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ABSTRACT. A classical inequality, which is known for families of monotone functions, is gen-
eralized to a larger class of families of measurable functions. Moreover we characterize all the
families of functions for which the equality holds. We give two applications of this result, one
of them to a problem arising from probability theory.
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1. INTRODUCTION

The aim of this paper is to generalize an inequality, originally due to Chebyshev and then
rediscovered by Stein in[4]. Usually this result is stated for monotonic real functions: the
classical inequality is

-0 [ @ [ @ar [ owas

wheref andg are monotonic (in the same sense) real functions (see for instance [4], [3] and [2]
for a more general version). if = b — 1 then this inequality has a probabilistic interpretation,
namelyE[fg] — E[f]E[¢g] > 0 (whereE denotes the expectation), that is, the covariancg of
andg is nonnegative.

Our approach allows us to prove the inequality for functions defined on a general measurable
space, hence we go beyond the usual ordere@® sé¥lore precisely, we prove an analogous
result for general families of measurable functions that we call correlated functions (see Defi-
nition[2.7 for details). In particular, we characterize all the families of functions for which the
equality holds.

Here is the outline of the paper. In Sectign 2 we introduce the terminology and the main tools
needed in the sequel. In particular, Section$ 2.1[ard 2.2 are devoted to the construction of an
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2 F. Zucca

order relation and a-algebra on a particular quotient space. In Sedtion 3 we state and prove
our main result (Theorefn 3.1) which involvéscorrelated functions; the special case= 2
requires weaker assumptions (see also Refnafk 3.4). We give two applications of this inequality
in Sectiorj 4: the first one involves a particular class of power series, while the second one comes
from probability theory.

2. PRELIMINARIES AND BAsSIC CONSTRUCTIONS

We start from a very general setting. Let us consider aXset partially ordered space
(Y,>y) and a familyN' = {f;}icr (whereT is an arbitrary set) of functions itr*. We
consider the equivalence relation &n

z~y <= filz) = fily), VieTl

and we denote by /... the quotient space, by] the equivalence class ofc X and by the
natural projection ofX" onto X/... Roughly speaking, by means of this procedure, we identify
points inX which are not separated by the famiy.

To the family \V/ corresponds a natural counterpAft, = {¢;. }icr of functions iny*/~,
where, by definitiong([z]) := f(z), for allz € X and for everyf € Y satisfying

(2.1) Veye X tx~y = f(z) = f(y)

(this holds in particular for all the functions iN). It is clear that the familyV. separates the
points of X/ ..

Given any functiory defined onX/.. we denote byr, the functiong o 7; observe thap,, = g
forall ¢ € YX/~ andrg, = f for every f satisfying equation (2}1). Clearly — 7, is a
bijection fromY*/~ onto the subset of a function ¥ satisfying equatiorf (21).

Note that givenf, f; € YX which satisfy equatior{ (2.1) (resp,g1 € YX/~) thenf >y f;
(resp.g >y g1) impliesé; > ¢, (respry > m,,).

2.1. Induced order. In order to prove Theorein 3.1 we cannot take advantage, as in the clas-
sical formulation, of an order relation on the sét Under some reasonable assumptions (see
Definition[2.] below) we can transfer the order relation fréinto X /.. where we already de-
fined a family V. related to the original'. This will be enough for our purposes.

Definition 2.1. The functions in\ arecorrelated if, forall: € I" and z,y € X,
(2.2) filx) >y fily) = f;(x) >y f;(y), VjeT.
We note that the definition above can be equivalently stated as follows: forjall I" and
e X,
f7H (=00, fi2))) € f7H (=00, fi(2))).
Besides, ift” = R with its natural order, then the functions.\ are correlated if and only if
foralli,j € I'andx,y € X,

(2.3) (fi(z) = fi(y))(fi(x) = f5(y)) = 0.
In particular if X is a totally ordered set and all the functions.Ah are nondecreasing (or
nonincreasing) then they are correlated.

A family of correlated functions induces a natural order relation on the quotient space

Lemma 2.1. If the functions in\ are correlated then the relation ok /..
(2] >. ly] <= fi(z) >y fily), Viel

is a partial order. If(Y,>y) is a totally ordered space then the same holds(fgy ., >.).
Moreover\/. is a family of nondecreasing functions (hence they are correlated).
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Proof. It is straightforward to show that .. is a well-defined partial order (clearly it does not
depend on the choice af(andy) within an equivalence class). We prove thatzif is a total
order, the same holds for.. Indeed if[z] # [y] then there existsc I" such thatf;(z) # fi(v);
suppose thaf;(xz) > fi(y) then, by equatiorf (2.2)z] >. [y]. Itis trivial to prove thatp;, is
nondecreasing for evetyc I', whence they are correlated since the sgacé., >..) is totally
ordered. O

A subset! of an ordered set, say, is called an interval if and only if for alt,y € I and
z € Y thenx >y z >y yimpliesz € I. Note that given an intervdl C Y thengbjgl(l) is an
interval of X/ _ for everyi € T'.

Givenz,y € X such thafz] >. [y| we define the intervdly], [z]) := {[z] € X/~ : [y] <
[z] < [z]}; the intervald[y], [z]], ([y], [z]] and([y], [x]) are defined analogously. In particular,
for anyz € X, we denote by[z], +00) and(—oc, [z]] the intervals{[y] € X/. : [y] >~ [z]}
and{[y] € X/. : [z] >~ [y]} respectively.

2.2. Induced c-algebra and measure.This construction can be carried on under general as-
sumptions. Let us consider a measurable space with a positive méasSute, ;1) and an
equivalence relatior- on X such that for al € X andA € Xy,

(2.4) re A= [z] C A
There is a natural way to constructealgebra onX/.., namely define
Y.o:={n(A): Ae Xy}

wherer(A) := {[z] : = € A}. This is the largest-algebra onX/.. such that the projection
map~ is measurable. Observe that— 7(A) is a bijection fromXx ontoX.. It is natural to
define a measure := ., by

a(m(A)) = u(A), VA€ Xk,

It is well known that a functiory : X/ — R is measurable if and only if, is measurable.
Moreover,g is integrable (with respect tp) if and only if 7, is integrable (with respect t)
and

(2.5) /ngu:/ gdp.
X X/n

We say that a function is integrable if at least one of the integrals of the two nonnegative
functionsg™ := max(g,0) andg~ := —min(g,0) is finite; hence the integral of can be
unambiguously defined as the difference of the two integrals (whete+ 2 := +oo for all

z € Rand0 - £00 := 0). This notion is slightly weaker than the usual one: to remark the
difference, when the integrals of andg— are both finite the function is calledsummable.

It is a simple exercise to check that the equivalence relation defined in Secfjon 2.1 satisfies
equation|[(ZQ) iEx = o(f; : ¢ € T) (that is,Xx is the minimalo-algebra such that all the
functions in/\ are measurable); this equivalence relation along with its indueaigebra and
measure will play a key role in the next section.

Remark 2.2. It is easy to show that if, » : X — R are two integrable functions such that the
sum [, hdp + [, rdu is not ambiguous (i.e., it is not true that hdy = +oo and [, rdu =
Fo0), thenh + r is integrable and

(2.6) / (h+r)dp = / hdp + / rdu
X X X
(both sides possibly being equalt@o). This will be useful in the proof of Lemmnja 3.3.
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3. MAIN RESULT

Throughout this section we consider a measurable space with finite positive measure
(X, Xx, 1) and a family of correlated functionS = {f;};cr, whereXy = o(f; : i € T'). Let
us conside®” = R with its natural order>. The equivalence relatior, the (total) order>..
and the spacgX/., >, i) are introduced according to Secti- hns|2.1[anfl 2.2. It is cleatthat
contains ther-algebra generated by the set of |nterv{a;l>§ (I):i €T, I CRisaninterva}.
More precisely, it is easy to see that, by construction, all the mtervals of the totally ordered set
(X/~,>~) are measurable singé. separates points.

The main result is the following.

Theorem 3.1.Let u(X) < +o0.
(1) If f, g are two integrabley-a.e. correlated functions such thag is integrable then

(3.1) u) [ gadn= [ gan [ gdn

Moreover, if f, g are summable, then in the previous equation the equality holds if and
only if at least one of the functionsjsa.e constant.

(2) If {fi}_, is a family of measurable functions o¥i which are nonnegative ang-
a.e. correlated, then

k k
(3.2) M(X)k_l/XHfidNE H/Xfid/i-

Moreover, iffX fidu € (0,400) forall i = 1,...,k, then in the previous equation the
equality holds if and only if at leagt — 1 functions areu-a.e. constant.

Before proving this theorem, let us warm up with the following lemma; though it will not be
used in the proof of Theorem 3.1, nevertheless it sheds some light on the next step.

Lemma 3.2. Let N := {{z;(j) }ien}_, be a family of nonnegative and nondecreasing se-
quences andy; };cn be a family of strictly positive real numbers. ), i; < +oo then

(3.3) <ZM> ZH% ,uZ>HZx,

i g=1 %
Moreover, if for everyj we haved < >, z;(j) < 400, then the equality holds if and only if at
leastk — 1 sequences are constant.

Proof. We prove the first part of the claim for two finite sequengeg?_, and{y;}! ,, since the
general case follows easily by induction brand using the Monotone Convergence Theorem
asn tends to infinity.

It is easy to prove that

(3.4) Z i Z TiYifb; — Z T fbi Zyiﬂi = Z (w5 — 25) (Y — Yj) ity
i=1 =1 i=1 i=1 §,:1>]

= Z (@i — ) (i — yj) pity-

INE>Y]
Indeed,

Z 1 Z TiYili = Z (ays + T35 patty + Z Tyl
=1 =1

050> =1
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and .
Z Tilbi Z?/zﬂz = Z TiYj 4 ) ity + Z xiyi/i?-
1,J:4>7 i=1
This implies eaS|Iy that

Z Hi Z TiYifbi — Z Tifbi Z Yitti = 0.
-1 =1 i—1 i—1

If either at leask — 1 sequences are constant or one sequence is equahien we have an
equality. The same is true ¥, z;(j)u; = +oo for somej and) . x;(j)p; > 0 for all j, since
both sides of equatiofn (3.3) are equahtoo. On the other hand, by using the first part of the
theorem and by taking the limit in equatign (3.4)atends to infinity, for alll < j; < j, <k,

@5) (z M) S - [I3 =0

i =1 j=1 i

(Zu) Zx GOzl [T D wlim - ﬁzwi(j)u

J#j1.Je 1 Jj=1 1

= ( 11 Zl’z‘(j)m) > (i) = i, (70)) (@i (G2) — i, (G2)) pigss, -
J#Ig2 1 i,i1:0>01
If both {z;(j1)}; and{z;(j2)}; are nonconstant, then there exist. [ andr, < [; such that
2, (1) < (1) andx,, (j2) < 2y, (j2). This implies thatryax,,)(J1) — Tmine,r) (1) > 0 @and
Tmax(ty) (J2) — Tmin(r) (J2) > 0, thus the right hand side of equati¢n {3.5) is strictly positive
(just consider the summation ovgr, i; : ¢ > max(l,[y),4; < min(r,r;)}) and we have a strict
inequality in equatior (3]3). O

The proof of the previous lemma clearly suggests a second lemma which will be needed in
the proof of Theorerp 3] 1.

Lemma 3.3. Let := {f, g} wheref, g : X — R are two summable functions such thfatis
integrable (for instance if andg are p-a.e. correlated). If:(X) < +oo then

(36) u(X) /X f(@)g(x)du(z) = /X f(@)dp(z) /X g(x)du(x)
+ % /X X(f (z) = f()(9(z) — g(y))dp(x)du(y).

Proof. Note that

@7 flo)glx)+ fWaly) = f(x)g(y) + f(y)g(x) + (f(2) — F(y))(g(z) — 9(y));
wheref(x)g(y) and f(y)g(z) are summable oX x X, sincef, g are summable. If we define
h(z,y) = f(@)g(y) + f(y)g(x) andr(z,y) == (f(x) — f(y))(g(z) — g(y)) then, according
to RemarK 2., we just need to prove thaandr are integrable (sincg + r is integrable by
hypothesis).

If f, g are summable then, by equatipn (3.7),is integrable ifand only it f (x)— f (v)) (g(x)—
g(y)) is integrable onX x X (since the sum of a summable function and an integrable function
is an integrable function) and equatign (3.6) follows. Clearlyf &ndg are correlated, then
(f(x) — f(y))(g9(z) — g(y)) is nonnegative thus integrable. O
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Proof of Theorem 3]1.
(1) By equation|[(2.b) it is enough to prove that

R3[| osganz [ oam [ o
X/~ X/n X/n

If f andg are summable then the claim follows from equatipn](3.6) of Lerpmia 3.3.
Otherwise, without loss of generality, we may suppose j@zﬂ ordp = [y fdu =
+oo. If fX/N ¢,dii = [ gdp < 0, then there is nothing to prove. Jt. gdu > 0, then
eitherg = 0 p-a.e., in this case, both sides of equation](3.1) are equal oo there
existsz € X/ such thafi([z, +00)) > 0 andgy, ¢, > 0 on [z, +o00) (sincep; andg,
are nondecreasing). Clearlj(jc,%o) ¢rdpn = +oo ando¢(y)o,(y) > ¢r(y)d,(x) for all
y € [x,400), hence both sides of equatidn (3.1) are equatto.

If one of the two functions is constant, then the equality holdsf &ndg are non-
constant (that isp; and¢, are nonconstant), then there exigty, € X/. such that

To >~ Yo, Or(T0) > dr(Yo)s dg(w0) > &g(yo), Fi((—00,y0]) > 0 andzi([zo, +o0)) > 0
(this can be done as in Lemina]3.3). Hence, using equétion (3.6), we have that,

BT [ soutn— [ osan [ onin

X/

> / (0r(z) — Or(Y))(Dg(2) — Og(y))dp(z)dR(y)
[z0,+00) X (—00,y0]

> (=00, yo]) Fil [0, +00)) (01 (20) = &5 (40)) (P9 (w0) = bg(y0)) > 0.

(2) Let us suppose that is summable forall = 1, ..., k. Itis enough to prove that

k k
A/ /X Tonar=1] /X onr
=1 ~

~ =1

In the previous part of the theorem, we proved the claim for two functigrend¢,; as
in Lemmg 3.2, the general case follows by inductiorkon
If at least two functions are nonconstant, say, ¢y,, then as before we may find

o, Yo € X/~ suchthatry > yo, ¢y, (x0) > &1, (Y0), P12 (%0) > &, (Yo), (=00, yo]) >
0 andi([zg, +oc)) > 0 (this can be done as in Lemrha[3.3). By applying the first part
of the claim to the family (o& — 1 functions)ey,, ¢y,, ¢y, ..., ¢y (Which are clearly
still correlated since they are nondecreasing) and using equgtion (3.6) we have that,

k k
A/ [ w11 / | ondp
~ 4=1 =1 ~

k
= (M(X/~)/X/ ¢f1¢f2dﬁ—/X/ ¢rdp - » ¢f2dﬁ) 11 ¢rdn

i=3 v X/~

k
= (/[IHOO) (05, () = 05, () (D5, () — Oy, (y))dﬁ(x)dﬁ(y)) Zl_! /X/N ¢ di

X(foovyo]

> (=00, yo]) Fi[0, +00))(¢1,(20) = @1 (40)) (D, (w0) = b1, (0)) H/X/ ¢rdp

>0
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since0 < fX/N ¢rdp < +ooforalli =1,...,k, thus the second part of the claim is
proved.
O

Note that if [, f;du = +oo for somei and [, f;du > 0 for all j (otherwise both sides
of equation [(3.2) are equal ) then both sides of equatiop (B.2) are equalttso; indeed,
apply the first part of the theorem to the family of correlated bounded funcfians( f;, n)}~_,
(wheren € N) and take the limit of both sides of equatin (3.2)aends to+oc.

Remark 3.4. According to Theorerp 3|1, there is a difference between theicasé andk >

2; indeed, in the latter case the inequality cannot be proved for integrable (or even summable)
u-a.e. correlated functions which are not nonnegative. Something happens in the inductive
process, namely if f;}%_, are correlated this may not be true fof, f2, f3,..., fx} (if the
functions are not positive). Here is a counterexample: tdke- [—1,1] endowed with the
Lebesgue measuré,(z) = fo(z) := 211 0(z) and fi(x) := x — fi(z) for all 7 > 3.

Strictly speaking, Theorein 3.1 could be proved without the constructions of Sefctipns 2.1
and 2.2; one has just to use carefully equatfion (2.3) and Lgmrna 3.3. Our approach simplifies the
proof of Theorenp 3]1 and gives a better understanding of the role of the correlation hypothesis
(compared to the usual monotonicity).

We finally observe that if we consider two integrablgicorrelated functions (meaning that
(f(z) — f(y)(g(z) —g(y)) < 0forall z,y € X) such thatfg is integrable then, clearly, we

haveu(X) [y fgdu < [y fdu [y gdp.

4. FINAL REMARKS AND EXAMPLES

Let us apply Theorelﬂ 3 to a class of power series. We congidgr:= :j’) a,z", where

{a,}. is @ sequence of nonnegative real numbers and we suppode'that is nonincreasing
(resp. nondecreasing) for someuch that) < p < R (whereR is the radius of convergence).
Then the functiont — (p — 2) f(2) is nonincreasing (resp. nondecreasingj®m).

Indeed, if we suppose th@b"a,, } is nonincreasing then, for all v such that) < z < vy < p,
we have

Doanz" =) anp"(z/N)" (/)"

+o0 n oo +o0o
—g @n7Y p—7
> &5 D )" =) an” ,
Gl 2P 2

where, in the first inequality, we applied Theorem| 3.1 to the (correlated) funcfign$ :=
anp" andfs(n) := (z/v)" defined orlN endowed with the measurg€A) := > _.(v/p)". The
case wher{p"a,, } is nondecreasing is analogous (observe that now the funcficensd f, are
anticorrelated). Iz < p < R, then f; and f, are nonconstant functions, hence the function
z +— (p— 2)f(z) is strictly monotone.

We draw our second application from probability theory. To emphasize this, we denote the
measure space [y, 7, P) and we speak of random variables and events instead of measurable
functions and measurable sets respectively. We note thatif2, then Theorer 3|1 says that
correlated variables have nonnegative covariance, that[j5,f.] — E[f1|E[fs] > 0 (where
E[f] := [, fdPis the usual expectation).

We call the (real) random variablésy,, X1, ..., X, } independent if and only if, for every
family of Borel sets{ Ag, Ay, ..., Ay}, we haveP(Nf_{X; € A;}) = Hf:o P(X; € A;), where
P(X; € A;) is shorthand foP({w € Q : X;(w) € A;}).
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In order to make a specific example, let us think of the variabld: = 1,...,k) as the
(random) time made by thieth contestant in an individual time trial bicycle race andXgtbe
our own (random) time; we suppose that each contestant is unaware of the results of the others
(this is the independence hypothesis). If we know the probability of winning a one-to-one race
against each of our competitors we may be interested, for instance, in estimating the probability
of winning the race. Such estimates are possible as a consequence of Theprem 3.1; indeed, we
have that

k
P(NE{Xi > Xo}) > [[P(X: > Xo),
=1
k
PN {X; < Xo}) > [[ P(X: < Xo).
=1
Thus the event${X; > Xo}}% | (resp.{{X; < Xo}}r,) are positively correlated (roughly
speaking this means that knowing tHat; > X,} makes, for instance, the evefX, > X,}
more likely than before).
The proof of these inequalities is straightforward. If we defitd) := P(X, € A) for all
Borel setsA C R, then, according to Fubini’s Theorem,

M&Z%F/M&ZMW%PWJ%Z&Mz/ﬁM&ZMW%

PO, < X0) = [ POG < 0du), POk (X0 < X)) = [ T[POG < 0dutt)
Indeed, :
P(X; > Xy) = /{(M)GRQ:S%} dv(s)du(t) = /R/[t#oo) dv(s)du(t) = /R]P’(Xi > t)du(t),

wherev(A) := P(X; € A) for all borel setsA C R and the first equality holds sinc¥;

and X, are independent. The remaining cases are analogous. NotgP(iét > ¢)}* , and

{P(X; < t)}_, are both families of monotone (thus correlated) functions; Thepren 3.1 yields
the claim. This example can be easily extended to a more interesting case: namely, when
{X1,..., X} have identical laws and are independently conditionelit¢see Chapters 4 and

6 of [1] for details). In this case one can prove that

k
PN, {X; € A}) > [[P(X; € 4),  VACRBorel set
=1
The proof makes use of Theor¢m|3.1 in its full generality but this example exceeds the purpose
of this paper.
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