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Abstract

We describe a framework for systematic enumeration of families combinatorial
structures that possess a certain regularity. More precisely, we describe how to ob-
tain the differential equations satisfied by their generating series. These differential
equations are then used to determine the initial terms in the counting sequence and
for asymptotic analysis. The key tool is the scalar product for symmetric functions.

1 Introduction

Some classes of combinatorial objects naturally possess a substantial amount of symmetry
and when formal sums of monomials encoding some parameter of interest are taken over the
entire class, symmetric functions, or symmetric series appear. There has been some recent
activity to determine how to extract enumerative series of sparse sub-families of these classes
directly from the symmetric functions. The principle can be illustrated with one well studied
example, the subset of labelled graphs in which the degree of each vertex is a fixed value, say
k, known as the k-regular graphs. Here, we encode a graph by its degree sequence. When we
consider the sum of this encoding over all graphs, they are encoded by the infinite product

G(x1, x2, . . .) =
∏

i<j

(1 + xixj). (1)

1 The author thanks the Canadian Natural Science and Engineering Research Council for funding this
work through the PDF program. This work was completed while at LaBRI, Université Bordeaux I, and at
the Fields Institute, Toronto, Canada.
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This is a well known symmetric series. Further, we remark that the coefficient of xk
1x

k
2 · · ·xk

n

in the formal power series development gives the number of labelled k-regular graphs on n
vertices.

Such a coefficient extraction can be set up as a multidimensional Cauchy integral, as
described by McKay for regular tournaments and Eulerian digraphs [20], and by McKay and
Wormald for graphs with a fixed degree sequence [22]. However, in general this may not be
a useful or practical formula.

Indeed these techniques are well developed, and provide general formulae that we cannot
currently obtain with the methods here, but they are difficult to make systematic, as they
contain a saddle point analysis to make the asymptotic estimate that may be quite fine and
specific to the problem.

The primary goal here is to lucidly illustrate how techniques for computing the scalar
product of symmetric functions in [7] can be a part of an essentially algorithmic process
for asymptotic analysis. At the heart of the method is the fact that the scalar product of
symmetric functions preserves a notion of D-finiteness [14], and, thanks to the algorithms
in [7], this result is effective.

We begin with a short recollection of symmetric series and D-finiteness, and a brief
discussion on some places that D-finite symmetric series appear in combinatorics. We analyse
graphs with fixed finite degree sets, and hypergraphs. Finally, in Section 5, we have the
results of our semi-automated asymptotic analysis of these classes.

2 Symmetric series and D-finiteness

We provide a basic summary of symmetric functions in order to establish notation. The
reader is directed to MacDonald’s book [19] for full details.

Denote by λ = (λ1, . . . , λk) a partition of the integer n. This means that n = λ1+ · · ·+λk

and λ1 ≥ · · · ≥ λk > 0, which we also denote λ ⊢ n. Partitions serve as indices for the five
principal symmetric function families that we use: homogeneous (hλ), power (pλ), monomial
(mλ), elementary (eλ), and Schur (sλ). These are series in the infinite set of variables,
x1, x2, . . . over a field K of characteristic 0. When the indices are restricted to all partitions
of the same positive integer n, any of the five families forms a basis for the vector space
of symmetric polynomials of degree n in x1, x2, . . . On the other hand, the family of pi’s
indexed by the integers i ∈ N generates the algebra Λ of symmetric functions over K:
Λ = K[p1, p2, . . . ]. Furthermore, the pi’s are algebraically independent over Z.

Generating series of symmetric functions live in the larger ring of symmetric series,
K[t][[p1, p2, . . . ]]. There, we have the generating series of homogeneous and elementary func-
tions:

H(t) =
∑

n

hnt
n = exp

(
∑

i

pi
ti

i

)
, E(t) =

∑

n

ent
n = exp

(
∑

i

(−1)ipi
ti

i

)
.

We often refer to H = H(1) and E = E(1).
Alternatively, the power notation λ = 1n1 · · · knk for partitions indicates that i occurs
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ni times in λ, for i = 1, 2, . . . , k. The normalization constant

zλ := 1n1n1! · · · knknk!

plays the role of the square of a norm of pλ in the following important formula:

〈pλ, pµ〉 = δλ,µzλ, (2)

where δλ,µ is 1 if λ = µ and 0 otherwise.
The scalar product is a basic tool for coefficient extraction. Indeed, if we write F (x1, x2, . . . )

in the form
∑

λ fλmλ, then the coefficient of xλ1

1 · · · xλk

k in F is fλ = 〈F, hλ〉. Moreover, when
λ = 1n, the identity h1n = p1n yields a simple way to compute this coefficient when F is
written in the basis of the p’s. When viewed at the level of generating series, this fact gives
the following theorem:

Theorem 2.1 (Gessel[14]; Goulden & Jackson[15]). Let θ be the K-algebra homomorphism

from the algebra of symmetric functions over K to the algebra K[[t]] of formal power series

in t defined by θ(p1) = t, θ(pn) = 0 for n > 1. Then if F is a symmetric function,

θ(F ) =
∞∑

n=0

an
tn

n!
,

where an is the coefficient of x1 · · ·xn in F .

To end our brief recollections of symmetric functions recall that plethysm is a way to
compose symmetric functions. An inner law of Λ, denoted u[v] for u, v in Λ, it satisfies the
following rules [29], with u, v, w ∈ Λ and α, β in K

(αu + βv)[w] = αu[w] + βv[w], (uv)[w] = u[w]v[w],

and if w =
∑

λ cλpλ then pn[w] =
∑

λ cλp(nλ1)p(nλ2) . . .. For example, consider that w[pn] =
pn[w], and in particular that pn[pm] = pnm. In a mnemonic way:

w[pn] = w(p1n, p2n, . . . , pkn, . . .) whenever w = w(p1, p2, . . . , pk, . . .).

2.1 D-finite multivariate series

Recall that a series F ∈ K[[x1, . . . , xn]] is D-finite in x1, . . . , xn when the set of all partial
derivatives and their iterates, ∂i1+···+inF/∂xi1

1 · · · ∂xin
n , spans a finite-dimensional vector space

over the field K(x1, . . . , xn). A D-finite description of a series F is a set of differential
equations that establishes this property. A typical example of such a set is a system of
n differential equations of the form

q1(x)f(x) + q2(x)
∂f

∂xi

(x) + · · · + qk(x)
∂kf

∂xk
i

(x) = 0,

where i ranges over 1, . . . , n, each qj is in K(x1, . . . , xn) for 1 ≤ j ≤ k, and k and qj depend
on i.

Such a system is a typical example of a D-finite description of a functions, and often
this will be the preferred form for manipulating f . In truth we can accept any basis that
generates the vector space of partial derivatives, but in the applications below, this form is
particularly easy to obtain.
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2.2 D-finite symmetric series

The following definition of D-finiteness of series in an infinite number of variables is given by
Gessel [14], who had symmetric functions in mind. A series F ∈ K[[x1, x2, . . . ]] is D-finite

in the xi if the specialization to 0 of all but a finite (arbritrary) choice, S, of the variable
set results in a D-finite function (in the finite sense). In this case, many of the properties of
the finite multivariate case hold true. One exception is closure under algebraic substitution,
which requires additional hypotheses.

The definition is then tailored to symmetric series by considering the algebra of symmetric
series as generated over K by the set {p1, p2, . . . }: a symmetric series is called D-finite when
it is D-finite in the pi’s

2.

Example. Both H(t) and E(t) are D-finite symmetric functions, as for any
specialization of all but a finite number of the pi’s to 0 results in an exponen-
tial of a polynomial. Similarly, exp(hkt) is D-finite because hk =

∑
λ⊢k pλ is a

polynomial in the pis.

The closure under Hadamard product of D-finite series [18] yields the consequence:

Theorem 2.2 (Gessel). Let f and g be elements of K[t1, . . . , tk][[p1, p2, . . . ]], D-finite in

the pi’s and tj’s, and suppose that g involves only finitely many of the pi’s. Then 〈f, g〉 is

D-finite in the tj’s provided it is well-defined as a power series.

2.3 Effective calculation and algorithms

In our initial study [7] we gave an algorithm which, given a D-finite descriptions of two
functions satisfying the hypothesis of Theorem 2.2, determines a D-finite description of
the series of the scalar product. Henceforth, we shall refer to this algorithm as scalar de.
As we noted in [7], a second algorithm, hammond, based on the work of Goulden, Jack-
son and Reilly [15] applies in the case when g = exp(hnt), which we shall see is pre-
cisely how one can extract the exponential generating series of sub-classes with “regular-
ity”. They are implemented in Maple, are are available for public distribution at the website
http://www.math.sfu.ca/~mmishna. Maple worksheets illustrating the calculations pre-
sented are also available at that same site.

3 D-finite symmetric series appear naturally in combi-

natorics

Species theory (in the sense of [3, 17]) is a formalism for defining and manipulating combi-
natorial structures that relates classes to encoding series. An important connection to our
work here is that the series for structures we consider are D-finite symmetric series, and
many of the natural combinatorial actions preserve D-finiteness on the level of these series.

The reader unfamiliar with species is heartily encouraged to consult [3]. A species asso-
ciates to every set a family of structures in a way such that two sets of the same cardinality

2This is interestingly enough not equivalent to D-finiteness with respect to either the h or e basis.
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Object Series Symmetric function Object Series Symmetric function

2-sets ΓE2
e2 =

p2

1

2
− p2

2
2-multisets ZE2

h2 =
p2

1

2
+ p2

2

3-sets ΓE3
e3 3-multisets ZE3

h3

4-sets ΓE4
e4 4-multisets ZE4

h4

k-sets ΓEk
ek k-multisets ZEk

hk

3-cycles ZC3

p3

1

3
+ p3

3
triples ZX3 p3

1

4-cycles ZC4

p4

1

4
+

p2

2

12
+ p4

12
4-arrays ZX4 p4

1

5-cycles ZC5

p5

1

5
+ p5

30
5-arrays ZX5 p5

1

k-cycles ZCk

∑
cd=k φ(d)

pc
d

k!
k-arrays ZXk pk

i

Table 1: Index series of small species and their corresponding symmetric functions

yield the same family, upto isomorphism. For example, the species of sets E on the under-
lying set U is simply E[U ] = U . The species of lists L[U ] = {(x1, x2, . . . , xn) : xi ∈ U, n =
0, 1, 2 . . . }, is the set of finite ordered collections of elements. The atomic species, X[U ] is U
if U contains a single element, and is empty otherwise.

The theory of species develops a rigorous formalism that allows a sort of calculus of
combinatorial families. For example we construct lists of length 4 from our atomic species
via multiplication: L4[U ] = X4[U ].

The key feature that we use are that for every combinatorial family (species) F that
one can define, there is an associated cycle index series ZF and an asymmetric cycle index
series ΓF, both of which are symmetric series. Recall for any species F its cycle index series
ZF is the series in C[[p1, p2, . . .]] given by

ZF(p1, p2, . . .) :=
∑

n

∑

λ⊢n

Fix F[λ]
pm1

1 pm2

2 · · · pmk

k

zλ

, (3)

where the value of Fix F[λ] is the number of structures of F that remain fixed under some
labelling permutation of type3 λ, and mk gives the number of parts of λ equal to k.

The definition of the asymmetry index series of a species F, denoted ΓF, as introduced
by Labelle [3] is related, but more subtle. The series Γ behaves analytically in much the
same way as the cycle index series, notably, substitution (in almost all cases) is reflected by
plethysm, etc. Essentially, this series counts the objects with no internal symmetry. Table 1
contains some small examples of both series.

In a fashion similar to the cycle index series, ΓF arises through the enumeration of color-
ings of asymmetric F-structures.

A notable example is the species of sets, E. Recall for any finite set U we have that
E[U ] = U . The two series above turn out to be ZE = exp(

∑
n pn/n) =

∑
n hn and ΓE =

exp(
∑

n(−1)npn/n) =
∑

n en.
The primary advantage of this approach, as is true with any generating series approach,

is that natural combinatorial operations (set, cartesian product, substitution) coincide with

3A permutation of type (1m1 , 2m2 , . . .) has m1 fixed points, m2 cycles of length 2, etc.
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straighforward analytic operations (sum, product, plethystic substitution)4.
The exponential generating series of a species F is the sum F(t) =

∑
n |F[n]| tn

n!
, where

|F[n]| is the number of structures of type F on a set of size n. The ordinary generating

function, F̃(t), is the sum F(t) =
∑

n Orb(F[n])tn, where Orb(F[n]) is the number structures
of F on a set of size n distinct up to relabelling. Also recall the notation [xn]f(x) refers to the
coefficient of [xn] in the expansion of f(x). This definition extends likewise to monomials.

The next result is essentially a collection of known results and basic facts of D-finite
series.

Theorem 3.1. Suppose F is a species such that ZF is a D-finite symmetric series and write

pn = xn
1 + xn

2 + . . .. Then all of the following series are D-finite with respect to t:

1. The exponential generating function F(t);

2. The ordinary generating function F̃(t), if the additional condition that ZF(p1, p2, . . .) is

D-finite with respect to the xi variables is also true;

3. The series
∑

n

(
[xk

1 · · ·xk
n]ZF

)
tn

n!
, for fixed k;

4. The series
∑

n

∑
k̄∈Sn

([
xk1

1 xk2

2 . . . xkn
n

]
ZF

)
tn/n!, for any finite set S ⊂ N.

Proof. The first two parts are proved using two basic results about cycle index series:

F(t) = ZF(t, 0, 0, . . .) and F̃(t) = ZF(t, t
2, t3, . . .)

The first specialization is well-known to preserve D-finiteness [28] for any n. The addi-
tional condition on the second item is sufficient to prove the D-finiteness since the stated
substitution is the same as x1 7→ t, and xi 7→ 0 otherwise.

The third item of the proposition is proved by the expression

∑

n

(
[xk

1 · · · xk
n]ZF

) tn

n!
= 〈ZF, exp(thk)〉 ,

which is D-finite by Theorem 2.2.
The final item of the proposition is true because the series is equal to

〈
ZF, exp(t

∑

i∈S

hi)

〉
,

which is also D-finite by Theorem 2.2.

We have one large class of species for which the cycle index series is D-finite. All of our
examples come from this class.

Theorem 3.2. Let E be the species of sets and let P be a polynomial species with finite

support5. Then F = E ◦P describes a species for which ZF is a D-finite symmetric series and

provided that P(0) = 0, ΓF is also a D-finite symmetric series.

4This is slightly less true with the asymmetry index series, but true enough for our purposes.
5Species that can be written as polynomials of molecular species. For example, every species in Table 1

is polynomial.
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Proof. If P is a polynomial species, then its cycle index series is a polynomial in the pi’s, say
P (p1, . . . , pn). Composition of species is reflected in the cycle index series by plethysm, thus

ZF = exp(
∑

k

pk/k)[P (p1, . . . , pn)] = exp
(∑

P (pk, p2k, . . . , pnk)/k
)

.

For any specialization of all but a finite number of pi to zero, this gives an exponential of a
polynomial, which is clearly D-finite. Thus, ZF is D-finite. We can similarly show that ΓF is
also D-finite under the stated conditions, since the composition also results in a plethystic
composition.

Our concluding remarks in Section 6.2 address the more general question of combinatorial
criteria on a species F that ensure that ZF or ΓF are D-finite.

4 Using species to describe regular graph-like struc-

tures

Ultimately our goal is to generalize the well-studied case of k-regular graphs to other struc-
tures whose cycle index series are D-finite. To do so, we express the graph encoding by degree
sequence as symmetric series, and describe how to find such a representation in general using
species theory.

In Eq. (1) we define G(x1, x2, . . .) as the encoding over all graphs of their degree sequence
and we express this as an infinite product. It turns out that this series is equivalent to
E[e2], which is equivalent to ΓE◦E2

. The equivalent series for multigraphs (with loops) is
equal to H[h2] = ZE◦E2

, and thus suspecting an explanation via species, we investigate this
connection. Specifically, how do we construct symmetric function equations to describe the
generating functions of different families of objects, such as hypergraphs.

We begin with the remark that F = E ◦ E2 is not the species of graphs. It is the species
of partitions into 2-sets. For example, {{1, 4}, {2, 6}, {3, 7}, {5, 8}} is an element of F, and
we should not think that this is the graph on 8 vertices, with four edges, rather it just gives
the basic structure, i.e. four edges.

We express the Polya cycle index in the power series symmetric function. As a series in
the symmetric xi indeterminates, it is an inventory of distinct (non-isomorphic) colorings of
the elements of the species. For example, the non-isomorphic colorings (by positive integers,
say) of the set {a, b} is the set of maps {(a, b) 7→ (i, j) ∈ N

2 : i ≤ j}, and the inventory of
all such colorings is

∑
i≤j xixj = h2.

A coloring of an element in E ◦ E2 gives rise to a graph (See Figure 1) and two colorings
are isomorphic if one is a graph relabelling of the other. The monomial encoding a coloring
indicates how many time each color was used, that is, in how many edges the color appears,
that is, the degree of the vertex represented by the color.

We restate this correspondence. The species E ◦ E2 indicates the structure– sets of pairs.
The cycle index series ZE◦E2

encodes non-isomorphic colorings of elements, which are in turn
equivalent to labelled multi-graphs. The sets of pairs indicate edges, and the colors indicate
vertices.
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Figure 1: The graph associated with the colored set partition
{{13, 42}, {22, 64}, {34, 73}, {52, 81}}

21

3 4 5

Figure 2: A structure composed of a set of smaller structures (cycles and 3-sets).

For many applications, like regular graphs, we would like to count colorings without
repetition. In this case, we do not allow repetition of a color in a given object, hence to
encode a k-set, each color appears exactly once, and this is precisely the notion of asymmetry
in the asymmetry cycle index, and thus we use Γ instead of Z. Remark, and thus

ΓEk
= ek and thus, ΓE = E.

Taking the same species E◦E2 as above, and using the asymmetry index series with a similar
argument, we get that ΓE◦E2

= E[e2] encodes simple graphs without loops on the set of
colors precisely as is determined by Eq. (1): E[e2] =

∏
i<j(1 + xixj). This gives us a way to

have direct access to monomial encodings of combinatorial objects , as symmetric functions
expressed in common bases, like the power sum basis. These two series are compatible and,
one can show that graphs with loops are encoded by E[h2], and graphs with multiple edges,
but no loops are given by H[e2].

More generally, we can consider any structure that is built as a set of objects from a finite
set of classes. Figure 2 shows a more general object built as a set of cycles and sets. In this
framework it is encoded by the monomial x2

1x
2
2x3x

2
4x

2
5, and thus we see that regularity in this

situation refers to the number of times each label appears in one of the smaller substructures.

Using this framework we can examine other species of structures built up from smaller
objects. These species are such that both ZF and ΓF give rise to interesting combinatorial
objects.

We can produce enumerative results for objects all of the same flavour: labelled sets of
objects in which there is a certain regularity. We begin with a natural generalization of
k-regular graphs, and then we consider other types of objects such as hyper-graphs, and
directed graphs.
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i, j Initial terms in the counting sequence
1,2 1,0,1,4,18,112,820,6912,66178,708256,8372754,108306280,1521077404
1,3 1, 0, 1, 0, 8, 0, 730, 0, 188790, 0, 102737670, 0, 102172297920,0
1,4 1,0,1,0,3,6,30,1011,38920,1920348,116400186,8580463110,757574641296
2,3 1,0,0,1,10,112,1760,35150,848932,24243520,805036704,30649435140
2,4 1,0,0,1,3,38,730,20670,781578,37885204,2289786624,168879532980
3,4 1,0,0,0,1,26,820,35150,1944530,133948836,11234051976,1127512146540

Table 2: Counting sequences for {i, j}-regular graphs for small values of i and j.

4.1 S-regular graphs

A graph is S-regular if the set of vertex degrees in the graph is a subset of S. For example,
a graph is {i, j}-regular if every vertex is of degree i or j.

It does not seem that the asymptotic enumeration of these objects has been directly
considered before. It is, in some sense, a variation of the asymptotic number of labelled
graphs with a given degree sequence, which has been considered by Bender and Canfield [2]
and McKay and Wormald [22], and may very well be computable from this.

Thus, the scalar product that represents the generating series for the number of {i, j}-
regular graphs is given by incorporating this factor, which ultimately greatly simplifies the
calculation. The exponential generating series for the number of {i, j}-regular graphs is
given by

Gi,j(t) =
〈
E[e2], exp (t(hi + hj))

〉
.

This is clearly D-finite, and computable using scalar de (although not hammond). Fur-
thermore, by a similar computation, we have the following result.

Theorem 4.1. The number of S-regular graphs is D-finite for any finite S ⊂ N, and its

exponential generating series is given by the scalar product of symmetric functions,

GS(t) =

〈
E[e2], exp

(
∑

i∈S

hit

)〉
.

Table 2 offers the initial counting sequence for some small values of k and j. Each one
corresponds to a known differential equation satisfied by it generating function. In Table 3
we compute the asymptotic number of some of these graphs.

We make one simple observation. The {k, k + 2}-regular graphs are isomorphic to the
k + 2-regular graphs with loops, by simply adding loops to the vertices of degree k. This
gives a family of identities

〈E[e2], exp (t(hi + hi+2))〉 = 〈E[h2], exp(thi+2)〉 .
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4.2 Set covers and uniform hypergraphs

We now illustrate the method on another family of objects, which results in set covers and
uniform hypergraphs. An n-set is a set of cardinality n.

Definition 1 (k-cover of a set). A collection of r-sets B = {B1, . . . , Br} is an r-cover of S
if
⋃r

i=1 Bi = S. If S = [n] = {1, 2, . . . , n}, then it is an r-cover of n. A cover is restrictive
if all of the Bi are distinct. An r-cover is k-regular if any given element occurs in exactly

k-subsets.

A combinatorial argument shows that the number of distinct covers for a set of n elements
is

1

2

n∑

k=0

(−1)k

(
n

k

)
22n−k,

which is clearly not P-recursive (equivalently, its generating series is not D-finite.)
Devitt and Jackson [10] give a generating function for the number of k-regular r-covers

of [n], a notion introduced by Comtet [8]. Further, they prove that the number of arithmetic
operations required to actually calculate the number of k-covers of an n set by their method
is bounded by cnk log n. Results for fixed k, specifically k = 2, 3 were treated by Comtet [8]
and Bender [1] respectively.

We can derive enumeration formulas. For example, a k-regular graph on n vertices is
a restrictive k-cover of [n] into 2-sets. In general, calculating the generating function for
restrictive k-covers of [n] into j-sets can be expressed as

〈
ΓE◦Ej

(p1, p2, . . .),
∑

n

hn
kt

n

〉
=

〈
E[ej],

∑

n

hn
kt

n

〉
.

To determine k-covers with mixed-cardinality sets, say both i and j, we calculate

〈
ΓE◦(Ei+Ej)(p1, p2, . . .),

∑

n

hn
kt

n

〉
=

〈
E[ei + ej],

∑

n

hn
kt

n

〉
.

This yields the following simple consequence of Theorem 3.1.

Corollary 4.2. Let S be a finite set of integers. For fixed n, and fixed k, the exponential

generating function for k-regular S-covers of sets is D-finite, and is given by the scalar

product 〈
E[
∑

s∈S

es], exp(hkt)

〉
.

Example. We can express the problem of counting distinct restrictive 2-covers
of a set of cardinality n by sets of cardinality less than 5 as a scalar product.
Denote the exponential generating function of such set covers, by S(t). We have,

S(t) = 〈E[e1 + e2 + e3 + e4], exp(th2)〉 .
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This problem is perfectly suited to either of our algorithms. We can determine
this differential equation, and the initial terms of the counting sequence:

1, 0, 1, 8, 80, 1037, 17200, 350682, 8544641, 243758420, 8010360039.

It is worthwhile to remark that for a fixed j, the set coverings by j-sets are equivalent
to loopless j-uniform hypergraphs without multiplicities. These are encoded by E[ej]. If
we wish to encode hypergraphs with loops, we replace ej by hj, and if we wish to encode
hypergraphs with multiplicities we replace E by H.

5 Asymptotic analysis

Now that we have established how to determine the differential equations satisfied by regular
families of combinatorial objects, we process these differential equations to obtain asymptotic
enumeration results.

Asymptotic enumeration of regular graphs is a topic that has received a great deal of
attention. Indeed, as Gropp [16] points out, the basic problem of regular graph enumeration
was considered before graphs were even “invented”, over 120 years ago. We first see some
explicit results for graphs with fixed degree sequences in the work of Read [25, 26], how-
ever, these are rumoured to be “difficult to penetrate”. Nonetheless, one can determine an
asymptotic expression for the number of 3-regular graphs. Bender and Caufield [2] produce
the first general asymptotic formula for the number of k-regular graphs on n vertices, and
Bollobás produces a similar result by a more probabilistic approach that generalizes with
ease to treat hypergraphs. Next, work by McKay [20] and McKay and Wormald [23] consider
the problem of k which is not fixed, but rather a function of n, and they achieve a formula
that they believe to be true in general, valid as n → ∞ uniformly for 1 ≤ k = o(n1/2)

gk(n) ∼ (nk)!

(nk/2)!2nk/2(k!)n
exp

(
− k2 − 1

4
− k3

12n
+ O(k2/n)

)
. (4)

This resembles Bollobás’ asymptotic formula [4] for labelled k-regular r-uniform hyper-
graphs, on n vertices when nk

r
is an integer

g
(r)
k (n) ∼ (nk)!

(nk/r)!(r!)(nk/r)(k!)n
exp (−(r − 1)(k − 1)/2) .

He also gives a formula for hypergraphs in which hyperedges only have single vertex inter-
sections, which gives the constant in the McKay and Wormald formula for r = 2.

The asymptotic enumeration problem of regular graphs has been treated with a variety
of methods, such as the multidimensional Cauchy integral technique mentioned earlier [20],
a “switching” technique based on inclusion exclusion [21, 23], and some direct combinatorial
arguments on the equivalent problem of symmetric (0,1) matrices with fixed row sum [2].

Bollobás [5] remarks that the number of k-regular unlabelled graphs grows asymptotically
like ln/n! as n tends to infinity and where ln is the number of labelled regular graphs.
Intuitively, this is due to the fact that, for most large graphs with no isolated vertices, and
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at most one vertex of maximal degree, the automorphism group consists of only the identity
automorphism.

The enumeration of other configurations is relatively untreated. Gessel remarked [14] that
the exponential generating functions of k-regular r-uniform hypergraphs (with and without
loops, with and without multiplicities) are D-finite and the differential equations they satisfy
are obtainable via the scalar product. Domocoş [11] determines a scalar product form for
the generating series of minimal coverings that are multipartite hypergraphs.

Here we continue to treat a variety of configurations. The results are tabulated in Table 3
and Table 4 and allow for a comparison across objects rather than regularity parameter. All
of the results were automatically generated.

5.1 Technique

Our method is a classical singularity analysis of formal solutions of the linear differential
equations. It is precisely the same method we used in our analysis of k-uniform Young
tableaux [7], and thus we do not repeat the details here. Instead, after a short description of
the major steps, we present the fruits of our analyses. A Maple worksheet of the computations
is available at
http://www.math.sfu.ca/~mmishna.

In the simplest cases, essentially the cases we could analyze directly with combinatorial
arguments, we can solve the differential equation and do an asymptotic analysis on the solu-
tion. In the more complex cases, we first convert our differential equation to the recurrence
satisfied by the coefficients. Our series are D-finite, and thus such a sequence is bounded
by a rational power of n!, and thus, we scale our sequence until it is convergent, and this
allows us a more precise analysis. We convert this recurrence back to a differential equation,
and determine the roots of the polynomial that is the coefficient of the leading term. From
this we can calculate the dominant singularity, and determine a power series solution to the
differential equation around this point. From this, we analyze the solution to determine an
asymptotic expression for the coefficients. This can be done automatically using tools from
Maple, specifically DEtools and gfun. Finally, by generating sufficiently many terms in the
sequence, we compare with the formula to determine a value for the constant.

In the tables that follow, the Sloane sequence number refer to the counting sequence as
indexed in the Sloane On-line Encyclopedia of Integer Sequences [27].

Furthermore, we mention only the dominant term of the asymptotic expression, but we
could get the subsequent terms, save for the appropriate constants. This is a consequence
of the principal weakness of our method– we cannot generate exact expressions for the
constants.

We remark that, as presented in Table 3, graphs of different types have the same asymp-
totic development, but differ only in the constants. There are a few observations we can
make based on this data. We see that allowing repetitions influences only the constant of
the asymptotic expansion, and often only slightly. We see this again in the cycle covers in
Table 4. The formulas look different than the graph formulas we presented earlier, however
if we expand the factorials with Stirling’s formula for n!, we quickly see that they are the
same.
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k 1 2 3

Formula

(
1

2

)n
2 n!

(n/2)!

n!√
n

(
3

2

)n
2 n!(n/2)!

n

Simple graphs Sloane # A001147 A001205 A002829

E[e2] Constant 1 e−
3

4 /
√

π .043
Graphs with
loops

Sloane # A001147 A108246 A110039

E[h2] Constant 1 e−
1

4 /
√

π .318
Multigraphs Sloane # A001147 A002137 A108243

H[e2] Constant 1 e
1

4 /
√

π .318
Multigraphs
with loops

Sloane # A001147 A002135 A005814

H[h2] Constant 1 e
3

4 /
√

π 2.35

Table 3: Asymptotic enumeration formulas for different classes of k-regular graphs. Formu-
las for 1- and 3- regular are valid only for even n.

k or S Restrictions Sloane # Formula Constant

S-regular graphs

{1, 2} A00986 n− 1

2 e
√

2nn! e
−3

2 /2
√

π

{2, 3} A110040 n− 3

4

(√
3

2

)n

e
√

3nn!3/2 0.007

{1, 3} n = 0 mod 2 A110039 n−1

(
3

2

)n/2

n!(n/2)! 0.43

{1, 2, 3} A110041 n− 3

4

(√
3

2

)n

e
√

3nn!3/2 0.05

k-regular 3-uniform hyper-graphs: E[e3]

1 n = 0 mod 3 A025035

(
1

3!

)n/3
n!

(n/3)!
1

2 n = 0 mod 3 A110100 n−1

(
3

2

)n/3

n!(n/3)! 0.175

3 A110101 n−1

(
3

4

)n

n!2 0.037

k-regular 4-uniform hyper-graphs: E[e4]

1 n = 0 mod 4 A110102

(
1

4!

)n/4
n!

(n/4)!
1

2 n = 0 mod 2 A110103 n−1

(
2

3

)n/2

n!(n/2)! 0.100

Table 4: Asymptotic enumeration of different classes of regular objects

13



Although we are able to compute the differential equations for the generating functions
of the classes of 4-regular (multi-) graphs (with loops), their asymptotic analysis is more
complicated to do in an automated fashion, because a saddle point analysis arises. This is
an obvious starting point for future work. Most of the tools are already implemented, it is
mostly a question of understanding them, and determining how to best automate them.

We could make further observations by considering directed versions of any of these
structures. For directed graphs, we need only consider E ◦ L2, where Lk is the species of lists
of length k, and we could generalize hypergraphs in a number of ways; by putting an order,
or even an orientation on each “edge” using the species of cycles or lists, as in the directed
graph case.

6 Comments, conclusions and perspectives

6.1 Asymptotic expansions of different families of functions

Coefficients of taylor expansions of algebraic functions have a known kind of expansion, that
can in fact we used to establish the transcendence of some series [12]. We can also describe
asymptotic discrepancy criteria for coefficients of D-finite functions.

As we remarked earlier, coefficients of D-finite series are also restricted in their asymptotic
growth. A more complete version of this criteria is following theorem presented in Wimp
and Zeilberger [30].

Theorem 6.1 (Wimp and Zeilberger). Suppose that f(t) =
∑

n≥0 fnt
n is a D-finite series

in in C[[t]]. Then, for sufficiently large n, the coefficients fn have an asymptotic expansion

that is a sum of terms of the form

λ(n!)r/s exp(Q(n1/m))ωnnα(log n)k,

where r, s,m, k ∈ N, Q is a polynomial and λ, ω, α, are complex numbers.

We may ask ourselves, have our examples encompassed the full asymptotic potential of
D-finite sequences? We are very curious about the combinatorial structure of families that
do have such expansions. Are D-finite species sufficient to consider?

For example, in our earlier study of k-uniform Young Tableaux [7], which are enumerated
by the scalar product 〈H[e1 + e2], exp(hkt)〉 have a conjectured form (verified for k = 1..4)
of

y[k]
n ∼ 1√

2

(
ek−2

2π

)k/4

n!k/2−1

(
kk/2

k!

)n
exp(

√
kn)

nk/4
, n → ∞.

This is an exact conjecture, more complete than the examples we have presented here,
although it results from the same kind of calculation, and presumably if we completed the
complex saddle point analyses required for the k = 4 cases, we might be able to guess such
a form for our examples.

It is also of interest to note that while in some cases operations of summation and
integration preserve D-finiteness, Gr, the class of all regular graphs is not D-finite. The
same is true of all the classes we have presented here: Although for any k, the subclass of
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k-regular objects is D-finite, the larger subclass of regular objects is not. This is interesting
and can help us refine our notion of D-finiteness.

6.2 D-finite species?

We have thus far restrained ourselves from defining a notion of D-finite species. Ideally, such
a theory would contain two main components: A “D-finite species” should satisfy some sort
of system combinatorial differential equations with polynomial coefficients; and symmetric
series of such species should be D-finite. We would then expect to be able to have theorems
of the form:

1. If F and G are D-finite species, then so are F + G, and F · G, F′;

2. If G is a polynomial species, (in particular, if its cycle index series is a polynomial),
then F ◦ G is a D-finite species;

3. If F satisfies an “algebraic equation” of species, including for instance, equations of the
form F = XP(X, F) for polynomial species P, then F is a D-finite species.

A candidate definition is given in [24], however more work remains to be done.
Finally, much work has been done to characterize combinatorial classes of objects with

rational and algebraic generating series (see [6] for a recent summary), and hopefully this
work is a step towards such a characterization for D-finite generating functions. We are
encouraged by a recent thought of Flajolet, Gerhold and Salvy [13],

Almost every thing is non-holonomic unless it is holonomic by design.

(Series are holonomic if and only if they are D-finite.) They follow this with the remark
that there are several surprising exceptions to this rule, notably k-regular graphs. Hopefully
we have demonstrated that this isn’t so surprising; That in fact, there are deep reasons
underlying the D-finiteness of objects with this sort of regularity, and that furthermore, this
D-finiteness can be exploited in an automatic way.
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[11] V. Domocoş, Minimal coverings of uniform hypergraphs and P -recursiveness. Discrete

Math. 159, (1996), 265–271. Note.

[12] P. Flajolet, Analytic models and ambiguity of context-free languages. Theoret. Comput.

Sci. 49 (1987), 283–309. Twelfth international colloquium on automata, languages and
programming (Nafplion, 1985).

[13] P. Flajolet, S. Gerhold, and B. Salvy, On the non-holonomic character of logarithms,
powers, and the nth prime function. The Electronic Journal of Combinatorics 11 (Apr.
2005). A2, 16 pages.

[14] I. M. Gessel, Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A 53

(1990), 257–285.

[15] I. P. Goulden, D. M. Jackson, and J. W. Reilly, The Hammond series of a symmetric
function and its application to P -recursiveness. SIAM J. Algebraic Discrete Methods 4

(1983), 179–193.

[16] H. Gropp, Enumeration of regular graphs 100 years ago. Discrete Math. 101 (1992),
73–85. Special volume to mark the centennial of Julius Petersen’s “Die Theorie der
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