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ABSTRACT. A classical inequality, which is known for families of monotone functions, is gen-
eralized to a larger class of families of measurable functions. Moreover we characterize all the
families of functions for which the equality holds. We give two applications of this result, one
of them to a problem arising from probability theory.
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1. I NTRODUCTION

The aim of this paper is to generalize an inequality, originally due to Chebyshev and then
rediscovered by Stein in [4]. Usually this result is stated for monotonic real functions: the
classical inequality is

(b− a)

∫ b

a

f(x)g(x)dx ≥
∫ b

a

f(x)dx

∫ b

a

g(x)dx

wheref andg are monotonic (in the same sense) real functions (see for instance [4], [3] and [2]
for a more general version). Ifa = b − 1 then this inequality has a probabilistic interpretation,
namelyE[fg] − E[f ]E[g] ≥ 0 (whereE denotes the expectation), that is, the covariance off
andg is nonnegative.

Our approach allows us to prove the inequality for functions defined on a general measurable
space, hence we go beyond the usual ordered setR. More precisely, we prove an analogous
result for general families of measurable functions that we call correlated functions (see Defi-
nition 2.1 for details). In particular, we characterize all the families of functions for which the
equality holds.

Here is the outline of the paper. In Section 2 we introduce the terminology and the main tools
needed in the sequel. In particular, Sections 2.1 and 2.2 are devoted to the construction of an
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2 F. ZUCCA

order relation and aσ-algebra on a particular quotient space. In Section 3 we state and prove
our main result (Theorem 3.1) which involvesk correlated functions; the special casek = 2
requires weaker assumptions (see also Remark 3.4). We give two applications of this inequality
in Section 4: the first one involves a particular class of power series, while the second one comes
from probability theory.

2. PRELIMINARIES AND BASIC CONSTRUCTIONS

We start from a very general setting. Let us consider a setX, a partially ordered space
(Y,≥Y ) and a familyN = {fi}i∈Γ (whereΓ is an arbitrary set) of functions inY X . We
consider the equivalence relation onX

x ∼ y ⇐⇒ fi(x) = fi(y), ∀i ∈ Γ

and we denote byX/∼ the quotient space, by[x] the equivalence class ofx ∈ X and byπ the
natural projection ofX ontoX/∼. Roughly speaking, by means of this procedure, we identify
points inX which are not separated by the familyN .

To the familyN corresponds a natural counterpartN∼ = {φfi
}i∈Γ of functions inY X/∼,

where, by definition,φf ([x]) := f(x), for all x ∈ X and for everyf ∈ Y X satisfying

(2.1) ∀x, y ∈ X : x ∼ y =⇒ f(x) = f(y)

(this holds in particular for all the functions inN ). It is clear that the familyN∼ separates the
points ofX/∼.
Given any functiong defined onX/∼ we denote byπg the functiong ◦ π; observe thatφπg = g

for all g ∈ Y X/∼ andπφf
= f for everyf satisfying equation (2.1). Clearlyg 7→ πg is a

bijection fromY X/∼ onto the subset of a function inY X satisfying equation (2.1).
Note that givenf, f1 ∈ Y X which satisfy equation (2.1) (resp.g, g1 ∈ Y X/∼) thenf ≥Y f1

(resp.g ≥Y g1) impliesφf ≥ φf1 (resp.πg ≥ πg1).

2.1. Induced order. In order to prove Theorem 3.1 we cannot take advantage, as in the clas-
sical formulation, of an order relation on the setX. Under some reasonable assumptions (see
Definition 2.1 below) we can transfer the order relation fromY to X/∼ where we already de-
fined a familyN∼ related to the originalN . This will be enough for our purposes.

Definition 2.1. The functions inN arecorrelated if, for all i ∈ Γ and x, y ∈ X ,

(2.2) fi(x) >Y fi(y) =⇒ fj(x) ≥Y fj(y), ∀j ∈ Γ.

We note that the definition above can be equivalently stated as follows: for alli, j ∈ Γ and
x ∈ X,

f−1
i ((−∞, fi(x))) ⊆ f−1

j ((−∞, fj(x)]).

Besides, ifY = R with its natural order, then the functions inN are correlated if and only if
for all i, j ∈ Γ andx, y ∈ X,

(2.3) (fi(x)− fi(y))(fj(x)− fj(y)) ≥ 0.

In particular if X is a totally ordered set and all the functions inN are nondecreasing (or
nonincreasing) then they are correlated.

A family of correlated functions induces a natural order relation on the quotient spaceX/∼.

Lemma 2.1. If the functions inN are correlated then the relation onX/∼

[x] ≥∼ [y] ⇐⇒ fi(x) ≥Y fi(y), ∀i ∈ Γ

is a partial order. If (Y,≥Y ) is a totally ordered space then the same holds for(X/∼,≥∼).
MoreoverN∼ is a family of nondecreasing functions (hence they are correlated).

J. Inequal. Pure and Appl. Math., 9(1) (2008), Art. 3, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


AN INEQUALITY FOR CORRELATED MEASURABLE FUNCTIONS 3

Proof. It is straightforward to show that≥∼ is a well-defined partial order (clearly it does not
depend on the choice ofx (andy) within an equivalence class). We prove that, if≥Y is a total
order, the same holds for≥∼. Indeed if[x] 6= [y] then there existsi ∈ Γ such thatfi(x) 6= fi(y);
suppose thatfi(x) > fi(y) then, by equation (2.2),[x] >∼ [y]. It is trivial to prove thatφfi

is
nondecreasing for everyi ∈ Γ, whence they are correlated since the space(X/∼,≥∼) is totally
ordered. �

A subsetI of an ordered set, sayY , is called an interval if and only if for allx, y ∈ I and
z ∈ Y thenx ≥Y z ≥Y y impliesz ∈ I. Note that given an intervalI ⊆ Y thenφ−1

fi
(I) is an

interval ofX/∼ for everyi ∈ Γ.
Givenx, y ∈ X such that[x] ≥∼ [y] we define the interval[[y], [x]) := {[z] ∈ X/∼ : [y] ≤

[z] < [x]}; the intervals[[y], [x]], ([y], [x]] and([y], [x]) are defined analogously. In particular,
for anyx ∈ X, we denote by[[x], +∞) and(−∞, [x]] the intervals{[y] ∈ X/∼ : [y] ≥∼ [x]}
and{[y] ∈ X/∼ : [x] ≥∼ [y]} respectively.

2.2. Induced σ-algebra and measure.This construction can be carried on under general as-
sumptions. Let us consider a measurable space with a positive measure(X, ΣX , µ) and an
equivalence relation∼ onX such that for allx ∈ X andA ∈ ΣX ,

(2.4) x ∈ A =⇒ [x] ⊆ A.

There is a natural way to construct aσ-algebra onX/∼, namely define

Σ∼ := {π(A) : A ∈ ΣX}
whereπ(A) := {[x] : x ∈ A}. This is the largestσ-algebra onX/∼ such that the projection
mapπ is measurable. Observe thatA 7→ π(A) is a bijection fromΣX ontoΣ∼. It is natural to
define a measureµ := µπ by

µ(π(A)) = µ(A), ∀A ∈ ΣX .

It is well known that a functiong : X/∼ → R is measurable if and only ifπg is measurable.
Moreover,g is integrable (with respect toµ) if and only if πg is integrable (with respect toµ)
and

(2.5)
∫

X

πgdµ =

∫
X/∼

gdµ.

We say that a functiong is integrable if at least one of the integrals of the two nonnegative
functionsg+ := max(g, 0) and g− := −min(g, 0) is finite; hence the integral ofg can be
unambiguously defined as the difference of the two integrals (where±∞ + z := ±∞ for all
z ∈ R and0 · ±∞ := 0). This notion is slightly weaker than the usual one: to remark the
difference, when the integrals ofg+ andg− are both finite the functiong is calledsummable.

It is a simple exercise to check that the equivalence relation defined in Section 2.1 satisfies
equation (2.4) ifΣX = σ(fi : i ∈ Γ) (that is,ΣX is the minimalσ-algebra such that all the
functions inN are measurable); this equivalence relation along with its inducedσ-algebra and
measure will play a key role in the next section.

Remark 2.2. It is easy to show that ifh, r : X 7→ R are two integrable functions such that the
sum

∫
X

hdµ +
∫

X
rdµ is not ambiguous (i.e., it is not true that

∫
X

hdµ = ±∞ and
∫

X
rdµ =

∓∞), thenh + r is integrable and

(2.6)
∫

X

(h + r)dµ =

∫
X

hdµ +

∫
X

rdµ

(both sides possibly being equal to±∞). This will be useful in the proof of Lemma 3.3.
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4 F. ZUCCA

3. M AIN RESULT

Throughout this section we consider a measurable space with finite positive measure
(X, ΣX , µ) and a family of correlated functionsN = {fi}i∈Γ, whereΣX = σ(fi : i ∈ Γ). Let
us considerY = R with its natural order≥. The equivalence relation∼, the (total) order≥∼
and the space(X/∼, Σ∼, µ) are introduced according to Sections 2.1 and 2.2. It is clear thatΣ∼
contains theσ-algebra generated by the set of intervals{φ−1

fi
(I) : i ∈ Γ, I ⊆ R is an interval}.

More precisely, it is easy to see that, by construction, all the intervals of the totally ordered set
(X/∼,≥∼) are measurable sinceN∼ separates points.

The main result is the following.

Theorem 3.1.Letµ(X) < +∞.

(1) If f , g are two integrable,µ-a.e. correlated functions such thatfg is integrable then

(3.1) µ(X)

∫
X

fgdµ ≥
∫

X

fdµ

∫
X

gdµ.

Moreover, iff , g are summable, then in the previous equation the equality holds if and
only if at least one of the functions isµ-a.e constant.

(2) If {fi}k
i=1 is a family of measurable functions onX which are nonnegative andµ-

a.e. correlated, then

(3.2) µ(X)k−1

∫
X

k∏
i=1

fidµ ≥
k∏

i=1

∫
X

fidµ.

Moreover, if
∫

X
fidµ ∈ (0, +∞) for all i = 1, . . . , k, then in the previous equation the

equality holds if and only if at leastk − 1 functions areµ-a.e. constant.

Before proving this theorem, let us warm up with the following lemma; though it will not be
used in the proof of Theorem 3.1, nevertheless it sheds some light on the next step.

Lemma 3.2. Let N := {{xi(j)}i∈N}k
j=1 be a family of nonnegative and nondecreasing se-

quences and{µi}i∈N be a family of strictly positive real numbers. If
∑

i µi < +∞ then

(3.3)

(∑
i

µi

)k−1∑
i

k∏
j=1

xi(j)µi ≥
k∏

j=1

∑
i

xi(j)µi.

Moreover, if for everyj we have0 <
∑

i xi(j) < +∞, then the equality holds if and only if at
leastk − 1 sequences are constant.

Proof. We prove the first part of the claim for two finite sequences{xi}n
i=1 and{yi}n

i=1, since the
general case follows easily by induction onk and using the Monotone Convergence Theorem
asn tends to infinity.

It is easy to prove that
n∑

i=1

µi

n∑
i=1

xiyiµi −
n∑

i=1

xiµi

n∑
i=1

yiµi =
∑

i,j:i≥j

(xi − xj)(yi − yj)µiµj(3.4)

=
∑

i,j:i>j

(xi − xj)(yi − yj)µiµj.

Indeed,
n∑

i=1

µi

n∑
i=1

xiyiµi =
∑

i,j:i>j

(xiyi + xjyj)µiµj +
n∑

i=1

xiyiµ
2
i
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AN INEQUALITY FOR CORRELATED MEASURABLE FUNCTIONS 5

and
n∑

i=1

xiµi

n∑
i=1

yiµi =
∑

i,j:i>j

(xiyj + xjyi)µiµj +
n∑

i=1

xiyiµ
2
i .

This implies easily that
n∑

i=1

µi

n∑
i=1

xiyiµi −
n∑

i=1

xiµi

n∑
i=1

yiµi ≥ 0.

If either at leastk − 1 sequences are constant or one sequence is equal to0, then we have an
equality. The same is true if

∑
i xi(j)µi = +∞ for somej and

∑
i xi(j)µi > 0 for all j, since

both sides of equation (3.3) are equal to+∞. On the other hand, by using the first part of the
theorem and by taking the limit in equation (3.4) asn tends to infinity, for all1 ≤ j1 < j2 ≤ k,(∑

i

µi

)k−1∑
i

k∏
j=1

xi(j)µi −
k∏

j=1

∑
i

xi(j)µi(3.5)

≥

(∑
i

µi

)∑
i

xi(j1)xi(j2)µi

∏
j 6=j1,j2

∑
i

xi(j)µi −
k∏

j=1

∑
i

xi(j)µi

=

( ∏
j 6=j1,j2

∑
i

xi(j)µi

) ∑
i,i1:i>i1

(xi(j1)− xi1(j1))(xi(j2)− xi1(j2))µiµi1 .

If both {xi(j1)}i and{xi(j2)}i are nonconstant, then there existr < l andr1 < l1 such that
xr(j1) < xl(j1) andxr1(j2) < xl1(j2). This implies thatxmax(l,l1)(j1) − xmin(r,r1)(j1) > 0 and
xmax(l,l1)(j2) − xmin(r,r1)(j2) > 0, thus the right hand side of equation (3.5) is strictly positive
(just consider the summation over{i, i1 : i ≥ max(l, l1), i1 ≤ min(r, r1)}) and we have a strict
inequality in equation (3.3). �

The proof of the previous lemma clearly suggests a second lemma which will be needed in
the proof of Theorem 3.1.

Lemma 3.3. LetN := {f, g} wheref, g : X → R are two summable functions such thatfg is
integrable (for instance iff andg areµ-a.e. correlated). Ifµ(X) < +∞ then

(3.6) µ(X)

∫
X

f(x)g(x)dµ(x) =

∫
X

f(x)dµ(x)

∫
X

g(x)dµ(x)

+
1

2

∫
X×X

(f(x)− f(y))(g(x)− g(y))dµ(x)dµ(y).

Proof. Note that

(3.7) f(x)g(x) + f(y)g(y) = f(x)g(y) + f(y)g(x) + (f(x)− f(y))(g(x)− g(y));

wheref(x)g(y) andf(y)g(x) are summable onX ×X, sincef, g are summable. If we define
h(x, y) := f(x)g(y) + f(y)g(x) andr(x, y) := (f(x) − f(y))(g(x) − g(y)) then, according
to Remark 2.2, we just need to prove thath andr are integrable (sinceh + r is integrable by
hypothesis).

If f , g are summable then, by equation (3.7),fg is integrable if and only if(f(x)−f(y))(g(x)−
g(y)) is integrable onX ×X (since the sum of a summable function and an integrable function
is an integrable function) and equation (3.6) follows. Clearly, iff andg are correlated, then
(f(x)− f(y))(g(x)− g(y)) is nonnegative thus integrable. �
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6 F. ZUCCA

Proof of Theorem 3.1.

(1) By equation (2.5) it is enough to prove that

µ(X/∼)

∫
X/∼

φfφgdµ ≥
∫

X/∼

φfdµ

∫
X/∼

φgdµ.

If f and g are summable then the claim follows from equation (3.6) of Lemma 3.3.
Otherwise, without loss of generality, we may suppose that

∫
X/∼

φfdµ ≡
∫

X
fdµ =

+∞. If
∫

X/∼
φgdµ ≡

∫
X

gdµ < 0, then there is nothing to prove. If
∫

X
gdµ ≥ 0, then

eitherg = 0 µ-a.e., in this case, both sides of equation (3.1) are equal to0, or there
existsx ∈ X/∼ such thatµ([x, +∞)) > 0 andφf , φg > 0 on [x, +∞) (sinceφf andφg

are nondecreasing). Clearly,
∫

[x,+∞)
φfdµ = +∞ andφf (y)φg(y) ≥ φf (y)φg(x) for all

y ∈ [x, +∞), hence both sides of equation (3.1) are equal to+∞.
If one of the two functions is constant, then the equality holds. Iff andg are non-

constant (that is,φf andφg are nonconstant), then there existx0, y0 ∈ X/∼ such that
x0 >∼ y0, φf (x0) > φf (y0), φg(x0) > φg(y0), µ((−∞, y0]) > 0 andµ([x0, +∞)) > 0
(this can be done as in Lemma 3.3). Hence, using equation (3.6), we have that,

µ(X/∼)

∫
X/∼

φfφgdµ−
∫

X/∼

φfdµ

∫
X/∼

φgdµ

≥
∫

[x0,+∞)×(−∞,y0]

(φf (x)− φf (y))(φg(x)− φg(y))dµ(x)dµ(y)

≥ µ((−∞, y0]) µ([x0, +∞))(φf (x0)− φf (y0))(φg(x0)− φg(y0)) > 0.

(2) Let us suppose thatfi is summable for alli = 1, . . . , k. It is enough to prove that

µ(X/∼)k−1

∫
X/∼

k∏
i=1

φfi
dµ ≥

k∏
i=1

∫
X/∼

φfi
dµ.

In the previous part of the theorem, we proved the claim for two functionsφf andφg; as
in Lemma 3.2, the general case follows by induction onk.

If at least two functions are nonconstant, sayφf1 , φf2, then as before we may find
x0, y0 ∈ X/∼ such thatx0 >∼ y0, φf1(x0) > φf1(y0), φf2(x0) > φf2(y0), µ((−∞, y0]) >
0 andµ([x0, +∞)) > 0 (this can be done as in Lemma 3.3). By applying the first part
of the claim to the family (ofk − 1 functions)φf1 , φf2 , φf3 , . . . , φfk

(which are clearly
still correlated since they are nondecreasing) and using equation (3.6) we have that,

µ(X/∼)k−1

∫
X/∼

k∏
i=1

φfi
dµ−

k∏
i=1

∫
X/∼

φfi
dµ

=

(
µ(X/∼)

∫
X/∼

φf1φf2dµ−
∫

X/∼

φf1dµ ·
∫

X/∼

φf2dµ

) k∏
i=3

∫
X/∼

φfi
dµ

≥
(∫

[x0,+∞)×(−∞,y0]

(φf1(x)− φf1(y))(φf2(x)− φf2(y))dµ(x)dµ(y)

) k∏
i=3

∫
X/∼

φfi
dµ

≥ µ((−∞, y0]) µ([x0, +∞))(φf1(x0)− φf1(y0))(φf2(x0)− φf2(y0))
k∏

i=3

∫
X/∼

φfi
dµ

> 0
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AN INEQUALITY FOR CORRELATED MEASURABLE FUNCTIONS 7

since0 <
∫

X/∼
φfi

dµ < +∞ for all i = 1, . . . , k, thus the second part of the claim is
proved.

�

Note that if
∫

X
fidµ = +∞ for somei and

∫
X

fjdµ > 0 for all j (otherwise both sides
of equation (3.2) are equal to0) then both sides of equation (3.2) are equal to+∞; indeed,
apply the first part of the theorem to the family of correlated bounded functions{min(fi, n)}k

i=1

(wheren ∈ N) and take the limit of both sides of equation (3.2) asn tends to+∞.

Remark 3.4. According to Theorem 3.1, there is a difference between the casek = 2 andk >
2; indeed, in the latter case the inequality cannot be proved for integrable (or even summable)
µ-a.e. correlated functions which are not nonnegative. Something happens in the inductive
process, namely if{fi}k

i=1 are correlated this may not be true for{f1f2, f3, . . . , fk} (if the
functions are not positive). Here is a counterexample: takeX = [−1, 1] endowed with the
Lebesgue measure,f1(x) = f2(x) := x1[−1,0](x) andfi(x) := x− f1(x) for all i ≥ 3.

Strictly speaking, Theorem 3.1 could be proved without the constructions of Sections 2.1
and 2.2; one has just to use carefully equation (2.3) and Lemma 3.3. Our approach simplifies the
proof of Theorem 3.1 and gives a better understanding of the role of the correlation hypothesis
(compared to the usual monotonicity).

We finally observe that if we consider two integrableanticorrelated functions (meaning that
(f(x) − f(y))(g(x) − g(y)) ≤ 0 for all x, y ∈ X) such thatfg is integrable then, clearly, we
haveµ(X)

∫
X

fgdµ ≤
∫

X
fdµ

∫
X

gdµ.

4. FINAL REMARKS AND EXAMPLES

Let us apply Theorem 3 to a class of power series. We considerf(z) :=
∑+∞

n=0 anz
n, where

{an}n is a sequence of nonnegative real numbers and we suppose that{ρnan} is nonincreasing
(resp. nondecreasing) for someρ such that0 < ρ ≤ R (whereR is the radius of convergence).
Then the functionz 7→ (ρ− z)f(z) is nonincreasing (resp. nondecreasing) on[0, ρ).

Indeed, if we suppose that{ρnan} is nonincreasing then, for allz, γ such that0 ≤ z < γ < ρ,
we have

+∞∑
n=0

anz
n =

+∞∑
n=0

anρ
n(z/γ)n(γ/ρ)n

≥
∑+∞

n=0 anγ
n∑+∞

n=0(γ/ρ)n

+∞∑
n=0

(z/ρ)n =
+∞∑
n=0

anγ
n ρ− γ

ρ− z
,

where, in the first inequality, we applied Theorem 3.1 to the (correlated) functionsf1(n) :=
anρ

n andf2(n) := (z/γ)n defined onN endowed with the measureµ(A) :=
∑

n∈A(γ/ρ)n. The
case when{ρnan} is nondecreasing is analogous (observe that now the functionsf1 andf2 are
anticorrelated). Ifz < ρ < R, thenf1 andf2 are nonconstant functions, hence the function
z 7→ (ρ− z)f(z) is strictly monotone.

We draw our second application from probability theory. To emphasize this, we denote the
measure space by(Ω,F , P) and we speak of random variables and events instead of measurable
functions and measurable sets respectively. We note that ifk = 2, then Theorem 3.1 says that
correlated variables have nonnegative covariance, that is,E[f1f2] − E[f1]E[f2] ≥ 0 (where
E[f ] :=

∫
Ω

fdP is the usual expectation).
We call the (real) random variables{X0, X1, . . . , Xk} independent if and only if, for every

family of Borel sets{A0, A1, . . . , Ak}, we haveP(∩k
i=0{Xi ∈ Ai}) =

∏k
i=0 P(Xi ∈ Ai), where

P(Xi ∈ Ai) is shorthand forP({ω ∈ Ω : Xi(ω) ∈ Ai}).
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In order to make a specific example, let us think of the variableXi (i = 1, . . . , k) as the
(random) time made by thei-th contestant in an individual time trial bicycle race and letX0 be
our own (random) time; we suppose that each contestant is unaware of the results of the others
(this is the independence hypothesis). If we know the probability of winning a one-to-one race
against each of our competitors we may be interested, for instance, in estimating the probability
of winning the race. Such estimates are possible as a consequence of Theorem 3.1; indeed, we
have that

P(∩k
i=1{Xi ≥ X0}) ≥

k∏
i=1

P(Xi ≥ X0),

P(∩k
i=1{Xi ≤ X0}) ≥

k∏
i=1

P(Xi ≤ X0).

Thus the events{{Xi ≥ X0}}k
i=1 (resp.{{Xi ≤ X0}}k

i=1) are positively correlated (roughly
speaking this means that knowing that{X1 ≥ X0} makes, for instance, the event{X2 ≥ X0}
more likely than before).

The proof of these inequalities is straightforward. If we defineµ(A) := P(X0 ∈ A) for all
Borel setsA ⊆ R, then, according to Fubini’s Theorem,

P(Xi ≥ X0) =

∫
R

P(Xi ≥ t)dµ(t), P(∩k
i=1{Xi ≥ X0}) =

∫
R

k∏
i=1

P(Xi ≥ t)dµ(t),

P(Xi ≤ X0) =

∫
R

P(Xi ≤ t)dµ(t), P(∩k
i=1{Xi ≤ X0}) =

∫
R

k∏
i=1

P(Xi ≤ t)dµ(t).

Indeed,

P(Xi ≥ X0) =

∫
{(s,t)∈R2:s≥t}

dν(s)dµ(t) =

∫
R

∫
[t,+∞)

dν(s)dµ(t) =

∫
R

P(Xi ≥ t)dµ(t),

whereν(A) := P(Xi ∈ A) for all borel setsA ⊆ R and the first equality holds sinceXi

andX0 are independent. The remaining cases are analogous. Note that{P(Xi ≥ t)}k
i=1 and

{P(Xi ≤ t)}k
i=1 are both families of monotone (thus correlated) functions; Theorem 3.1 yields

the claim. This example can be easily extended to a more interesting case: namely, when
{X1, . . . , Xk} have identical laws and are independently conditioned toX0 (see Chapters 4 and
6 of [1] for details). In this case one can prove that

P(∩k
i=1{Xi ∈ A}) ≥

k∏
i=1

P(Xi ∈ A), ∀A ⊆ R Borel set.

The proof makes use of Theorem 3.1 in its full generality but this example exceeds the purpose
of this paper.
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