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Abstract

We consider tilings of 2 × n, 3 × n, and 4 × n boards with 1 × 1 squares and L-
shaped tiles covering an area of three square units, which can be used in four different
orientations. For the 2 × n board, the recurrence relation for the number of tilings is
of order three and, unlike most third order recurrence relations, can be solved exactly.
For the 3 × n and 4 × n board, we develop an algorithm that recursively creates the
basic blocks (tilings that cannot be split vertically into smaller rectangular tilings) of
size 3×k and 4×k from which we obtain the generating function for the total number
of tilings. We also count the number of L-shaped tiles and 1 × 1 squares in all the
tilings of the 2 × n and 3 × n boards and determine which type of tile is dominant in
the long run.
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1 Introduction

Tiling 1×n boards with 1×1 squares (henceforth referred to simply as squares) and dominoes
(1×2 tiles) leads to a connection with the Fibonacci numbers (see for example [1, 2]). These
types of tilings have also been of interest in chemistry and statistical mechanics, where
squares and dominoes are referred to as monomers and dimers (see for example [4, 11, 12,
13, 18, 20]). There are many possible extensions to these most basic types of tilings (see for
example [3, 6, 7, 8, 9, 10]). Here, we consider tiling 2×n, 3×n, and 4×n boards with two
types of tiles: squares and L-shaped tiles, or L’s (covering an area of three square units),
where the L’s can be used in four different orientations.

In Section 2 we present notation and some general results on how the quantities of interest
are related to each other. Section 3 contains the results for the 2 × n boards. We obtain
explicit results for the number of tilings, and the number of L’s and squares in all the tilings
of a given size. We also derive a combinatorial expression for the number of tilings in this
case. In Section 4 we give results for the 3 × n boards, where the picture gets a lot more
complex. We develop an algorithm that creates recursively the basic blocks (tilings that
cannot be split vertically into smaller rectangular tilings) of size 3×k. This allows us to
count the number of basic blocks of size 3×k for all k, and in turn leads us to the generating
function for the total number of tilings. Finally, in Section 5, we obtain a generating function
for the number of tilings of the 4 × n boards, and relate our approach to grammars.

2 Notation and basic results

We will count the number of tilings, as well as the number of squares and L’s in all tilings of
an m×n board, where m denotes the vertical size of the board (or number of rows), and the
second value (be it n, k, or n−k) refers to the horizontal dimension (or number of columns).
We will use the following notation:

Tm,n = number of tilings of size m×n with L’s and squares
TL

m,n = number of L’s in all tilings of size m×n
T S

m,n = number of squares in all tilings of size m×n
Bm,n = number of basic blocks of size m×n
BL

m,n = number of L’s in all basic blocks of size m×n
BS

m,n = number of squares in all basic blocks of size m×n

For fixed m, we denote the generating function
∑∞

n=0 am,nx
n for a sequence {am,n}∞0 by

Gam
(x). Since we can decompose any tiling of size m× n into a basic block of size m× k on

the left and a smaller tiling of size m × (n − k) following it, we get this recursion:

Tm,n =
n
∑

k=1

Bm,k · Tm,n−k for m,n ≥ 1, (2.1)

where we define Tm,0 = 1 for any m ≥ 1. (A tiling of size m×n can consist of just a basic
block of size m× n.) Since the recursion for Tm,n is a convolution, the respective generating
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functions multiply (see for example [21], Section 2.2, Rule 3). Multiplying Eq. (2.1) by xn,
summing over n ≥ 1, and using the definition of the generating function, we obtain

GTm
(x) − 1 = GBm

(x)GTm
(x) ⇒ GTm

(x) =
1

1 − GBm
(x)

. (2.2)

We will also count the number of squares and L’s in all the tilings of an m×n board.
Looking at the total area covered by all such tilings and splitting it up according to areas
covered by L’s and squares, we have the following equation:

m · n · Tm,n = 3TL
m,n + T S

m,n. (2.3)

Therefore, we have to count only one of the two types of tiles. Again, we decompose each
tiling into a basic block and a smaller tiling. For each such basic block, we get all the squares
in the tilings of the smaller size, and then, for each such smaller tiling, we get the number
of squares in the basic block. Thus, for m ≥ 2 and n ≥ 1,

T S
m,n =

n
∑

k=1

Bm,k · T S
m,n−k +

n
∑

k=1

BS
m,k · Tm,n−k. (2.4)

Once more, this is a convolution, and we obtain

GT S
m
(x) = GBm

(x)GT S
m
(x) + GBS

m
(x)GTm

(x) ⇒ GT S
m
(x) =

GBS
m
(x)GTm

(x)

1 − GBm
(x)

. (2.5)

The same type of argument gives these results for L’s:

TL
m,n =

n
∑

k=1

Bm,k · TL
m,n−k +

n
∑

k=1

BL
m,k · Tm,n−k and GT L

m
(x) =

GBL
m
(x)GTm

(x)

1 − GBm
(x)

. (2.6)

3 Tiling 2×n boards

We first look at the number of basic blocks of size 2×k. Clearly, B2,1 = 1, B2,2 = 4, and
B2,3 = 2. There are no basic blocks for k > 3. Figure 1 shows all the basic blocks of size
2×k.

Figure 1: The basic blocks of size 2×k

Using Eq. (2.1), we get a recursion for T2,n for n ≥ 3:

T2,n = T2,n−1 + 4T2,n−2 + 2T2,n−3, (3.1)
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with T2,0 = 1, T2,1 = 1, T2,2 = 5 (all the basic blocks of size 2 × 2 and the tiling consisting
of four squares). The corresponding characteristic equation is given by x3 − x2 − 4x − 2 =
(x+1)(x2−2x−2) = 0, and the characteristic roots are -1, 1+

√
3, and 1−

√
3. Consequently,

T2,n = c1(−1)n+c2(1+
√

3)n+c3(1−
√

3)n, and using the initial conditions, we obtain c1 = 1,
c2 = 1/

√
3, and c3 = −1/

√
3. Since the resulting formula also gives the correct answers for

n = 1, 2 and 3, we have obtained an explicit formula for T2,n. The generating function for
T2,n can easily be derived from the generating function for B2,n by using Eq. (2.2). From
Figure 1, we can “read off” that GB2,n

= x + 4x2 + 3x3. We summarize these results in the
following theorem.

Theorem 3.1. The number of tilings of size 2×n with L-shaped tiles and squares is given
by

T2,n = (−1)n + (1/
√

3)((1 +
√

3)n − (1 −
√

3)n), for n ≥ 0,

with generating function GT2,n
(x) = 1/(1 − x − 4x2 − 2x3).

Note that the recurrence in Eq. (3.1) is of the form given in Combinatorial Theorem 4
in [1]. Thus, tilings of 2×n boards with L’s and squares are in one-to-one correspondence
with tilings of a 1×n board with tiles of length at most 3, where there is one tile of size 1×1,
four different colored tiles of size 1×2, and two different colored tiles of size 1×3, as shown
in Figure 2. Obviously, the idea of mapping basic blocks of size m× k to colored tiles of size
1 × k is applicable no matter what the shape of the tiles is, and the number of colors used
for a tile of size 1 × k is equal to the number of basic blocks of size m × k.

Figure 2: Correspondence with colored tilings of 1×k rectangles

The values for T2,n for n = 0, . . . , 20 are given by {1, 1, 5, 11, 33, 87, 241, 655, 1793, 4895,
13377, 36543, 99841, 272767, 745217, 2035967, 5562369, 15196671, 41518081, 113429503,
309895169}. The signed version of this sequence appears in [19] as A077917. No combina-
torial explanation for the signed sequence is given.

We now count the number of L’s and squares for tilings of the 2×n board. One way to
do this is to think of a tiling as a sequence of basic blocks. Let

s = the number of basic blocks of size 2×1 (singles),
d = the number of basic blocks of size 2×2 (doubles), and
t = the number of basic blocks of size 2×3 (triples).

Note that s + 2d + 3t = n and that s + d + t = n − d − 2t gives the number of basic blocks
in the tiling.
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Theorem 3.2. The number of squares and L-shaped tiles for tilings of the 2×n board are
given in combinatorial form by

T S
2,n =

n/3
∑

t=0

(n−3t)/2
∑

d=0

(

n − d − 2t

t

)(

n − d − 3t

d

)

(2s + d)4d2t,

TL
2,n =

n/3
∑

t=0

(n−3t)/2
∑

d=0

(

n − d − 2t

t

)(

n − d − 3t

d

)

(d + 2t)4d2t,

or, explicitly, by

T S
2,n = (2n − 12)(−1)n +

2

3
((9 − 5

√
3)(1 +

√
3)n + (9 + 5

√
3)(1 −

√
3)n) (3.2)

+
n√
3
((
√

3 − 1)(1 +
√

3)n + (
√

3 + 1)(1 −
√

3)n)

and

TL
2,n = 4(−1)n − 2

9
((9 − 5

√
3)(1 +

√
3)n + (9 + 5

√
3)(1 −

√
3)n) (3.3)

−n

3
((1 −

√
3)(1 +

√
3)n + (1 +

√
3)(1 −

√
3)n).

The respective generating functions are

GT S
2

(x) =
2x(1 + 2x)

(1 + x)2(1 − 2x − 2x2)2
and GT L

2

(x) =
4x2

(1 + x)(1 − 2x − 2x2)2
.

Proof. The combinatorial formula for the respective number of tiles is derived using the fact
that each tiling of size 2×n is made up by a succession of basic blocks. We count the number
of squares and L’s, respectively, according to the number of singles, doubles and triples in a
particular tiling, then sum over all possible configurations (s, d, t). If a tiling has configura-
tion (s, d, t), then there are S(s, d, t) = 2s+d squares and L(s, d, t) = d+2t L’s in that tiling.
To count the number of tilings with configuration (s, d, t), we first select the t positions for the
triples out of the possible n−d− 2t positions. Next we select the d positions for the doubles
out of the remaining (n−d−2t)−t positions. The remaining s = n−2d−3t positions are filled
with singles. Once the positions have been selected, we can now fill each “triple position”
with one of the two types of triples, and each “double position” with one of the four types of
doubles. Thus there are

(

n−d−2t
t

)(

n−d−3t
d

)

1s4d2t tilings with configuration (s, t, d), containing
∑

s+2d+3t=n

(

n−d−2t
t

)(

n−d−3t
d

)

1s4d2tS(s, d, t) squares and
∑

s+2d+3t=n

(

n−d−2t
t

)(

n−d−3t
d

)

1s4d2tL(s, d, t)
L’s. The summation can be written as a double sum by realizing that there can be at most
n/3 triples and at most (n − 3t)/2 doubles, together with exactly n − 2d − 3t singles. Sub-
stituting gives the stated result.

Alternatively, since we have basic blocks only for k = 1, 2, 3, we actually get a third order
recurrence from Equations (2.4) and (2.6) for either the squares or L’s. However, we now
obtain a nonhomogeneous recurrence equation:

T S
2,n = (T S

2,n−1 + 4 · T S
2,n−2 + 2 · T S

2,n−3) + (2 · T2,n−1 + 4 · T2,n−2) (3.4)

TL
2,n = (TL

2,n−1 + 4 · TL
2,n−2 + 2 · TL

2,n−3) + (4 · T2,n−2 + 4 · T2,n−3) (3.5)
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We solve the recursion for the L’s. Using Theorem 3.1 we find that the nonhomogeneous
part an = 4 ·T2,n−2+4 ·T2,n−3 has the explicit form an =

√
3+2√
3

(1+
√

3)n+
√

3−2√
3

(1−
√

3)n. The

homogeneous equation is identical to that for T2,n, thus we get the roots −1, 1+
√

3, 1−
√

3,
as before. This gives a general solution (see for example [5]) of the form

TL
2,n = c1(−1)n + c2(1 +

√
3)n + c3(1 −

√
3)n + A · n(1 +

√
3)n + B · n(1 −

√
3)n.

We use Mathematica to solve the system of five equations that results from substituting the
initial conditions TL

2,0 = 0, TL
2,1 = 0, TL

2,2 = 4, TL
2,3 = 12, TL

2,5 = 52 and obtain

TL
2,n = 4(−1)n − 2

9
((9 − 5

√
3)(1 +

√
3)n + (9 + 5

√
3)(1 −

√
3)n)

−n

3
((1 −

√
3)(1 +

√
3)n + (1 +

√
3)(1 −

√
3)n).

Using Eq. (2.3) and the result for TL
2,n yields the result for T S

2,n. The generating functions
follow easily from Eqs. (2.5) and (2.6), where GBS

2

(x) = 2x+4x2 = 2x(1+2x) and GBL
2

(x) =

4x2 + 4x3 = 4x2(1 + x) can be read off directly from Figure 1. For example, the basic block
of size 1 × 1 contains 2 squares, and the basic blocks of size 2 × 2 contain 4 squares.

The numbers of squares and L’s in all 2×n tilings for n = 1, . . . , 15 are given by {2, 8, 30,
108, 354, 1152, 3614, 11204, 34170, 103176, 308598, 916236, 2702834, 7929872, 23155182}
and {0, 4, 12, 52, 172, 580, 1852, 5828, 17980, 54788, 165116, 493316, 1463036, 4312068,
12641276}, respectively. Neither of these sequences occurred previously in [19].

We also note that the sequence an = T2,n+1 + T2,n which occurs in the nonhomogeneous
part of the equation for TL

2,n satisfies an = 2(an−1 + an−2), since

an = (T2,n + 4 T2,n−1 + 2 T2,n−2) + T2,n

= (2 T2,n + 2 T2,n−1) + (2 T2,n−1 + 2 T2,n−2) = 2(an−1 + an−2).

The sequence {an/2}∞n=0 occurs in [19] as A028859, and counts the number of words on the
alphabet {0,1,2} without adjacent zeros. A direct bijection between these words and the set
of tilings of consecutive size is not obvious.

Richard Anstee posed the question which of the two types of tiles becomes dominant in
the long run, where dominant can have two meanings - in terms of actual number of tiles, or
in terms of area covered by the specific type of tile. From Eqs. (3.2) and (3.3), we find that

T S
2,n ∼ n(

√
3 − 1)√
3

(1 +
√

3)n and TL
2,n ∼ n(

√
3 − 1)

3
(1 +

√
3)n.

Thus,
T S

2,n

TL
2,n

∼
√

3 and
T S

2,n

3 · TL
2,n

∼ 1/
√

3,

i.e., there are more squares than L’s by a factor of
√

3, but the area covered by L’s is larger
than the area covered by squares by the same factor.
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4 Tiling 3×n boards

Tiling the 2×n board was straightforward because there were only basic blocks of size 2×k
for k = 1, 2 and 3. This resulted in a linear recursion of order three that can be solved
explicitly. However, for the 3×n board we get basic blocks of all sizes. As before, we get one
basic block of size 3×1, which consists of three squares. There are eight basic blocks of size
3× 2, as we can place the L’s in exactly two positions for each of the four orientations. In
addition, there are two basic blocks that contain two L’s each. Figure 3 shows the ten basic
blocks of size 3×2.

Figure 3: The ten basic blocks of size 3×2

The 3×3 basic blocks have two L’s each, and it becomes clear that we need to use a
systematic way to create the basic blocks to ensure that there are no duplicates and that we
actually have found all of the basic blocks. We will create them recursively, by extending to
the right, i.e., we create the basic blocks of size 3×(k + 1) from those of size 3×k for k ≥ 2.
Since we do not want to destroy the basic block property, we cannot replace an L in the last
column; we can only remove one or more squares and replace it/them with an L in such a
way that the L fits into the additional column. We denote each 1×1 area of the tiling as a
cell to distinguish it from the square (tile).

Basic Block Creation (BBC) Algorithm:

1. Start with all basic blocks of size m × 2, and determine the possible compositions of
the last column in terms of cells covered by L’s and squares.

2. For each different composition (up to horizontal symmetry), assign a type.

3. For each type, determine all possible ways to extend a basic block of that type by
placing at least one L over one or two squares in the last column, and then filling the
remaining cells in the newly created column with squares.

Note that (3) ensures that the basic block property is maintained, so only basic blocks
are created. On the other hand, given a basic block of size m× (k +1), it must have at least
one L-shaped tile that spans the kth and (k +1)st columns. Taking away any L-shaped tiles
that span the two rightmost columns, as well as all the square tiles of the rightmost column,
and then placing square tiles into any empty cells in the kth column creates the basic block
of size m× k from which the basic block of size m× (k +1) was created by extension. Thus,
by exhaustively listing all the possible types and their extensions, we can ensure that all
basic blocks of size m × (k + 1) are created from those of size m × k.

In the case of 3 × k basic blocks, these are the possible types:
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• Type I: The last column has two adjacent cells covered by a single L. (Note that we
cannot have two nonadjacent cells covered by two different L’s, as these L’s would have
to overlap in the center of the next-to-last column).

• Type II: The last column has two nonadjacent cells covered with squares (thus the
center cell is covered by an L).

• Type III: The last column has two adjacent cells covered with squares (thus either the
top or bottom cell is covered by an L).

The only other composition for a basic block of size 3 × 2 is to have all cells covered with
L’s, but this type cannot be extended and therefore, is not assigned a type. In Figure 3, the
first four blocks are of Type I, the 6th and 7th are of Type II, and the 5th and 8th are of
Type III. The last two blocks do not have a type.

We now apply the BBC algorithm. For each basic block of Type I, there is exactly one
way to extend, as shown in Figure 4 for a basic block of size 3×2. (For easy reference, the
cell where the square is replaced by an L is marked with a dot.) The resulting basic block is
again of Type I, since two adjacent cells in the last column are covered by an L.

Figure 4: Extension for Type I

For Type II basic blocks, the extension can be done either at the top or the bottom cell,
i.e., each Type II basic block of size 3×k creates two basic blocks of size 3×(k + 1), and
both are of Type I (since two adjacent cells in the last column are covered by an L.) Again,
for each of these extensions there is exactly one way, as indicated in Figure 5, for one of the
basic blocks of size 3×2.

or

Figure 5: Extension for Type II

Finally, we look at the extension for Type III blocks. There are several possibilities. If
we replace the square in the middle “row”, then there are two ways to place the L, pointing
either upward or downward. In either case, the new block is of Type I. If we replace the
square at the top or bottom (depending on the particular block), which can be done in
exactly one way, a Type I basic block is created. Finally, since there are two adjacent cells
covered by squares, we can place the L so that it covers those two cells. This can be done

8



in two ways, one of which creates a Type II block, whereas the other one creates a Type III
block. Figure 6 shows the different possibilities.

or or

Figure 6: Extension for Type III

Figure 7 shows the basic blocks of size 3×3. Note that the first fourteen blocks are of
Type I, the 15th and 16th are of Type II and the last two are of Type III.

Figure 7: The basic blocks of size 3×3

The BBC algorithm can be visualized from Figures 7 and 8, which show the basic blocks
of size 3×3 and 3×4, respectively. The first fourteen blocks in Figure 8 are the extensions of
the fourteen Type I blocks of size 3×3. The next four blocks result from the two extensions
each of the two Type II blocks (15th and 16th in Figure 7), which are also of Type I. The
remaining ten blocks result from the extensions of the two Type III blocks. The first six
extensions are Type I blocks, followed by two extensions of Type II, and finally two extensions
of Type III.

Using the BBC algorithm, we obtain an explicit formula for the number of basic blocks
of size 3×k, and from Eq. (2.1), a generating function for the number of tilings of size 3×n.

Theorem 4.1. The number of basic blocks of size 3×k is given by

B3,1 = 1, B3,2 = 10, and B3,k = 10k − 12 for k ≥ 3.

The generating functions for the number of basic blocks and the number of tilings are given
by

GB3
(x) =

x + 8x2 − x3 + 2x4

(1 − x)2
and GT3

(x) =
(1 − x)2

1 − 3x − 7x2 + x3 − 2x4
.
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Figure 8: The basic blocks of size 3×4

Proof. First of all we note that the BBC algorithm does not create duplicates. The extensions
(if there are more than one) of a given basic block of size 3×k produce different basic blocks
of size 3×(k+1) as the last columns differ (see Figures 4, 5, and 6). Extensions from different
basic blocks of size 3×k may produce the same last column, but will differ somewhere in the
first k columns. The algorithm also produces all basic blocks of a given size, as the three
types are the only ones that can occur for m = 3, and the extensions take into account all
possibilities. Hence all blocks of size 3×(k + 1) are created.

Let bk,t be the number of basic blocks of size 3×k of type t = I, II, III, for k ≥ 2. Then,
for k ≥ 3, B3,k = bk,I + bk,II + bk,III . From Figure 3 we can read off the initial conditions
b2,I = 4, b2,II = 2, and b2,III = 2, and the BBC algorithm yields the following recursions for
k ≥ 3:

bk+1,III = bk,III(= . . . = b2,III = 2), bk+1,II = bk,III = 2

and
bk+1,I = bk,I + 2bk,II + 3bk,III = bk,I + 10,

from which the formula for B3,k follows.
To obtain the generating functions, we use the initial conditions B3,1 = 1 (the basic block

consisting of all squares) and B3,2 = 10 (see Figure 3). Thus,

GB3
(x) =

∑

k≥1

B3,kx
k = x + 10x2 +

((

∑

k≥1

(10k − 12)xk

)

−
(

−2x + 8x2
)

)

= 3x + 2x2 + 10
∑

k≥1

k xk − 12
∑

k≥1

xk

= 3x + 2x2 + 10
x

(1 − x)2
− 12

x

1 − x
=

x + 8x2 − x3 + 2x4

(1 − x)2
.

The result for GT3
(x) follows from Eq. (2.2) and simplifying.
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The values for T3,n for n = 0, . . . , 15 are given by {1, 1, 11, 39, 195, 849, 3895, 17511,
79339, 358397, 1620843, 7326991, 33127155, 149766353, 677103839, 3061202815}. This
sequence did not previously occur in [19].

Now we will count the number of L’s and squares in the tilings of a 3×n board. In light
of Eqs. (2.4) and (2.6), we see that we have to obtain the generating function for either the
number of L’s or the number of squares in all basic blocks. Figures 7 and 8 suggest that
each of the basic blocks of size 3×k (except those for k = 1, 2) have exactly three squares.
Thus, we will count the squares first, and then use Eq. (2.3) to obtain the result for the L’s.

Theorem 4.2. The generating functions for the numbers of squares and L-shaped tiles in
all tilings of the 3×n board are given by

GT S
3

(x) =
3x(1 − x)2(1 + 6x + 3x2)

(1 − 3x − 7x2 + x3 − 2x4)2
and GT L

3

(x) =
4x2(3 − 3x + 3x2 − 4x3 + x4)

(1 − 3x − 7x2 + x3 − 2x4)2
.

Proof. Using the BBC algorithm, we can show that each basic block of size 3×k for k ≥ 3
contains exactly three squares. Figure 7 shows that the induction hypothesis is true for
k = 3. In the extension process we always obtain as many squares in the additional column
as get covered in the prior last column, i.e., the number of squares remains the same. Thus,
BS

3,k = 3 · B3,k for k ≥ 3. Actually, this formula also holds for k = 1. For k = 2, we get
BS

3,k = 24 = 3B3,k − 6. Therefore, GBS
3

(x) = 3 · GB3
(x) − 6x2 = 3x(1 + 6x + 3x2)/(1 − x)2,

where the last equality follows from Theorem 4.1. Using Eq. (2.5), we obtain the desired
result for GT S

3

(x). We note in passing that BS
3,k = 3 (10k − 12) = 30 (k − 1) − 6 for k ≥ 3

(from Theorem 4.1). This result also holds for k = 2. Turning to the number of L’s, Eq. (2.3)
gives TL

3,n = n · T3,n − T S
3,n/3 for n ≥ 0. In terms of generating functions, this translates to

GT L
3

(x) = x · G′
T3

(x) − GT S
3

(x)/3 (see for example [21], Section 2.2, Rule 2), which gives the
desired result after simplification.

The values for n = 1, . . . 15 for the numbers of squares and L’s in 3×n tilings are given by
{3, 30, 171, 1044, 5691, 30678, 159891, 821100, 4151511, 20764590, 102880755, 505866804,
2471159019, 12004723878, 58037429739} and {0, 12, 60, 432, 2348, 13144, 69280, 361012,
1841736, 9286900, 46303316, 228903592, 1123242916, 5477879120, 26572232312}, respec-
tively. These sequences did not previously occur in [19].

To answer the question about which type of tile dominates in the case of the 3×n tilings,
we need to use results from complex analysis about the asymptotic behavior for meromorphic
functions. Recall that if f is a meromorphic function in a region R and z0 is a pole of order
r, 1 ≤ r < ∞, of f , then in some punctured disk centered at z0, f has an expansion of the
form

f(z) =
r
∑

j=1

a−j

(z − z0)j
+

∞
∑

j=0

aj(z − z0)
j = PP (f ; z0) +

∞
∑

j=0

aj(z − z0)
j,

and the principal part PP (f ; z0) is given by (see [21], Eq. (5.2.4))

PP (f ; z0) =
∑

n≥0

zn

{

r
∑

j=1

(−1)ja−j

zn+j
0

(

n + j − 1

j − 1

)

}

. (4.1)
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In addition, for poles of order 2, the coefficients a−1 and a−2 for a function f(z) = g(z)/h(z)
at the pole z0 are given by (see for example [14], Proposition 4.1.4 and proof thereof)

a−1 = Res
(g

h
, z0

)

= 2
g′(z0)

h′′(z0)
− 2

3

g(z0)h
′′′(z0)

[h′′(z0)]2
and a−2 =

2g(z0)

h′′(z0)
. (4.2)

We are now ready to state the asymptotic result.

Corollary 4.3. The asymptotic expressions for the number of squares and L-shaped tiles in
all tilings of the 3×n board are given by

T S
3,n ∼ (0.234746 + 0.558529n)cn

1 + (0.0641066 + 0.329504n)cn
2 ,

TL
3,n ∼ (−0.0782485 + 0.268102n)cn

1 + (−0.0213689 + 0.460065n)cn
2 ,

where c1 = 4.52104, c2 = −1.738438, and the error term is of order O ((0.504457 + ǫ)n).

Proof. Both generating functions have the same denominator, and thus the same poles. Us-
ing Mathematica, we find that there are four different roots, two real ones, z0 = 0.221188 and
z1 = −0.575250, and two complex ones with modulus R = 1.98233. (Note that Mathematica
gives exact roots that are used in the subsequent calculations. We give numerical values to
six digits precision.) Applying Theorem 5.2.1 [21] twice to the poles at the real roots, we
obtain

[zn]f(z) = [zn] (PP (f, z0) + PP (f, z1)) + O

((

1

R
+ ǫ

)n)

=
∑

i=0,1

(−ai,−1

zi

+
(n + 1)ai,−2

z2
i

)(

1

zi

)n

+ O

((

1

R
+ ǫ

)n)

,

where ai,−j denotes the coefficient a−j for the pole zi. Using Eqs. (4.1) and (4.2), we find that
for GT S

3

(z), a0,−1 = 0.0716171, a0,−2 = 0.0273256, a1,−1 = −0.152670, and a1,−2 = 0.109037.
For GT L

3

(z), the respective values are 0.0766088, 0.0131167, −0.276945, and 0.152241. These
values were obtained by using the exact roots computed in Mathematica. Simplifying the
expressions gives the desired asymptotic results.

The approximation is quite good for both the number of squares and the number of L’s.
For small values of n, rounding the approximate value to the nearest integer gives the correct
result, and for larger values, the approximation provides at least 10 significant digits. Using
Corollary 4.3, we obtain

T S
3,n

TL
3,n

∼ 0.5585

0.2681
= 2.08318 and

T S
2,n

3 · TL
2,n

∼ 0.694393,

and can answer the question on which type of tile dominates. The number of squares is
approximately twice the number of L-shaped tiles, but the area covered by the L-shaped
tiles is about 50% more than the area covered by the squares.
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5 Tiling m×n boards

Trying to obtain results for m > 3 becomes increasingly difficult, as illustrated below for
the case m = 4. The BBC algorithm can still be used for m = 3, but its limitation for
larger values of m becomes obvious. Not only does the number of basic blocks increase quite
dramatically, but the number of types also increases rapidly. For the 4 × 2 board, there are
32 basic blocks instead of the 10 basic blocks of size 3×2. Figure 9 shows the basic blocks up
to symmetry (horizontal reflection), where all but the last four blocks also occur in reflected
form.

Figure 9: Basic blocks of size 4×2

There are now nine different end shapes, where what matters is the position of the
squares, as this is where the extension takes place. Table 1 shows the possible types (up
to horizontal reflection): Types I and II both have three squares, Types III - VI have two
squares, Types VII and VIII have one square, and Type IX has no square.

Table 1: The nine types of end shapes for 4×k basic blocks
I II III IV V VI VII VIII IX

Type IX does not extend, but gets created from some of the other types, whereas Types
V and VI exist only for n = 2. They can extend, but this type of end shape never gets
created (since the two columns form a basic block by themselves and thus cannot be a part
of a larger basic block). Applying the BBC Algorithm described in Section 4 for each of the
types we obtain Table 2, which describes how many basic blocks of each type are created
when extending a basic block of a certain type. For example, a Type III basic block will
create one basic block each of Type I, II and IV, and two basic blocks of Type III.

13



Table 2: Results of the BBC algorithm
Extension Type

Type I II III IV V VI VII VIII IX
I 1 3 3 2 - - 1 3 2
II 1 1 3 1 - - 1 1 2
III 1 1 2 1 - - - - -
IV - - 2 - - - - - 1
V - 2 2 2 - - - - 1
VI - - 2 1 - - - - 1
VII - - 1 1 - - - - -
VIII - - 1 - - - - - -
IX - - - - - - - - -

Let b̃k,t denote the number of basic blocks of size 4×k of type t = I, II, . . . IX, for k ≥ 2.
From Figure 9, we can read off the values for b̃2,t, and then, using Table 2, we can compute
the values for b̃3,t, which are given in Table 3.

Table 3: Initial conditions for b̃n,t

Type I II III IV V VI VII VIII IX total

b̃2,t 2 4 4 3 1 2 4 8 4 32

b̃3,t 10 16 50 20 0 0 6 10 18 130

Using Table 2 we can also read off a system of recurrence relations for b̃n,t for t =
I, . . . , IV, V II, V III, and IX. For example, Column 4 of Table 2 gives this relation:

b̃n+1,IV = 2b̃n,I + b̃n,II + b̃n,III + 2b̃n,V II ,

since b̃n,V = b̃n,V I = 0 for n > 2. Adding the equation

B4,n+1 = b̃n+1,I + b̃n+1,II + b̃n+1,III + b̃n+1,IV + b̃n+1,V II + b̃n+1,V III + b̃n+1,IX ,

and using the initial conditions for n = 3, we can use the Mathematica function Generat-
ingFunction from the package DiscreteMath8RSolve to compute the generating function for
B4,n for n ≥ 3. Adjusting this generating function by adding in the terms B4,1 and B4,2,
we obtain the following theorem for the 4× n tilings, where the generating function for T4,n

follows from Eq. (2.2).

Theorem 5.1. The generating function for the number basic blocks and the number of tilings
of the 4×n board with L-shaped tiles and squares is given by

GB4
(x) =

z(1 + 28z − 4z2 − 80z3 − 32z4 + 74z5 − 10z6 − 4z7 − 4z8)

1 − 4z − 6z2 − 10z3 − 8z4 − 4z5
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and

GT4
(x) =

1 − 4z − 6z2 − 10z3 − 8z4 − 4z5

1 − 5z − 34z2 − 6z3 + 72z4 + 28z5 − 74z6 + 10z7 + 4z8 + 4z9
.

The values for n = 0, . . . , 15 for the number of tilings of the 4 × n board are given by
{1, 1, 33, 195, 2023, 16839, 151817, 1328849, 11758369, 103628653, 914646205, 8068452381,
71189251649, 628067760289, 5541284098945, 48888866203241}. Results for the numbers of
L’s and squares are much more difficult to obtain, as the basic blocks no longer have a
constant number of squares, and one would have to set up a system of recurrence relations
for the number of squares according to the type of basic blocks, similar to that for the basic
blocks themselves.

An alternative approach is to express tiling problems in terms of grammars, which allows
for automation of the process [15, 16, 17]. Similar to the extension process described in
Section 4, in the grammar approach a tiling is built up by placing tiles onto the board in
lexicographic order, describing for each partial tiling (which has a ragged right edge) which
tiles can be placed in the next step. This process produces a system of recurrence relations,
which can be solved using a computer program. Note that the underlying ideas are similar to
the extension algorithm, but that there are also differences. The states used in the grammar
approach are not complete tilings except for the initial state, and one cannot separate out
the basic blocks from a composite tiling which is made up from more than one basic block.
Even with the grammar approach, the tiling problem is solvable only for small to midsize
problems, as the complexity increases exponentially. Focusing on basic blocks cuts down the
size of the problem, but so far there is no automatic algorithm that creates basic blocks only
and for which the methodology used by Merlini and her co-authors can be applied.
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