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Abstract

Fix a positive integer and a finite set whose elements are in arithmetic progression.
We give a formula for the number of nonempty subsets of this set that are coprime
to the given integer. A similar formula is given when we restrict our attention to the
subsets having the same fixed cardinality. These formulas generalize previous results
of El Bachraoui.

1 Introduction

A nonempty subset A of {1, 2, ..., n} issaid to be relatively prime if gcd(A) = 1. Nathanson
[4] defined f(n) to be the number of relatively prime subsets of {1, 2, ..., n} and, for
k > 1, fr(n) to be the number of relatively prime subsets of {1, 2, ..., n} of cardinality k.
Nathanson [4] defined ®(n) to be the number of nonempty subsets A of the set {1, 2, ..., n}
such that ged(A) is relatively prime to n and, for integer k > 1, ®x(n) to be the number of
subsets A of the set {1, 2, ..., n} such that ged(A) is relatively prime to n and card(A) = k.
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He obtained explicit formulas for these functions and deduced asymptotic estimates. These
functions have been generalized by El Bachraoui [3] to subsets A € {m+1, m+2, ... ,n}
where m is any nonnegative integer, and then by Ayad and Kihel [1] to subsets of the set
{a,a+b, ..., a+ (n—1)b} where a and b are any integers.

El Bachraoui [2] defined for any given positive integers | < m < n, ®([l,m],n) to be
the number of nonempty subsets of {l, [ + 1, ..., m} which are relatively prime to n and
@, ([l,m],n) to be the number of such subsets of cardinality k. He found formulas for
these functions when [ = 1 [2]. In this paper, we generalize these functions and obtain El
Bachraoui’s result as a particular case.

2 Phi functions for {1, 2, ..., m}

Let k and [ < m < n be positive integers. Let |z| denote the greatest integer less than
or equal to z, and u(n) the Mébius function. El Bachraoui [2] defined ®([l,m],n) to be
the number of nonempty subsets of {l, [ + 1, ..., m} which are relatively prime to n and
O ([l,m],n) to be the number of such subsets of cardinality k. He proved the following
formulas [2]:

®([1,m],n) =Y p(d)2"d! (1)

dn

oult ) = 30 () )

In his proof of Egs. (1) and (2), El Bachraoui [2] used the Mdbius inversion formula
and its extension to functions of several variables. The case m = n in (1), was proved by
Nathanson [4].
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3 Phi functions for {a, a+b, ..., a+ (m — 1)b}

It is natural to ask whether one can generalize the formulas obtained by El Bachraoui [2]
toaset A ={a,a+b,...,a+ (m— 1)b}, where a, b, and m are positive integers. Let
@9 (m, n) be the number of nonempty subsets of {a, a +b, ..., a + (m — 1)b} which are
relatively prime to n and ®x([l, m],n) to be the number of such subsets of cardinality k. To
state our main theorem, we need the following lemma, which is proved in [1]:

Lemma 1. For an integer d > 1, and for nonzero integers a and b such that ged(a,b) =1,
let Ay = {$:a+ibf0ri:0,...,(m—1)) d|xz}. Then
(i) If ged (b,d) # 1, then |Aq| = 0.



(ii) If ged (b,d) = 1, then |Aq| = [ %] + €a, where

0, if d | m;
eg=14 1, z’fdj(mand(—abil)moddE{O,...,m—L%Jd—l}; (3)
0, otherwise.

Theorem 2.

Hlab) (m,n) = Z p(d) (QL%JJrEd _ 1) (4)
d|n
ged(b,d) =1
and .
(I)I(Ca,b)(m7n) _ Z M(d) < LEJ];_ €d ) : (5)
d|n
ged(b,d) =1

where €4 18 the function defined in Lemma 1.

Proof. Let Ay = {x =a+ibfori=0,..., (m—l)‘ d |z}, and P(A;) = {the nonempty subsets of A4}.

It is easy to see that &) (m,n) = (2™ — 1) — U P(A,)|. Clearly, if py,...,p; are
p prime
pln
distinct primes, then
t
NPA)| = [PAg,)|-
i=1

Thus, using the principle of inclusion-exclusion, one obtains from above that

O (m,n) = Y p(d)|P(A)l-
d|n
It was proved in Lemma 1, that if ged(b,d) # 1, then |A4| = 0 and if ged(b,d) = 1, then
|Aq| = ([TJ +€ ) Hence
d p d)-

la:d) (m’ n) — Z M(d) (2[%]—&-5(1 _ 1) ]
d|n
ged(b,d) =1
The proof for Eq. (5) is similar. O

Theorem 3 in [2] can be deduced from Theorem 2 above as the particular case where a =
b = 1. We prove the following.

Corollary 3. (a) ®([1,m],n) = @&V (m,n)
and

(b) ©([1,m),n) = @ (m,n) .



Proof. 1t is not difficult to prove that when a = b = 1 in Lemma 1, ¢, = 0. Using
Theorem 2, and the well-known equality din p(d) = 0, one obtains that

O (m,n) = 37 () (24 1) = 7 (@2t = o ((1,m],m) (®)

din dln
and .
o) = St (1) = e, )
O
Example 4. Using Theorem 2, one can obtain asymptotic estimates and generalize

Corollary 4 proved by El Bachraoui [2].
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