℘4

51
℘4

52
‖ F2. We conclude that modulo squares the

gcd ideal of F1 and F2 is 〈1〉. We now deduce equations

F1 = gU2 and F2 = gV 2, (4)

with 5Y = gUV and g = (−1)i0εi1 , i0, i1 = 0, 1. Using the first of these two equations, a
K-rational solution (X,Z, U) to this equation would yield a K-rational point (x, y) on the
elliptic curve

y2g = x(10x + 2θ2 + 3)(5x + θ3 + 4θ). (5)

This elliptic curve arises by multiplying the first equation in (4) by X2/Z6 and defining
y = XU/Z3 and x = X2/Z2. We wish to determine the Mordell-Weil group of each of these
elliptic curves over the number field K. To do this we appeal to Magma and the routine
PseudoMordellWeilGroup. This routine uses a 2-isogeny descent when available, returning
true in the output when the rank is determined. Bruin [4] gives detailed information on this
routine. For all four choices of g in (5), using PseudoMordellWeilGroup, we found that
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the group of K-rational points is isomorphic to Z/2Z + Z/2Z. Thus the only K-rational

points on (5) are the obvious 2-torsion points (0, 0),

(

−2θ2 + 3

10
, 0

)

and

(

−θ3 + 4θ

5
, 0

)

. If

these points were to yield integer pairs (X,Z) with X,Z 6= 0, satisfying (2), then one of the
nonzero x coordinates would have to be equal to the square of a nonzero rational number,
which is impossible as they are not even in Q. Hence there are no rational points on the
curve y2 = (20x4 − 1)(5x4 + 1) except the two points at infinity. Equally well, for the last
part of this proof, the Magma command IsLocallySolvable can be used to show that the
curves F1 = gU2, given in (4), have no finite rational points.

3 Proof of Theorem

Proof. Suppose that f(x) = x5 +x−a is solvable by radicals. If f(x) is reducible then either
f(x) has a rational root or f(x) factors into the product of and irreducible quadratic and an
irreducible cubic polynomial over Q. The case of reducible quintics was covered by Lemma
1 and Proposition 1, in Section 2 . This gives us the exceptional values of a which are stated
in our theorem. Now we search for integral values of a where the polynomials x5 + x − a
are solvable and irreducible. By Proposition 2, this leads to a consideration of the rational
solutions (t, a) satisfying (1). The curve (1) is birationally equivalent to the genus 3 curve

y2 = (3125x4 − 4)(3125x4 + 16), (6)

using the transformations

x =
a

t + 2
, y =

t2 + 6t − 16

t + 3
,

t =
3125x4 + y

2
, a = 2x +

3125x5 + xy

2
,

(7)

and after scaling (6) becomes

y2 = (20x4 − 1)(5x4 + 1).

As shown in Lemma 2, there are no rational points on this curve. We conclude from the
birational transformations given in (7) that there are no finite rational points (t, a) satisfying
(1) so that the determination of the integral values of a is complete.

Remark 1. In the proof of Theorem 1 we actually showed that there were no rational values
of a such that f(x) = x5 + x − a is solvable and irreducible. An analog of Theorem 1 for
sextic trinomials x6 + x − a would be an interesting calculation since for these sextics there
exist rational values of a for which x6 + x − a is irreducible and solvable over Q. The sextic

trinomial x6 + x +
41

8
is irreducible and solvable with Galois group 6T13 in Maple which is

isomorphic to C2

3
⋊D4 [5].
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