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Abstract: Ratios involving incomplete gamma functions and their monotonicity properties play
important roles in financial risk analysis. We derive desired monotonicity properties
either using Pinelis’ Calculus Rules or applying probabilistic techniques. As a con-
sequence, we obtain several inequalities involving conditional expectations that have
been of interest in actuarial science.
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Ričardas Zitikis

vol. 9, iss. 3, art. 61, 2008

Title Page

Contents

JJ II

J I

Page 2 of 14

Go Back

Full Screen

Close

Contents

1 Introduction 3

2 Monotonicity of u 7→ Rc(u, v) and u 7→ Qc(u, v) 5

3 Applications 8

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Ratios of Gammas
Edward Furman and
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1. Introduction

The gamma functionΓ(u) =
∫∞

0
xu−1e−xdx and its numerous variations (e.g., upper

and lower incomplete, regularized, inverted, etc., gamma functions) have played
major roles in research and applications. The ratio of two gamma functions has
also been a prominent research topic for a long time. For a collection of results,
references, notes, and insightful comments in the area, we refer to [10].

When working on insurance related problems (see Section3) we discovered that
solutions of these problems hinge on monotonicity properties of the functions

Rc(u, v) =
Γ
(
u + c, v

)
Γ
(
u, v
) and Qc(u, v) =

Rc(u, v)

u
,

wherec > 0 is a constant andΓ(u, v) =
∫∞

v
xu−1e−xdx is the upper incomplete

gamma function. Note that whenv = 0, then the functionsRc(u, v) andQc(u, v)
reduce, respectively, to the ratiosΓ(u + c)/Γ(u) andΓ(u + c)/Γ(u + 1). We refer
to [9] and [10] for monotonicity properties, inequalities, and references concerning
the latter two ratios and their variations. Monotonicity results and inequalities for
upper and lower incomplete gamma functions have been studied in [9]; see also the
references therein.

Note that the monotonicity ofRc(u, v) andQc(u, v) with respect tov follows
immediately from Pinelis’ Calculus Rules, which have been reported in a series of
papers in theJournal of Inequalities in Pure and Applied Mathematicsduring the
period 2001–2007. Indeed, both the numerator and the denominator of the ratio
Rc(u, v) converge to0 whenv →∞, and the ratioΓ′v

(
u + c, v

)
/Γ′v
(
u, v
)
, which is

equal tovc, is increasing, whereΓ′v(u, v) is the derivative ofΓ(u, v) with respect to
v. Hence, according to Proposition 1.1 in [8], we have that

(1.1) Rc(u, v + ε) > Rc(u, v) for every ε > 0.
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The same argument applies to the functionv 7→ Qc(u, v), and thus the same mono-
tonicity property holds for this function as well.

Pinelis’ Calculus Rules, however, do not seem to be easily applicable for deriving
monotonicity properties of the functionsu 7→ Rc(u, v) andu 7→ Qc(u, v). There-
fore, in the current paper we use ‘probabilistic’ arguments to arrive at the desired
results. The arguments are based on so-called weighted distributions, which are of
interest on their own. We also present a description of insurance related problems
that have led us to the research in the present paper.
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2. Monotonicity of u 7→ Rc(u, v) and u 7→ Qc(u, v)

The following general bound has been proved in [5] (see also [3] for uses in insur-
ance)

(2.1) E[α(X)β(X)] ≥ E[α(X)]E[β(X)]

for non-decreasing functionsα(x) andβ(x). We shall see in the proof below that
the bound (2.1) is helpful in the context of the present paper.

Proposition 2.1. For any positivec, u andv we have that

(2.2) Rc(u + ε, v) > Rc(u, v) for every ε > 0.

Proof. Statement (2.2) means that the functionρ(u) = Rc(u, v) is increasing. To
verify the monotonicity property, we check thatρ′(u) > 0, which is equivalent to the
inequality

(2.3)
∫ ∞

v

log(x)xcq(x)dx

∫ ∞

v

q(x)dx >

∫ ∞

v

log(x)q(x)dx

∫ ∞

v

xcq(x)dx

with q(x) = xu−1e−x. (It is interesting to point out, as has been noted by a referee of
this paper, that inequality (2.2) is equivalent to (2.3) with log(x) replaced byxε; the
proof that follows is valid with this change as well.) LetXq be a random variable
whose density function isx 7→ q(x)/

∫∞
v

q(y)dy on the interval[v,∞). We rewrite
bound (2.3) as

(2.4) E[log(Xq)X
c
q ] > E[log(Xq)]E[Xc

q ].

With the functionsα(x) = log(x) andβ(x) = xc, we have from (2.1) that bound
(2.4) holds with ‘≥’ instead of ‘>’, which is a weaker result than desired. Therefore,

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Ratios of Gammas
Edward Furman and
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we next show that the equalityE[log(Xq)X
c
q ] = E[log(Xq)]E[Xc

q ] is impossible. To
this end we proceed with the equation (due to W. Hoeffding; see [5])

E[log(Xq)X
c
q ]− E[log(Xq)]E[Xc

q ]

=

∫ ∫ (
P
[
log(Xq) ≤ x, Xc

q ≤ y
]
−P

[
log(Xq) ≤ x

]
P
[
Xc

q ≤ y
])

dxdy.

We have thatP[log(Xq) ≤ x, Xc
q ≤ y] ≥ P[log(Xq) ≤ x]P[Xc

q ≤ y], which is
the so-called ‘positive dependence’ between the random variableslog(Xq) andXc

q :
when one of them increases, the other one also increases. Hence, in order to have the
equalityE[log(Xq)X

c
q ] = E[log(Xq)]E[Xc

q ], we need to haveP[log(Xq) ≤ x, Xc
q ≤

y] = P[log(Xq) ≤ x]P[Xc
q ≤ y] for all x andy. But this means independence of

log(Xq) andXc
q , which is possible only ifXq is a constant almost surely. The latter,

however, is impossible since, by construction, the random variableXq has a density.
This completes the proof of Proposition2.1.

Proposition 2.2. Whenc ≤ 1, for any positiveu andv we have that

(2.5) Qc(u + ε, v) < Qc(u, v) for every ε > 0.

Proof. SinceΓ(u, v)u = Γ(u + 1, v)− vue−v, we have that

Qc(u, v) =
Γ(u + c, v)

Γ(u + 1, v)− vue−v
=

1

a(u)− (v−ce−v)/b(u)
,

where

a(u) =
Γ(u + 1, v)

Γ(u + c, v)
and b(u) =

Γ(u + c, v)

vu+c
.

Note thata(u) = R1−c(u + c, v), which is constant ifc = 1 and an increasing func-
tion of u if c < 1 by Proposition2.1. Note also the equalityb(u) =

∫∞
1

xue−vxdx.
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The latter integral is increasing with respect tou. Hence,u 7→ Qc(u, v) is a decreas-
ing function. This finishes the proof of Proposition2.2.

It is natural to ask whether the conditionc ≤ 1 in Proposition2.2 is necessary.
Computer aided graphics indicate that whenc > 1, the functionu 7→ Qc(u, v) is
initially decreasing and then increasing either concavely or convexly, depending on
the magnitude ofc > 1. The problem of finding the minimum point of the function
u 7→ Qc(u, v) and deriving its monotonicity patterns forc > 1 are interesting prob-
lems, whose resolutions would aid in risk measurement and management. Indeed,
valuesc > 1 do show up when considering tail moments of higher orders than those
considered in the next section: the applications we consider there requirec = 1 only.
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3. Applications

Assume that an insurance portfolio consists ofK risks, which are non-negative ran-
dom variablesX1, . . . , XK . Let the random variables be independent but possibly
not identically distributed. In fact, assume that eachXk has the gamma distribution
Ga(γk, α) with parametersγk > 0 andα > 0, that is,

(3.1) FXk
(t) = 1− Γ(γk, αt)

Γ(γk)
,

whereΓ(γk) = Γ(γk, 0) is the complete gamma function. We note in passing that
the gamma distribution is natural and thus frequently utilized in actuarial science.
Indeed, many total insurance claim distributions have roughly the same shape as the
gamma distribution: they are non-negatively supported, unimodal, and skewed to the
right. For applications of the gamma distribution, we refer, e.g., to [2] and [4], as
well as to the references therein.

Consider the situation when an insurer is concerned with the overall portfolio risk

S =
K∑

j=1

Xj

that exceeds a certain threshold. Such situations arise when dealing with policies in-
volving deductibles and reinsurance contracts. That is, given a pre-specified thresh-
old t, we are concerned with those risks for whichS > t holds. We are then
interested in the total risk and also in the average contribution of each riskXk,
or the unions of severalXk’s, to the total risk of the portfolio. Mathematically,
these problems can be formulated as the conditional expectationsE[S|S > t] and
E[Xk|S > t], or the sum ofE[Xk|S > t] over allk ∈ ∆ for some∆ ⊆ {1, . . . , K}.
In particular, we are interested in comparing the expectationsE[S|S > t] and

http://jipam.vu.edu.au
mailto:
mailto:
http://jipam.vu.edu.au


Ratios of Gammas
Edward Furman and
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E[S∆|S∆ > t], and alsoE[S∆|S > t] andE[S∆|S∆ > t], where

S∆ =
∑
j∈∆

Xj.

A motivation for such comparisons arises when testing theoretical properties of risk
capital allocation procedures. For related discussions, we refer to [1].

The following proposition, which generalizes Proposition 1 in [2] to arbitrary
random variables, is particularly useful in quantifying the above noted conditional
expectations. The presented proof of the proposition below is also much simpler
than that in [2].

Proposition 3.1. Let ξ1, . . . , ξK be independent (but not necessarily identically dis-
tributed) non-negative random variables with positive and finite means. Then, for
every1 ≤ k ≤ K,

(3.2) E

[
ξk

∣∣ K∑
j=1

ξj > t

]
= E[ξk]

1− F∑K
j 6=k ξj+ξ∗k

(t)

1− F∑K
j=1 ξj

(t)
,

whereξ∗k ≥ 0 is an independent ofξ1, . . . , ξK random variable whose distribution
function is

F ∗
k (x) =

E[ξk1{ξk ≤ x}]
E[ξk]

.

Proof. The equations

E

[
ξk

∣∣ K∑
j=1

ξj > t

]
=

E
[
ξk1

{∑K
j 6=k ξj + ξk > t

}]
E
[
1
{∑K

j=1 ξj > t
}] = E[ξk]

P
[∑K

j 6=k ξj + ξ∗k > t
]

1− F∑K
j=1 ξj

(t)

prove the proposition.
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A notable property of the gamma distribution is that of ‘closure under convo-
lutions’, meaning that the distribution of the sum

∑
k∈∆ Xk has again a gamma

distribution, which isGa
(∑

j∈∆ γj, α
)

. Another useful property is the ‘closure

under the size-biased transform’, which we explain next.
To start with, note that the distributionF ∗

k (x) of X∗
k is a special case of the more

general weighted distribution (see [7] and [11], as well as the references therein)

F ∗
w(x) =

E[w(Xk)1{Xk ≤ x}]
E[w(Xk)]

,

wherew(x) is a non-negative function such that the expectationE[w(Xk)] is positive
and finite. Whenw(x) = xc for a constantc > 0, the distributionF ∗

w is called ‘size-
biased’. We check (see [6]) that in this case the distributionF ∗

w is Ga(γk +c, α), pro-
vided of course thatFXk

isGa(γk, α), as assumed in (3.1). In particular, whenc = 1,

thenX∗
k v Ga(γk + 1, α) and so, in turn,

∑K
j 6=k Xj + X∗

k ∼ Ga
(∑K

j=1 γj + 1, α
)

.

Combining these notes with equations (3.1) and (3.2), and also utilizing the fact that
E[Xk] = γk/α, we have that

E[Xk|S > t] =
γk

α
∑K

j=1 γj

Γ
(∑K

j=1 γj + 1, αt
)

Γ
(∑K

j=1 γj, αt
)(3.3)

=
γk

α
∑K

j=1 γj

R1

(
K∑

j=1

γj, αt

)
,

whereR1 isRc with c = 1. Hence,

(3.4) E[S|S > t] =
1

α
R1

(
K∑

j=1

γj, αt

)
.
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Likewise, we derive the equation

(3.5) E[S∆|S∆ > t] =
1

α
R1

(∑
j∈∆

γj, αt

)
.

To compare the right-hand sides of equations (3.4) and (3.5), we apply Proposition
2.1and arrive at the following corollary.

Corollary 3.2. We have that

(3.6) E[S|S > t] ≥ E[S∆|S∆ > t]

with the strong inequality ‘>’ holding if
∑

j∈ {∆ γj > 0, where{∆ is the complement
of ∆ in {1, . . . , K}.

Inequality (3.6) is intuitive from the actuarial point of view since it implies that
more risks mean higher expected losses.

It is also important to compare the expectationsE[S∆|S > t] andE[S∆|S∆ > t].
Loosely speaking, the former expectation refers to the risk contribution of the risk-
set∆ to the total risk when the risk-set∆ is a part of a portfolio. The expectation
E[S∆|S∆ > t] refers to the risk contribution when the risk-set∆ is a stand-alone
risk. To derive an expression forE[S∆|S > t], we use equation (3.3) and obtain

E[S∆|S > t] =

∑
j∈∆ γj

α
∑K

j=1 γj

R1

(
K∑

j=1

γj, αt

)
(3.7)

=
1

α

(∑
j∈∆

γj

)
Q1

(
K∑

j=1

γj, αt

)
,
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whereQ1 isQc with c = 1. Next we rewrite equation (3.5) in terms of the function
Q1 and have that

(3.8) E[S∆|S∆ > t] =
1

α

(∑
j∈∆

γj

)
Q1

(∑
j∈∆

γj, αt

)
.

Using Proposition2.2, we compare the right-hand sides of equations (3.7) and (3.8),
and obtain the following corollary.

Corollary 3.3. We have

(3.9) E[S∆|S > t] ≤ E[S∆|S∆ > t]

with the strong inequality ‘<’ holding if
∑

j∈ {∆ γj > 0.

Inequality (3.9) means that risks, or their unions, are more ‘dangerous’ when they
stand alone than when being a part of a portfolio.
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