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Abstract:
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Previous modelling studies have formalized the "Tragedy of the Com-
mons" that can occur under a voluntary vaccination policy, when there
is a significant payoff not to vaccinate under conditions where high vac-
cine coverage affords indirect protection to nonvaccinators through herd
immunity effects. Most of these previous studies have considered only a
homogeneous population. However, in real populations, vaccine uptake
can vary enormously across different social groups, often leading to local-
ized outbreaks. In this paper, we consider a population under a voluntary
vaccination policy consisting of distinct social groups. Unlike previous
work on vaccination game theory in heterogeneous populations, these so-
cial groups differ both in the perceived vaccine risk as well as the perceived
probability of becoming infected. Using game theory, projected dynami-
cal systems theory, and variational inequality theory, we characterize the
Nash equilibria of the system and analyze the game dynamics. The ap-
proach allows us to predict, in principle, the vaccine coverage in various
social groups with distinct perceived vaccine and infection risks, where
individuals are attempting to minimize health risks. We find that, under
a wide range of parameter values, the vaccine coverage in a multi-group
population can be higher than the vaccine coverage in the corresponding
homogeneous population with the same average perceived relative risk of
vaccination. This paper generalizes previous work by Cojocaru &0hl [

on applications of PDS and VI in vaccine game theory.
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1. Introduction

\oluntary vaccination policies have sometimes been compared to a Prisoner’s Dilemma
[5, 6]. When vaccine coverage is very high, unvaccinated individuals are protected
through the herd immunity phenomenon, which can create an individual incentive
not to vaccinate (particularly if there is a perceived risk associated with the vaccine).
Hence, a voluntary vaccination policy can be a victim of its own success. This strate-

gic interaction between individuals, where the payoff (health level) to an individual ey S,
for vaccinating or not vaccinating depends partly upon whether or not other indi- and Chris T. Bauch

viduals in the population have decided to vaccinate, describes a game and can be Vol 10.iss. 1, art. 3, 2009
analyzed using game theory, [6]. Previous game theoretical analyses of voluntary
vaccination policies have shown how this Prisoner’s Dilemma effect may lead to
suboptimal vaccine coverage levels in the population.

Perhaps partly because of this effect, vaccine “scares” have existed since the first Contents
vaccines were invented, and have occurred for smallpox, pertussis, Hepatitis B, po-
lio, and measles-mumps-rubella vaccines, among othér4 4, 1, 27, 28, 8, 22]. In
addition to the rapid declines in vaccine coverage that occur during vaccine “scares”, < >
vaccine coverage can be persistently low for a number of reasons having to do with
supply (for instance, insufficient resources to deliver vaccines) or demand (for in-
stance, lack of knowledge of vaccination programmes, perception that diseases are Go Back
not sufficiently dangerous to vaccinate against, religious beliefs against vaccination).

Title Page

44 (44
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Here, we describe the literature on vaccine/disease risk perception and how it Full Screen
influences vaccine uptake. A number of studies indicate widespread belief that vac- Close
cines are dangerous, relative to the diseases they prevent, and that this misperception
of vaccine and disease risk can influence uptake2p, 24, 16, 30, 7, 31]. For journal of inequalities
instance, a study in the Hackney region of London indicated that 34% of parents = in pure and applied
thought that immunization is more dangerous than getting childhood dis&dges | mathematics

Likewise, a population-wide study in Germany showed widespread belief that ex- =~ #ssn: 1443-575k
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periencing certain common pediatric infectious diseases is a natural and beneficial
process (23%), and that vaccines are dangerous (23%) Nonvaccinating be-
haviour is apparently correlated with such beliefs. For instance, a study in readers
of Motheringmagazine indicated a positive correlation between non-vaccinating be-
haviour for DTP vaccine and beliefs that (a) vaccines are risky, and (b) diseases are
natural B].

Nonvaccinating behaviour is also related to individual’s beliefs as to how likely
they are to become infected. The same study in readekdotiiering magazine
indicated a positive correlation between non-vaccinating behaviour and the belief
that vaccination is not needed because other parents have vaccinated and disease is
under control B] (see also Ref. 41]. For influenza, it has been shown in a large
number of studies that whether or not an individual decides to vaccinate depends to
a significant degree upon their perceived probability of their becoming infegled [
and similar effects have been documented for mea2M@s [

Unsurprisingly, perceptions of vaccine and disease risk, and vaccine uptake, can
also vary across distinct groups in a given population, with differences occurring
along socioeconomic and religious divisiordgl[24, 31, 32]. It has been speculated
that causative factors in low vaccine uptake in certain social groups include mistrust
of authorities and lack of effective communication between communities and health
authorities P4, 27, 31, 7, 32).

It is increasingly recognized that accounting for the interaction between human
behaviour and disease transmission in epidemiological models is a necessary and
valuable goal 17, 25]. The situation of vaccine uptake and risk perception illus-
trates a case in point, where individual vaccinating decisions influence overall vac-
cine coverage and hence the force of infection, which in turn influences individual
vaccination decisions. Most previous game theoretical analyses of vaccination have
assumed a homogeneous population where all individuals have the same perceived
risks of complications due to the vaccine, risks of becoming infected, or risks of ex-
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periencing significant complications due to infection. Some recent game theoretical
work has started to consider the dynamics of vaccination behaviour in a heteroge-
neous population with distinct social grougkd]. This work concluded that, for

the same average perceived risk of the vaccine compared to the risk of having the
disease, a 2-group population with a vaccine-averse minority group can, at many
parameter values, have a higher overall vaccine coverage level than the correspond-
ing 1-group population. This work assumed that groups vary only in the perceived
risks of complications due to getting vaccinated or having the disease, and not in
the perceived probability of becoming infected. For the present study, we general-
ize this work by (1) allowing the perceived probability of becoming infected to also
vary across social groups, (2) exploring an alternative functional form for the per-
ceived probability of becoming infected, and (3) exploring model dynamics when
there is a relationship between the relative risk of vaccine/disease, and the perceived
probability of infection.

The mathematical approach usediq)|[for deriving solutions to the vaccination
game is that of finite-dimensional projected dynamical systems (PDS) and varia-
tional inequalities (VI1). This approach is widely used in operations research, eco-
nomic theory, finance and network analysis (see for exan8ednd the refer-
ences therein). Most recently, ia]], the problem of time-dependent vaccination
games has been considered, through the use of infinite-dimensional PDS and infinite-
dimensional VI (calleegvolutionaryvariational inequalities).

In general, a PDS is a dynamical system whose flow is constrained to evolve on
a closed and convex subset, generically denoteH byf the ambient space. In this
paper we consider the ambient space to be the Euclidean Rfa® we consider
the constraint seK to be ak-dimensional cube iiR*. The results present in the
PDS literature (both on Euclidean spaces and on more general Hilbert spaces) are
based on nonlinear and convex analysis and differential inclusions (see for example
[4, 26]).

Vaccination Strategies
Monica-Gabriela Cojocaru

and Chris T. Bauch
vol. 10, iss. 1, art. 3, 2009

Title Page
Contents
44 44
< >
Page 6 of 34
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

Our motivation to use a projected dynamical system is twofold. First, it is known
that there exists an intimate relation between Nash games and variational inequality
problems 8] and between variational inequality problems and projected dynamical
systems (finite-26] and infinite-dimensional1[3]). Thus the critical points of a
projected system coincide with the solutions of the underlying game and vice versa.
Second, although the projected dynamical system used here is finite-dimensional, the
existing literature in finite dimensions does not offer a way of visualizing a projected
flow; therefore we use more recent resultg] fto compute projected trajectories and
their critical points, without using variational inequality algorithms.

Finally, the present paper refines the workif][by allowing the perceived prob-
ability of becoming infected to vary across population groups. This is achieved by
considering an alternative functional form for the perceived probability of becoming
infected, and by exploring the dynamics when there is a relationship between the
relative risk and the probability of infection.

The paper is organized as follows: Sectibgives a general overview of how
vaccination strategies can be formulated as Nash games. Séclmws that the
vaccination games we consider have solutions which are stable with respect to global
perturbations. Sectiof presents a sample of examples and questions that could be
studied using the theoretical context introduced in previous sections. Finally Section
5 contains conclusions and some ideas for future work.
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2. Vaccination Games for Population Groups with Distinct
Perceived Probabilities of Infection

We present here in brief the setup of a vaccination strategies game, using similar
notation to that in§, 10]. We consider a population consisting of a finite numlagr (

of social groups, where each group may have a different perception of risks associ-
ated with vaccination and infection, and therefore may adopt different vaccination
strategies. We consider a disease for which there is lifelong natural immunity, and
in which individuals are typically infected early in life in the absence of vaccination
(this describes the so-called paediatric infectious diseases, such as measles, mumps,
rubella, pertussis and chickenpog).[Likewise we consider a vaccine which is ad-
ministered primarily in the youngest age classes, and in which vaccination coverage
is typically low later in life. In particular, in our case discussions and examples we
will refer to parameter values associated with such diseases (see Selotilmw).

We let: € {1,..., k} represent the-th social group in a population with a finite
number of individuals. For theth group, we let the perceived probability of signif-
icant complications due to vaccination be denoted-hythe perceived probability
of becoming infected given that a proportiprof the population is vaccinated be
denoted byr;, and the perceived probability of significant morbidity upon infection
berfnf. The overall probability of experiencing significant morbidity because of not

vaccinating is thusjnfw;. We denote by; := 1]"— the relative perceived risk of
o : . inf

vaccination versus infection.

Assumption 2.1. We assume that all individuals within a group share a common

assessment of the risks involved with vaccination and infeatjpand of the proba-

bility of becoming infectedr;, however different groups have different relative risk
assessments and distinct perceived probabilities of becoming infected.
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We consider the strategy set for all individuals in grodwp be{ P;,| P, € [0, 1p]},
where P, is the probability that a child in groupis vaccinated. Herép < 1, but
could be chosen very close to 1. This choice of a constraint set is a mathematical
necessity (as will be seen in Theoreir), however it does not impact on the in-
terpretation of the results. We therefore wish to find a Nash equilibrium strategy
P = (P, Py, ..., P}), such that when everyone in groumplays P/, no suffi-
C|ently small subset of individuals in any group can achieve a hlgher utility (payoff)
by switching to a different strategy, # P*. At P; there should be no incentive
to switch strategies, so such strategies should be stable equilibrium solutions of our
game. In O] we derived existence and uniqueness results for solutions of a vaccina-
tion game similar to the above using variational inequalities and projected dynamical
systems. We will use an analogous approach below.

We let the utility function in a group where the perceived relative risk,ignd
where the vaccine coverage in the population as a whaglghis given by

After rescaling one can rewrite the above as
P,) subject toP; € [0, 1p], wherer; = Z” .
r

inf
The players in a given round of the game are the parents of a given cohort of children,
who play the game only once (they can decide only once whether or not to vaccinate
their child). Future rounds of the game are played by the parents of later cohorts.

In order to find a mathematical expression f@r one approach is to use equi-

(2.1) wi(P,p) = —riPi — (1 -
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decreasing function of the formf) = ﬁp wherea andb were constants chosen ac-
cording to the epidemiology of common paediatric infectious diseases; enthe
proportion vaccinated. This expressed the fact that disease prevalence is a function
of how many individuals have been vaccinated. Hence, a higher vaccine coyerage
in a population implies a lower perceived probabilityof becoming infected. This
simplification made the initial analysis easier.

However, the function’ should represent the perceived probability of infection,
not the actual probability of infection, since it is the perceived probability that dic-
tates vaccinating behaviour. There are currently no data that would allow us to know
whether one functional form is more realistic than another. Hence, it is important
to explore model predictions under alternative functional forms to see whether the
insights of [LO] continue to hold up. In this paper we explore the dynamics using the
functional formw; .= ¢~?, wherea' € [1,10]. Obviously we suppose the value of
a' varies across groups, to capture the fact that different groups may have different
perceived probabilities of infection, as well as different perceptions of disease and
vaccine risk. By comparison, ii{)], the perceived probability of infection was the
same across groups. We also note that for highly transmissible childhood diseases
such as measles and pertussis, we assume the effect of time lags to be small, since
most vaccination and disease transmission occurs in the youngest age classes.
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3. Optimal Solutions and Equilibrium Vaccine Coverage

In this section we use a Nash game setting to study vaccination behaviour in hetero-
geneous populations as described in Sectiddowever, in order to assert existence

of an optimal solution for such a game, we make use of variational inequalities (VI)
and projected systems (PDS) theories on the Euclidean &¥acEor ease of pre-
sentation, before we proceed to analyze the game, we recall in brief the definitions
of VI, PDS, Nash games and their interrelations.

3.1. Nash Games, VI and PDS

We assume the reader to be familiar with the notions of closed convex sets, tangent
cones and monotone mappinggkif (for a quick reference sed]).

We first remind the reader on the definition of a Nash game. We consider a
game withm players, each playéraving at his/her disposal a strategy veatpe
{z;,..., 2z} selected from a closed, convex g&tC R”, with a utility (or pay-off)
functionu; : K — R, whereK = K; x Ky x --- x K,, C R™. The rationality
postulate is that each playerselects a strategy vectar, € K,; that maximizes
his/her utility levelu;(z, . . ., Zm,) given the decisionsr; ), of
the other players. In this framework one then has:

s L1, Ljy Ljt1,y - -
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Next we recall the definitions of finite-dimensional variational inequality prob- ceen: 1uua-ench

lems and projected dynamical systems.
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Definition 3.2. Let K C R* be a closed, convex, nonempty set ahd K — R* a
mapping. Avariational inequality problemgiven byF and K is:

(3.2) findx € K sothat(F(z),y —z) >0, forallye K,

where(-, -) is the inner product ofR*, defined byz, y) = Zle xy;, foranyz,y €
K.

Vaccination Strategies

Definition 3.3. Let K C R* be a closed, convex, nonempty set @hdKX — R* be Monica-Gabriela Cojocaru
a mapping. The initial value problem and Chris T. Bateh
vol. 10, iss. 1, art. 3, 2009
dx(T)
(3.3) 7 = P (=F(2(7),  2(0) =20 € K,
T .
Title Page
is called aprojected differential equationwherePy : R* — K is given byl| Pk (z)— Contents
z|| = in}f( ||z — z||, and Tk (x) is the tangent cone t& at z.
kS
A projected dynamical systens therefore the flow given by an equation of type b a4
(3.9. < >
In general, a VI problem is related to a PDS by the following (s&& 13] for Page 12 of 34
proofs):
Go Back
Theorem 3.4. Any solution of £.2) is a critical point of the projected equatiofi (9
and vice versa. Full Screen
Close

The next result shows when such problems admit solutions 28e&3] for (3.2)

and (3.9) respectively): journal of inequalities

Theorem 3.5. AssumeF is Lipschitz continuous o& and monotone. Then prob- in pure and applied
lems (.2) and (3.3) have solutions; moreover, problerf. ) has a unique solution mathemotlcs
in the absolutely continuous class of functions defineflom) to K. issni LAH3=STE6
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Finally, a game of this form can be formulated as a VI as follows (for a proof see
[18)]).

Theorem 3.6.Provided the utility functions; are of clasg’! and concave (meaning
—u; IS convex) with respect to the variables thenz* € K is a Nash equilibrium if
and only if it satisfies the VI

(3.4) (F(z*),x —2*) >0, Vzxek,
whereF'(z) = (=V w1 (x),...,—V,, un(x)) and where
~ (Ouy(x) Ou;(x)
Ve,ui(x) = ( o om )

To summarize, in this subsection we showed how we can equivalently reformulate
solutions of a generic Nash game as critical points of a projected dynamical system
using a variational inequality. In our study we are not making use of the theory of
VI for computation purposes, as is traditional in operations reseadfhifp fact we
compute solutions to our vaccination game by using a projected system. Next, we
apply these reformulation techniques to the vaccination game we started to build in
Section?2.

3.2. Vaccination Strategies Game

We assume the population has a finite number of individuals divided:idistinct
groups. The division is made according to Assumptiohin Section2. We thus
consider a game with players where each player has a 1-dimensional vaccination
strategy vector. We denote ¥, i € {1,2,...,k} the vaccination strategy corre-
sponding to the-th group and by; the proportion of individuals in group In this
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context we have

k
e, €(0,1) and ZQ =1.
i=1

Evidently we are notinteresteddn= 0. For if thisis true forsome € {1,2,..., k},
then the problem is reduced to a population with 1 or less distinct groups. We are
also not interested in, = 1 for somei, otherwise the problem reduces to the social
homogeneous case considered in previous wejtkWWe now denote by; the rela-
tive risk assessment and bf; = e~ %P the perceived probability of infection for the
i-th group. We are interested in the casest r;, ora; # a; Vi,j € {1,2,...,k},
otherwise the problem reduces to the case of a populationkwith or less distinct
groups.

Under these hypotheses the vaccination coverage level of the entire population is
assumed to be = Zle ¢; P;. Following Sectior?, the expected payoff function for
a player is given by

(3.5) ui(P,p) = —riP—m(1—P;), Vie{l,2,... k},

wherer? = emai(ZinaPi)

LetK := {P := (P,...,P) | P, € [0,1p]} and let the mapping : K — RF
be given byu(P) = (ui1(Py,p),...,ur(Py,p)). This game can be formulated (see
[18]) as the variational inequality problem

k
. Ou;(P;, p)
find P* € K s.t. E <——’
i=1 OF;

a-PZ_PZ*>207 VBZ(Pl”Pk)GKy

Py

since eachy; is of classC! and concave with respect . This VI is further equiv-
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alent to

(3.6) find P* € Ks.t.

Z <7’z’ . e—ai(2§:1€ipi)[aiei(1 - P)+1]

i=1

P*

In order to study the proposed vaccination dynamics, weFlet K — R* with

F(P) = (—g—g, c —2%@) and we associate to the VI problem ) the projected

dynamical system given by
(3.7) x(P, —F(P)) = Prp)(—F(P)) with P(0) € K.

According to Theorens.4 above, the stationary points of PDS$ {) coincide with

the solutions of the Nash game. To study the question of stability of these game so-
lutions under perturbations we use the notion of monotone mappings. Monotonicity
is a generalization of the usual notion of a monotone real function of one variable. In
the theory of PDS, monotonicity and its extensions, like strict monotonicity above,
play a central role in the sense that they give information about the behaviour of
perturbed equilibria. One of these results states that a PDS with a strictly monotone
field F' can only have a unique equilibrium and that all solutions are monotonically
attracted to this point. The attraction can happen for solutions starting in a neigh-
bourhood of the equilibrium, or can extend to all solutions starting anywhere in the
setK [26, 13]. We are now able to prove the central result of the paper.

Theorem 3.7.The Nash game above has a unique solution. This solution is a global
strict monotone attractor for the vaccination strategies dynamics.
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Proof. Step 1. We show first that the field : K — R is strictly monotone orK.
This is relatively easy to see if we keep in mind that for continuously differentiable
functions likeF", strict monotonicity is equivalent to (se2q])

(3.8) 2'(VF)z >0, forallz+#0¢cR"andvP c K.
In this case,
Vaccination Strategies
Monica-Gabriela Cojocaru
VF(B) and Chris T. Bauch
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2a1€17 P qreqe”MP ... qree” P
+ , Contents
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Page 16 of 34
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wherep = 2% ¢

(3.9) 2T iz[

=1

+ 2129 [a%qege—“”’(l — P)) +aiereae P (1 — Py) + ajeqe P

P;. This is further equal to

aip 1 — R) + 2aieie*“ip}

+ agele_““’} +o 4 212k [a%eleke_‘“p(l - P)
+ajerepe” P (1 — Pp) + arepe” P + akele’a’“”]
4+t 212k [az,lek_leke’“’“*lp(l — Py 1)
+ aiep_rexe” (1 — Pp) + ap_repe” 1P akek_le_a’“p] .

SinceVi € {1,...,k} P, € [0,1p] we have thatl — ;) > 0. Sincez € R* and
z # 0, then at Ieast one, i € {1,...,k} is not zero. However, we notice that all
the coefficients of? and of the productsizj in (3.9 are strictly positive. Hence

2I(VF)z >0, VzeRFandP cK,

thereforef’ is strictly monotone ofK. SinceF' is clearly continuous, by23] game
(3.1 has a unique solution.

Step 2. Next, we see thatF' : K — R” is a Lipschitz continuous vector field
since it is continuously differentiable and so by Theorefmwe have that solutions
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The game solution is unique. Moreover, it is a global monotone attractor for cen: Tuuac7eL

the trajectory of a PDS starting at an initial point& This latter fact is key in
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computing the approximate optimal group strategies. In the following section we
derive such approximate optimal group strategies and vaccine coverage levels solely
using a PDS approach. We then proceed to run comparisons between various game
scenarios of interest to population biology.
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4. Examples and Discussions

In our previous paper discussing a less refined game than the one here, namely, where
all groups share the same valuemgf= ﬁ [10], we have analyzed the impact of

the heterogeneity of perceived relative riskever the equilibrium vaccine coverage
levelsp* in a population with two groups. The first group, the "majority" & €3),

was considered more vaccine inclined than the second group, the "minority"” (i.e., — _

1 < 9). This particular scenario has been chosen for analysis based on 0bservations  veseaosbriels Gejoeard
[15] that generally, a small minority of nonvaccinators can produce a significant and Chris T. Bauch
drop in the vaccine coverage levels in a population, should an outbreak occur in this vol. 10, iss. 1, art. 3, 2009
minority group. In LO] we showed, using a setting similar to the above, that we
can capture theoretically this very fagt ( the vaccine coverage value, is dropping
in the presence of less vaccine inclined minorities). Moreover, a key point of our
previous work was also to show that analyzing the population via heterogeneous Contents
groups leads, overall, to higher equilibrium vaccine coverage values than analyzing
it as one homogeneous monolith.

In our model, the functiom, represents thperceivedisk of being infected, not < >
the actual risk. There have been a number of models, game theoretical or otherwise,
which have attempted to capture human behaviour and they always rely on such
simple phenomenological functions. Unfortunately, the data are not advanced to the Go Back
point where functions can be accurately parameterized and validated, so authors tend

Title Page

44 (44

Page 19 of 34

to opt for simple functions with the right qualitative behaviour. This is our approach Full Screen

as well. We did give arguments for the "ballpark” valuesi@ndb of 7, in [10], Close

however we also raised the question of whether or not the results we obtaid€ql in [

depend on the type of function, we considered. journal of inequalities
In the present paper we essentially show that our analységjistjll hold when in pure and applied

we vary the expression of the functiep from - to =7, as well as when we con- mathematics

sider heterogeneity of groups via both distinctpperceived relative rjskisd distinct e
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perceived risks of being infecte;q; = e~ %P, Essentially, considering again two
groups, a minority and a majority characterized by distinct attitudes toward vaccina-
tion, we compute and analyze the equilibrium vaccine coverage values and see that
these levels dropin the presence of vaccine averse minorities. We also comment
upon the values of the parametersandr;, i € {1, 2} below.

Before we proceed, we set in all the examples belgw= 0.9; consequently,
the constraint set will be set & = [0, 0.9]".

I. Our first discussion concerns a population with 2 groups, where we choose
the first group to be the majority group. In our previous notation, we therefore let
0 < 65 < €1 < 1. We consider however that one of the groups has a fixed "reference
behaviour" with specified values afandr. Because there is still relatively little em-
pirical data on the relationship between risk perception and vaccinating behaviour,
we can only make educated guesses as to the valuesiod . For the reference
behaviour, we set = 3, which gives a perceived probability of infection of only
7% at90% vaccine coverage, arih% at 20% vaccine coverage. This represents a
sensible middle ground which avoids unrealistic extremes where the perceived prob-
ability is very high at high coverage level&l], or very low at low coverage levels.
Likewise, we pick a value of = 0.01 for the reference behaviour, representing a
situation where there is a significant level of trust in vaccination, and the disease is
thought to be 100 times more dangerous than becoming vaccinated (the actual value
is much higher for most vaccine-preventable infections;-hata perceived relative
risk, not an actual relative risk). In the other group with "variable behaviour" we will
assume that = 0.0033a. Hence, a decreased perceived risk of becoming infected
corresponds to an increased perceived risk of the vaccine relative to the disease. In
essence, the relation between the relativerrigkdr, comes from an assumption we
make on the model, namely, that lower values of the perceived probability of infec-

1 In general a vaccine coverage level of 80% and above is considered very good for aimost eradicating certain pediatric
diseases. We find drops irf to approx. 50%, indicating an increase in the overall number of infected children.
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tion in a group correspond in general to larger values of the perceived relative risk:
individuals who think having the disease is less dangerous may also think that their
risk of becoming infected is lower. Note that the functional form of the perceived
probabilities of infection here is; = ¢~ in both cases.

We divide the analysis into two cases: the first when= 3, r; = 0.01 (i.e.,
group 1 is the reference) and the second wles: 3, ro = 0.01. For both of these
cases, we assume that in the variable group the paramttkes values in the inter-
val [1, 10]. Figuresl and2 below show the equilibrium vaccine coverage= p*(a)
for the two cases. These figures show that, regardless of the group size and whether
or not the minority or majority group are the "reference" group, a drop in overall
coverage starts to occur wherx 5 in the group where risk perception is described
by r = 0.0033a.

In Figure 1 where the majority is the "reference" group with fixed= 3, as the
value ofa, in the minority group increases (corresponding to a lower perceived risk
of becoming infected), the vaccination coverage drops. For all valugsek,, the
drop occurs ati, =~ 5. For sufficiently large:, the minority group consists mostly
or entirely of nonvaccinators while the majority group behaviour is not changed:
hence, fore; = 0.90, where10% of the population is in the minority group, the
overall coverage level droa$% for sufficiently largea. Whene; = 0.60, the drop
is approximatelyt0%, etc.

In Figure 2, where the minority is now the "reference" group = 3) and the
majority group can have various valuesaf the results are somewhat different to
those in Figurel. In this case, the drop again starts to occus;atc 5. However,
the decrease is the same for various values of e, in the range:; € [1,10]. For
a; > 10, one would see a pattern of vaccine coverage flattening out similar to that
in Figure 1, as the majority group turns to an entirely nonvaccinating strategy for
sufficiently largea;, leaving the minority group entirely responsible for vaccination
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Figure 1: Plot of the overall equilibrium vaccine coverage of a 2 group population versus the value Contents
of parameter: := a5 in the minority population, for 4 different values ef ande,. In all of the 4
cases we considered the majority groupe(osize) to be the reference group with= 3, 7; = 0.01 4 44
andw]}, = e3P, and the minority (ot, size) to have varying risk, = 0.0033a> and probability of p N

infectionm? = e~ 2P,
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[I. Our next examples compare the overall vaccine coverage levels in a 1-group
population and in a 2-groups population, the latter with a vaccine-averse minority Full Screen

(in our previous notation < e; < ¢; < 1). We want to determine whether vaccine
coverage is higher or lower in the heterogeneous population compared to the homo-
geneous population, for the same overall perception of relative risk. This analysis  journal of inequalities
generalizes and solidifies a similar one 11| in pure and applied
To make this comparison sensible, the perceived relative risk in the 1 group case = mathematics
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Full Screen
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We divide our analysis in two cases: first we suppose that
journal of inequalities

a1 =az =a, i.e.,m =, a€ [1,10], r; = 0.0033a, andr, = r—an in pure and applied
€2 mathematics
We illustrate this analysis in Figurésand-. issn AAA3S7Se
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neous case. The highest (red) surface repregéftsr) for the heterogeneous case= 0.9, e; =
0.1; the next (yellow) surface represemtya, r) for the heterogeneous case= 0.8, e; = 0.2; the < »
magenta surface represeptsa, r) for the heterogeneous case= 0.7, e2 = 0.3; the green surface
represent®* (a, r) for the heterogeneous case= 0.6, e; = 0.4; finally the multicolored surface Page 24 of 34
representg*(a, r) for the 1 group case with = €171 + €a72.
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We illustrate this case in Figurésand6. journal of inequalities

in pure and applied
mathematics
issn: 1443-575k

Case 1. Note that in this case the heterogeneity of the 2 groups is only given
by the difference in relative risk perceptions, sin(;e: 7r§ = e, a € [1,10].
To have that, > r, for all « € [1,10] (so that the minority group perceives a
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Figure 4: Plots of the equilibrium vaccine coveragéa,r = fized) of the homogeneous case Contents
versus the heterogeneous cases. In all figures the curves represent: red curve - 1 group case; yellow
curve -¢; = 0.9, eo = 0.1 case; green curvee; = 0.8, eo = 0.2 case; blue curvee; = 0.7, e5 = 44 44
0.3 case; purple curvee; = 0.6, e2 = 0.4 case. The upper left figure represept$a, r = 0.25),
the upper right represents (a,r = 0.45), the lower left represents®(a,» = 0.65) and the lower < >
right representg*(a, r = 0.85). Page 25 of 34
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higher relative risk of the vaccine to the disease than the majority group), the relation
r = r1€; + 962 IMplies that we consider only the case> 0.05. Figure3 shows =ull Serean
a 3-dimensional plot of equilibrium vaccine coverage surfates p*(a,r), a €
[1,10], » € (0.05,2.05) for 4 possible values of, ande, (see figure caption).
In order to better highlight the relation betwegt{a,r) in the homogeneous . : ”
and heterogeneous cases, we compute, r) for 4 different fixed values of := !ournol 2l mequolllhes
. X . . . in pure and applied

0.05+43/5, j € {1,...,4}. Figures4 (see also the caption) compare overall vaccine S S amaTcs
coverage in the homogeneous and heterogeneous cases, as a function of S
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Figures3 and4 show that, in general, the vaccine coverage is higher in the het-
erogeneous (2 group) populations than in the homogeneous (1 group) populations,
except wheru or r are sufficiently low (corresponding to high perceived probabil-
ity of infection and low relative risk respectively). This is consistent with what was
found in [L0]. However, we note that the "real-world" parameter values may fall

anywhere on théa, r) plane. We summarize these results in the table below:

r = 0.25 (Figure4 group sizes | a values for whictp*(a) > p*(a, 1 group e oo
upper left) €1 =0.9, 6 =0.1 a>2.18 vol. 10, iss. 1, art. 3, 2009
€1 =08, =0.2 a> 2.7
e1=0.7, &= 0.3 a>35
€1 =0.6, =04 a > 4.68 Title Page
r:= 0.45 (Figure4 group sizes | a values for whictp*(a) > p*(a, 1 group) Contents
upper right) e1=0.9, e =0.1 a > 1.245
e =0.8, =02 a > 1.63 « 44
€1 = 07, €y — 0.3 a Z 2.2 < >
€1 =0.6, =04 a>3.12
r:= 0.65 (FigureZ group sizes | a values for whichp*(a) > p*(a, 1 group Page 26 of 34
lower left) e =0.9, e =0.1 a>1 Go Back
€1 =0.8, e =0.2 a>1
€ = ().7’ e = 0.3 a>1.31 Full Screen
€1 = 0.6, =04 a>2.01 Close
r := 0.85 (Figure4 group sizes a values for whictp*(a) > p*(a, 1 group
lower right) €1 =0.9, 6 =01 a>1 journal of inequalities
61 =0.8,e0=0.2 a>1 in pure and applied
€1 =0.7, e =0.3 a>1 mathematics
€1 =0.6,e=04 a>1 issn: 1443-575k
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Case 2.Here we generalize our discussion fr@@ase 1to heterogeneity of not
only risk perceptions, but also heterogeneity of perceived probabilities of infection.
We now taker, = e~%? # w2 = =%, Figure5 shows a 3-dimensional plot of
equilibrium vaccine coverage surfages= p*(as,7), as € [1,10], r € (0.05,2.05)
for 4 possible values af; ande, (see figure caption).

In order to highlight the relation betwee(a,, ) in the homogeneous and het-
erogeneous cases, we comppitéu;, r) for 4 different fixed values of := 0.05 +
J/5,j € {1,...,4}. Figuress (see also the caption) compare overall vaccine cover-
age in the homogeneous and heterogeneous cases, as a funation of

Figures5 and6 show again that the vaccine coverage is higher in the heteroge-
neous (2 group) populations than in the homogeneous (1 group) populations, except
whena or r are sufficiently low, leading us to conclude that extending the incorpora-
tion of heterogeneity showed a consolidation of our earlier conclusion, namely that
heterogeneous populations have better overall vaccine coverage than homogeneous
ones.

[ll. Finally, our last example illustrates the case of a heterogeneous population
with 4 groups, where the first 2 groups have an exponential perceived probability of
infection and the last two groups have a perceived probability of infection

= b

b c+ 2?21 Eif)i

(as in [LO)). The parameter values are given in the table below, together with their
respective equilibrium strategies.

, j€1{3,4} and ¢=0.1,b=10.09
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Figure 5: Plot of equilibrium vaccine coveragé(a := as,r) of heterogeneous cases versus the
homogeneous case when= 4. The highest (red) surface represepit&, ) for the heterogeneous Contents
cases; = 0.9, e5 = 0.1; the next (yellow) surface represeptga, r) for the heterogeneous case=
0.8, 2 = 0.2; the magenta surface represepités, ) for the heterogeneous case= 0.7, e; = 0.3; « >
the green surface represemtqa,r) for the heterogeneous casg = 0.6, e = 0.4; finally the < >

multicolored surface represent§(a, r) for the 1 group case with = €171 + eara.
Page 28 of 34
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Figure 6: Plots of the equilibrium vaccine coveragéa := as,r = fized) of the homogeneous
case versus the heterogeneous cases whete4. In all figures the curves represent: red curve - 1
group case; yellow curves; = 0.9, e2 = 0.1 case; green curves; = 0.8, eo = 0.2 case; blue curve
-e; = 0.7, e = 0.3 case; purple curvee, = 0.6, e = 0.4 case. The upper left figure represents
p*(a,r = 0.25), the upper right represent$(a, r = 0.45), the lower left represents‘(a, r = 0.65)
and the lower right represent$(a, r = 0.85).
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5. Conclusions

Our examples confirm and generalize the conclusionsl@f [namely that for a

wide range of parameter values, the vaccine coverage in a multi-group population
can be higher than the vaccine coverage in a homogeneous population where the
average perceived relative risk is given byl). This work goes beyondl]] by
allowing the perceived probability of infectiom,, to vary across groups using a
different functional form, and supposing a relationship betwegandr in some
cases. This work, together witth]] shows again the versatility and usability of both
finite dimensional PDS and VI for various formulations of vaccination strategies
games.

Future work may consider the relative risk as a variable of the model that
evolves in response to vaccination coverage, rather than treating it as a fixed quantity.
Future work should also analyze the effects of heterogeneity on the equilibria of
vaccinating strategies when the probability of becoming infected is a function not
of vaccine coveragg, but of the actual number of infected individuals at any given
time in the population. This would require incorporation of compartmental epidemic
models such as the SIR mod&] [nto the PDS/VI framework.

Vaccination Strategies
Monica-Gabriela Cojocaru

and Chris T. Bauch
vol. 10, iss. 1, art. 3, 2009

Title Page
Contents
44 44
< >
Page 30 of 34
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

References

[1] M.R. ALBERT, K.G. OSTHEIMERAND J.G. BREMAN, The last smallpox
epidemic in Boston and the vaccination controversy 1901-180Engl. J.
Med.,344(2001), 375-379.

[2] R.M. AND ERSONAND R.M. MAY, Infectious Diseases of Humar@xford
University Press, Oxford (1991).

[3] D.A. ASCH, J. BARON, J.C. HERSHEY, H. KUNREUTHER, J. MESZAROS,
I. RITOV AND M. SPRANCA, Omission bias and pertussis vaccinatded.
Decis. Making,14(1994), 118-123.

[4] J.P. AUBINAND A. CELLINA, Differential InclusionsSpringer-Verlag, Berlin

Vaccination Strategies
Monica-Gabriela Cojocaru

and Chris T. Bauch
vol. 10, iss. 1, art. 3, 2009

Title Page

(1984).

[5] C.T. BAUCH, A.P. GALVANI AND D.J.D. EARN, Group interest versus self
interest in smallpox vaccination policroc. Natl. Acad. Sci.100 (2003), 4 4
10564-10567. p R

[6] C.T. BAUCH AND D.J.D. EARN, Vaccination and the theory of gamesyc.
Natl. Acad. Sci.101(2004), 13391-13394.

Contents

Page 31 of 34

[7] P. BELLABY, Communication and miscommunication of risk: understanding Go Back
UK parents attitudes to combined MMR vaccinati@&m, Med. J.,327 (2003), Full Screen
725-728. Close

[8] B. BIROSCAK, A. FIORE, N. FASANO, P. FINEIS, M. COLLINSND G.
STOLTMAN, Impact of the thimerosal controversy on hepatitis B vaccine cov- journal of inequalities
erage of infants born to women of unknown hepatitis B surface antigen status = in pure and applied
in Michigan, Pediatrics,111(2003), e645—-e649. mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

[9] G.B. CHAPMANAND E.J. COUPS, Predictors of influenza vaccine acceptance
among healthy adult®reventitive Medicine29 (1999), 249-262.

[10] M.-G. COJOCARU, C.T. BAUCHAND M.D. JOHNSTON, Dynamics of vac-
cination strategies via projected dynamical systeffudletin of Mathematical
Biology,69(2007), 1453—-1476.

[11] M.-G. COJOCARU, Dynamic equilibria of group vaccination strategies in a
heterogeneous populatiah,Glob. Opt.40(1-3) (2008), 51-63.

[12] M.-G. COJOCARUAND L.B. JONKER, Projected differential equations in
Hilbert spacesProc. Amer. Math. Soc1321) (2004), 183-193.

[13] G. ISAC AND M.-G. COJOCARU, Variational inequalities, complementarity
problems and pseudo-monotonicity, Dynamical aspect®noceedings of the
International Conference on Nonlinear Operators, Differential Equations and
Applications Babes-Bolyai University of Cluj-Napoca Il (2002), 41-62.

[14] N. DURBACH, They might as well brand us: working class resistance to com-
pulsory vaccination in Victorian Englan8pc. Hist. Med.13(1) (2000), 45-62.

[15] Eurosurveillance Weekly Releas&l0, (2005). [ONLINE http://www.
eurosurveillance.org/ew/2005/050519.asp ].

[16] M. EVANS, H. STODDART, L. CONDON, E. FREEMAN, M. GRIZZELL
AND R. MULLEN, Parents perspectives on the MMR immunisation: a focus
group studyBr. J. Gen. Pract.51(2001), 904-910.

Vaccination Strategies
Monica-Gabriela Cojocaru

and Chris T. Bauch
vol. 10, iss. 1, art. 3, 2009

Title Page
Contents
44 44
< >
Page 32 of 34
Go Back
Full Screen

Close

[17] B. FISCHHOFF, Assessing and communicating the risks of terrorism. In: Te-
ich, A.H., Nelson, S.D., Lita, S.J. EdScience and Technology in a Vulnera-
ble World. Suppl to the AAAS Science and Technology Policy Yearbook 2003
Washington DC: AAAS, (2002), 51-64.

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au
http://www.eurosurveillance.org/ew/2005/050519.asp
http://www.eurosurveillance.org/ew/2005/050519.asp

[18] D. GABAY AND H. MOULIN, On the uniqueness and stbility of Nash-
equilibria in noncooperative games, Applied Stochastic Control in Econo-
metrics and Management Sciendiorth Holland, Amsterdam (1980).

[19] E.J. GANGAROSA, A.M. GALAZKA, C.R. WOLFE, L.M. PHILLIPS, R.E.
GANGAROSA, E. MILLER AND R.T. CHEN, Impact of anti-vaccine move-
ments on pertussis control: the untold stdrgncet,351(1998), 356—361.

[20] K.P. GOLDSTEIN, T.J. PHILIPSON, H. JO@®\D R.S. DAUM, The effect of e G e

epidemic measles on immunization ratésMA,276(1996), 56-58. and Chris T. Bauch
vol. 10, iss. 1, art. 3, 2009

[21] Health Canada, Immunisation and Respiratory Diseases Division Website.
http://www.phac-aspc.gc.ca/im/vs-sv/vs-faq_e.html

[22] V.A. JANSEN, N. STOLLENWERK, H.J. JENSEN, M.E. RAMSAY, W.J. ED- Title Page
MUNDS AND C.J. RHODES, Measles outbreaks in a population with declining Contents
vaccine uptakeScience301(2003), 804. « "

[23] D. KINDERLEHRER AND G. STAMPACCHIA, An Introduction to Varia-
tional Inequalities and Their Applicationgcademic Press (1980). < 4

[24] N.LASHUAY, T. TJOA, M.L.Z. de NUNCIO, M. FRANKLIN, J. ELDERAND Page 33 of 34
M. JONES, Exposure to immunization media messages among African Amer- Go Back
ican parentsPrev. Med. 31 (2000), 522-528.

Full Screen

[25] E. MCKENZIE AND F. ROBERTS, Modeling social responses to bioterrorism
involving infectious agentdDIMACS Technical Repor2003-30(2003) Rut- Close
gers University, http://dimacs.rutgers.edu/Workshops/Modeling/Report.doc
journal of inequalities

[26] A NAGURNEY AND D. ZHANQ, Projected Dynamical Systems and Varia- in pure and applied
tional Inequalities with ApplicationKluwer Academic Publishers (1996). mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au
 http://www.phac-aspc.gc.ca/im/vs-sv/vs-faq_e.html

[27] G. POLAND AND R. JACOBSEN, Understanding those who do not under-
stand: a brief review of the anti-vaccine movemafaigcine, 19 (2001), 2440-
2445,

[28] S. PLOTKIN, Lessons learned concerning vaccine satégcine,20 (Suppl.
1) (2002), S16-S19.

[29] R.J. ROBERTS, Q.D. SANDIFER, M.R. EVANS, M.Z. NOLAN-FARELL
AND P.M. DAVIS, Reasons for non-uptake of measles, mumps and rubella
catch up immunisation in a measles epidemic and side effects of the vaccine,
Br. Med. J.,310(1995), 1629-1639.

[30] H.J. SCHMITT, Factors influencing vaccine uptake in Germafagcine,20
(Suppl. 1) (2002), S2—-S4.

[31] M.S. SMAILBEGOVIC, G.J. LAINGAND H. BEDFORD, 2003. Why do par-
ents decide against immunization? The effect of health beliefs and health pro-
fessionalsChild Care Health Dev.29 (2003), 303—-311.

[32] B. WARSHAWSKY, S. WILSON-CLARK, D. SIDER, M. BRAGG, W
DUBEY, et al., Issues of under-immunized populations: the tale of three out-
breaksCan. J. Infect. Dis. Med. Microbiol17(6) (2006), 351.

Vaccination Strategies
Monica-Gabriela Cojocaru

and Chris T. Bauch
vol. 10, iss. 1, art. 3, 2009

Title Page
Contents
44 4 4
< >
Page 34 of 34
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au

	Introduction
	Vaccination Games for Population Groups with Distinct Perceived Probabilities of Infection
	Optimal Solutions and Equilibrium Vaccine Coverage
	Nash Games, VI and PDS
	Vaccination Strategies Game

	Examples and Discussions
	Conclusions

