
23 11

Article 07.5.2
Journal of Integer Sequences, Vol. 10 (2007),2

3

6

1

47

On Generating Functions Involving the

Square Root of a Quadratic Polynomial

David Callan
Department of Statistics

University of Wisconsin-Madison
1300 University Avenue

Madison, WI 53706-1532
USA

callan@stat.wisc.edu

Abstract

Many familiar counting sequences, such as the Catalan, Motzkin, Schröder and De-

lannoy numbers, have a generating function that is algebraic of degree 2. For example,

the GF for the central Delannoy numbers is 1√
1−6x+x2

. Here we determine all generat-

ing functions of the form 1√
1+Ax+Bx2

that yield counting sequences and point out that

they have a unified combinatorial interpretation in terms of colored lattice paths. We

do likewise for the related forms 1 −
√

1 + Ax + Bx2 and 1+Ax−
√

1+2Ax+Bx2

2Cx2 .

1 Introduction

In this paper, all generating functions (GFs) are ordinary power series generating functions.
Thus the GF for the formal power series 1+x+x2 + · · · is 1

1−x
. A counting GF is one whose

series expansion has nonnegative integer coefficients.
Many familiar counting GFs are algebraic of degree 2 and only involve the square root

of a low-degree polynomial. A few such GFs are recalled in Table 1 below, with hyperlinks
to the On-Line Encyclopedia of Integer Sequences [1].
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Some Algebraic Generating Functions of Degree 2

number sequence (an)n≥0 first few terms GF =
∑

n≥0 anx
n

even central binomial coefficients 1,2,6,20,70,. . .
1√

1−4x

odd central binomial coefficients 1,3,10,35,126,. . .
1

2x
√

1−4x
− 1

2x

Catalan numbers 1,1,2,5,14,42,. . . 1−
√

1−4x
2x

central trinomial coefficients 1,1,3,7,19,51,. . .
1√

1−2x−3x2

Motzkin numbers 1,1,2,4,9,21,. . . 1−x−
√

1−2x−3x2

2x2

central Delannoy numbers 1,3,13,63,321,. . .
1√

1−6x+x2

big Schröder numbers 1,2,6,22,90,. . . 1−x−
√

1−6x+x2

2x

little Schröder numbers 1,3,11,45,197,. . . 1−3x−
√

1−6x+x2

4x2

Table 1

GFs of the form
1√

1 + Ax + Bx2

and
1 + Ax −

√
1 + 2Ax + Bx2

Cx2

are prominent in Table 1. Our main results, Theorems 1 and 2 below, determine all counting
GFs of these two forms and give a unified combinatorial interpretation for them in terms of
colored lattice paths. We define and count the relevant lattice paths in §2, and complete the
proofs of Theorems 1 and 2 in §3 using basic facts about orthogonal polynomials. Section 4
contains a concluding remark.

The generic unital quadratic polynomial 1+Ax+Bx2 can be written as 1−2ax+(a2−4b)x2

with a := −A/2 and b := (A2 − 4B)/16.

Theorem 1. Set Ga,b(x) = 1√
1−2ax+(a2−4b)x2

. Then

(i ) Ga,b(x) =
∑

n≥0

(

∑⌊n/2⌋
k=0

(

n
2k

)(

2k
k

)

an−2kbk
)

xn,

(ii ) Ga,b(x) is a counting GF ⇔ a, b are nonnegative integers,

(iii ) when the conditions in (ii ) hold, Ga,b(x) is the GF for aHbU -colored trinomial paths

with x marking the number of steps.

Theorem 1 refers to exponent −1/2 on the quadratic. The situation for exponent +1/2
is a little more subtle. From the identity

1 −
√

1 − 2ax + (a2 − 4b)x2 = ax + 2b
∑

n≥0

(

⌊n/2⌋
∑

k=0

(

n

2k

)

Cka
n−2kbk

)

xn+2
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(proved below, Ck is the Catalan number), it is easy to see that this is a counting GF ⇔ a, b
are nonnegative integers (sufficiency is obvious and necessity follows from just the first four
coefficients: a, 2b, 2ab, 2a2b + 2b2). But then, also, it is clear that the greatest common
divisor of all coefficients from the x2 term onward is 2b and so it is natural to consider the
refined GF (1 − ax −

√

1 − 2ax + (a2 − 4b)x2)/(2bx2).

Theorem 2. Set Fa,b(x) = (1 − ax −
√

1 − 2ax + (a2 − 4b)x2)/(2bx2). Then

(i ) Fa,b(x) =
∑

n≥0

(

∑⌊n/2⌋
k=0

(

n
2k

)

Cka
n−2kbk

)

xn,

(ii ) Fa,b(x) is a counting GF ⇔ a, b are nonnegative integers,

(iii ) when the conditions in (ii ) hold, Fa,b(x) is the GF for nonnegative aHbU -colored

trinomial paths with x marking the number of steps.

2 GFs for Colored Trinomial Paths

A trinomial path is a lattice path of upsteps U = (1, 1), downsteps D = (1,−1) and horizontal
steps H = (1, 0) that starts at the origin and ends on the x-axis. A trinomial n-path is one
consisting of n steps. The name derives from the fact that the number of trinomial n-paths
is clearly the constant term in (x−1 + 1 + x)n, equivalently, the central trinomial coefficient
[xn](1 + x + x2)n. A nonnegative trinomial path, better known as a Motzkin path, is one
that stays weakly above the x-axis. For a, b nonnegative integers, an aHbU -colored trinomial
path is one in which each horizontal step is colored with one of a specified colors and each
upstep with one of b specified colors. Using Flajolet’s “symbolic” method [2] it is easy
to obtain the GF, F (x), for aHbU -colored Motzkin paths with x marking the number of
steps: the underlying path is either of the form H i (i ≥ 0) contributing aixi to the GF, or
H iUPDQ (i ≥ 0, P,Q arbitrary Motzkin paths) contributing aixibx2H2 to the GF. This
yields

F (x) =
∑

i≥0

aixi +
∑

i≥0

aixibx2F (x)2 =
1 + bx2F (x)2

1 − ax
,

a quadratic equation for F (x) with (unique) solution

F (x) =
1 − ax −

√

1 − 2ax + (a2 − 4b)x2

2bx2
.

The GF, G(x), for aHbU -colored trinomial paths is obtained similarly. The underlying
path is (i) empty contributing 1 to the GF, or (ii) FP (P arbitrary trinomial path) con-
tributing axG(x) to the GF, or (iii) UPDQ (P arbitrary Motzkin path, Q arbitrary trinomial
path) contributing bx2F (x)G(x) to the GF, or (iv) DPUQ (P arbitrary inverted Motzkin
path, Q arbitrary trinomial path) also contributing bx2F (x)G(x) to the GF. This leads to
the equation G(x) = 1 + axG(x) + 2bx2F (x)G(x) with solution

G(x) =
1

√

1 − 2ax + (a2 − 4b)x2
.
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On the other hand, it is also easy to count these colored paths directly by number of
upsteps. For Motzkin n-paths containing k upsteps there are

(

n
2k

)

ways to position the
slanted steps (U and D) among the n steps. There are Ck ways to arrange the slanted steps
because they form a Dyck path [3, Ex. 6.19 (i), p. 221]. After applying colors, this yields a
total of

(

n
2k

)

Cka
n−2kbk choices for aHbU -colored Motzkin n-paths containing k Us. The count

for aHbU -colored trinomial n-paths is the same except that Ck must be replaced by
(

2k
k

)

.
These results are enough to prove most of both Theorems 1 and 2: part (iii) (of each

theorem) and the “sufficiency” half of part (ii) obviously follow. Part (i) also follows because
polynomials that agree on the nonnegative integers are identical. Alternatively, one could
prove part (i) by setting a = 1 without loss of generality, equating coefficients of xn, and
then using the automated WZ method [4] to verify the resulting identities. It remains only
to prove “necessity” in part (ii).

3 An application of orthogonal polynomials

The “necessity” half of part (ii) in Theorem 1 says: if pn :=
∑⌊n/2⌋

k=0

(

n
2k

)(

2k
k

)

an−2kbk is a
nonnegative integer for all n ≥ 0, then a and b are nonnegative integers. Integrality of a
and b follows immediately from the integrality of p1 = a and p2 = a2 + b. Similarly, the
nonnegativity of a follows from that of p1, but nonnegativity of b needs that of pn for all n
except in the trivial case a = 0. Assuming a > 0, we may without loss of generality set a = 1
and consider the polynomials pn(b) =

∑⌊n/2⌋
k=0

(

n
2k

)(

2k
k

)

bk. Now nonnegativity follows from

Proposition 3. pn(b) ≥ 0 for all n implies b ≥ 0.

Clearly, p2(b) = 1+6b < 0 on (−∞,−1/6) and p3(b) = 1+12b+6b2 < 0 on (−1.91 . . . ,−0.08 . . .),
and we claim there exists a sequence of successively overlapping intervals In that cover
(−∞, 0) such that pn(b) < 0 on In. Proposition 3 follows. The claim in turn follows from
the following facts about the zeros of pn.

Proposition 4. Let m denote ⌊n/2⌋ so that deg(pn) = m. Then

(i ) the zeros of pn are real and simple (no repeated roots), say bn1 < bn2 < · · · < bnm < 0

(all zeros are obviously negative),

(ii ) the zeros of pn interlace those of pn+1, that is,

bn1 < bn+1,1 < bn2 < bn+1,2 < · · · < bn,n/2 < bn+1,n/2 n even

bn+1,1 < bn1 < bn+1,2 < bn2 < · · · < bn+1,(n−1)/2 < bn,(n−1)/2 < bn+1,(n+1)/2 n odd,

(iii ) for fixed integer k ≥ 0, bn,m−k → 0 as n → ∞.

For the claim, use In = (bn,m−1, bnm) and the case k = 0 of part (iii).
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Parts (i) and (ii) of Proposition 4 are reminiscent of orthogonal polynomials and indeed
the pn are closely related to the Legendre polynomials Pn(x) which are known to form an
orthogonal polynomial sequence. Recall that the GF for the Legendre polynomials is

∑

n≥0

Pn(x)wn =
1√

1 − 2xw + w2

while the GF for pn is
∑

n≥0

pn(b)wn =
1

√

1 − 2w + (1 − 4b)w2
.

It follows that Pn and pn are related by

Pn(x) = xnpn

(x2 − 1

4x2

)

. (1)

The well known properties of orthogonal polynomials imply that the zeros of Pn(x) are real,
simple and possess the interlacing property. Also, Pn is alternately even/odd and so its zeros
are symmetric about 0. In particular, Pn has m := ⌊n/2⌋ positive zeros. If (xi)

m
i=1 are the

positive zeros of Pn in increasing order, then by (1),
(

1
4
(1 − 1

x2

i

)
)m

i=1
are the zeros of pn, also

in increasing order. Parts (i) and (ii) of Proposition 4 follow.
Part (iii) is a simple consequence of (1), the fact that cos θ → 0 as θ → π/2, and

Bruns’ inequalities for the zeros of the Legendre polynomials, which show that the zeros of
Pn(cos θ) are fairly evenly spaced around the unit halfcircle. (All zeros of Pn(x) lie in the
interval (−1, 1), as is evident from (1) ).

Bruns’ Inequalities [5] Let θ1 < θ2 < · · · < θn denote the zeros of Pn(cos θ) in the
interval (0, π). Then

j − 1
2

n + 1
2

π < θj <
j

n + 1
2

π j = 1, 2, . . . , n.

This completes the proof of Theorem 1.
Similarly, for Theorem 2 we must show that the following result holds for qn(b) :=

∑⌊n/2⌋
k=0

(

n
2k

)

Ckb
k.

Proposition 5. qn(b) ≥ 0 for all n implies b ≥ 0.

To prove Prop. 5, we again obtain a sequence of overlapping intervals covering (−∞, 0)
on the nth of which qn is negative. Here we find

Qn(x) = (n + 1)xnqn

(x2 − 1

4x2

)

. (2)

where the Qn(x) are the Jacobi polynomials J(n, 1, 1, x), which are also orthogonal. (The
Legendre polynomial Pn(x) is J(n, 0, 0, x).) So, as before, the two largest zeros of qn yield
the overlapping intervals. Bruns’ inequalities fail here but since Dx

(

xqn(x)
)

= pn(x), the
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zeros of pn separate those of qn, and Prop. 4 (iii) with k = 1 implies that the largest zero of
qn tends to 0 as n → ∞ and so the overlapping intervals cover all of (−∞, 0).

This completes the proof of Theorem 2. Table 2 below contains some OEIS sequences
whose GFs are of the types considered above. Boldface a, b indicate cases where the quadratic
degenerates to a linear polynomial, that is, where a2 − 4b = 0.

generalized Motzkin GF generalized central trinomial GF

a b 1 − ax −
√

1 − 2ax + (a2 − 4b)x2

2bx2

1
√

1 − 2ax + (a2 − 4b)x2

generates this counting series generates this counting series

1 1 Motzkin numbers central trinomial coefficients

1 2 A025235 central coeff (1 + x + 2x2)n

1 3 – central coeff (1 + x + 3x2)n

2 1 shifted Catalan numbers even central binomial coeffs

2 2 restricted plane trees restricted Delannoy paths

2 3 – central coeff (1 + 2x + 3x2)n

3 1 restricted hex polyominoes restricted Delannoy paths

3 2 little Schröder numbers central Delannoy numbers

3 3 A107264 –

4 1 walks on cubic lattice central coeff (1 + 4x + x2)n

4 2 A068764 transform of central Delannoy

4 3 eigensequence for INVERT colored Delannoy paths

4 4 rooted bipartite planar maps A059304

4 5 – A098443

5 4 lattice paths w/steps (k,±k) central coeff (1 + 5x + 4x2)n

5 5 colored Motzkin paths –

5 6 – colored Delannoy paths

6 8 A090442 central coeff (1 + 6x + 8x2)n

6 9 A101601 A098658

7 12 A098659 central coeff (1 + 7x + 12x2)n

8 16 A098430 –

Table 2
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4 Concluding remarks

The middle coefficient of (1 + ay + by2)n is the constant term in (y−1 + a + by)n and, by
counting terms in the expansion, it is easy to see that this is the number of aHbU -colored
trinomial n-paths as defined above. By Theorem 1, then, the GF for the middle coefficient
of (1 + ay + by2)n is (1 − 2ax + (a2 − 4b)x2)−

1

2 . Graham, Knuth and Patashnik [6, p. 575]
attribute this result to Herbert Wilf, citing his book generatingfunctionology [7] but it does
not seem to be there!
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