

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 1, Article 33, 2006

A MULTIPLICATIVE EMBEDDING INEQUALITY IN ORLICZ-SOBOLEV SPACES

MARIA ROSARIA FORMICA

DIPARTIMENTO DI STATISTICA E MATEMATICA PER LA RICERCA ECONOMICA UNIVERSITÀ DEGLI STUDI DI NAPOLI "PARTHENOPE", VIA MEDINA 40 80133 NAPOLI (NA) - ITALY mara.formica@uniparthenope.it

> Received 24 November, 2005; accepted 28 November, 2005 Communicated by A. Fiorenza

ABSTRACT. We prove an Orlicz type version of the multiplicative embedding inequality for Sobolev spaces.

Key words and phrases: Orlicz spaces, Sobolev embedding theorem, Orlicz-Sobolev spaces.

2000 Mathematics Subject Classification. 46E35, 26D15, 46E30.

1. INTRODUCTION AND PRELIMINARY RESULTS

Let Ω be a non-empty bounded open set in \mathbb{R} , n > 1 and let $1 \le p < n$. The most important result of Sobolev space theory is the well-known *Sobolev imbedding theorem* (see e.g. [1]), which - in the case of functions vanishing on the boundary - gives an estimate of the norm in the Lebesgue space $L^q(\Omega)$, q = np/(n-p) of a function u in the Sobolev space $W_0^{1,p}(\Omega)$, in terms of its $W_0^{1,p}(\Omega)$ -norm. Such an estimate, due to Gagliardo and Nirenberg ([6], [12]) can be stated in the following multiplicative form (see e.g. [4], [10]).

Theorem 1.1. Let Ω be a non-empty bounded open set in \mathbb{R} , n > 1 and let $1 \le p < n$. Let $u \in W_0^{1,p}(\Omega) \bigcap L^r(\Omega)$ for some $r \ge 1$. If q lies in the closed interval bounded by the numbers r and np/(n-p), then the following inequality holds

(1.1)
$$||u||_q \le c ||Du|||_p^{\theta} ||u||_r^{1-\theta},$$

where

$$\theta = \frac{\frac{1}{r} - \frac{1}{q}}{\frac{1}{n} - \frac{1}{p} + \frac{1}{r}} \in [0, 1]$$

and

$$c = c(n, p, \theta) = \left[\frac{p(n-1)}{n-p}\right]^{\theta}.$$

ISSN (electronic): 1443-5756

^{© 2006} Victoria University. All rights reserved.

³⁴⁷⁻⁰⁵

The constant $c = c(n, p, \theta)$ is not optimal (see [16], [7] for details).

The goal of this paper is to provide an Orlicz version of inequality (1.1), in which the role of the parameter θ is played by a certain concave function. Our approach uses a generalized Hölder inequality proved in [8] (see Lemma 1.2 below).

We summarize some basic facts of Orlicz space theory; we refer the reader to Krasnosel'skiĭ and Rutickiĭ [9], Maligranda [11], or Rao and Ren [14] for further details.

A function $A : [0, \infty) \to [0, \infty)$ is an N-function if it is continuous, convex and strictly increasing, and if A(0) = 0, $A(t)/t \to 0$ as $t \to 0$, $A(t)/t \to +\infty$ as $t \to +\infty$.

If A, B are N-functions (in the following we will adopt the next symbol for the inverse function of N-functions, too), we write $A(t) \approx B(t)$ if there are constants $c_1, c_2 > 0$ such that $c_1A(t) \leq B(t) \leq c_2A(t)$ for all t > 0. Also, we say that B dominates A, and denote this by $A \leq B$, if there exists c > 0 such that for all t > 0, $A(t) \leq B(ct)$. If this is true for all $t \geq t_0 > 0$, we say that $A \leq B$ near infinity.

An N-function A is said to be doubling if there exists a positive constant c such that $A(2t) \leq cA(t)$ for all t > 0; A is called submultiplicative if $A(st) \leq cA(s)A(t)$ for all s, t > 0. Clearly $A(t) = t^r$, $r \geq 1$, is submultiplicative. A straightforward computation shows that $A(t) = t^a [\log(e+t)]^b$, $a \geq 1$, b > 0, is also submultiplicative.

Given an N-function A, the Orlicz space $L_A(\Omega)$ is the Banach space of Lebesgue measurable functions f such that $A(|f|/\lambda)$ is (Lebesgue) integrable on A for some $\lambda > 0$. It is equipped with the Luxemburg norm $||f||_A = \inf \left\{ \lambda > 0 : \int_{\Omega} A\left(\frac{|f|}{\lambda}\right) dx \le 1 \right\}$. If $A \preceq B$ near infinity then there exists a constant c, depending on A and B, such that for all

If $A \leq B$ near infinity then there exists a constant c, depending on A and B, such that for all functions f,

(1.2)
$$||f||_A \le c ||f||_B.$$

This follows from the standard embedding theorem which shows that $L_B(\Omega) \subset L_A(\Omega)$.

Given an N-function A, the complementary N-function \overline{A} is defined by

$$\hat{A}(t) = \sup_{s>0} \{st - A(s)\}, \quad t \ge 0.$$

The N-functions A and \hat{A} satisfy the following inequality (see e.g. [1, (7) p. 230]):

(1.3)
$$t \le A^{-1}(t)\tilde{A}^{-1}(t) \le 2t.$$

The Hölder's inequality in Orlicz spaces reads as

$$\int_{\Omega} |fg| \, dx \le 2 \|f\|_A \|g\|_{\widetilde{A}}.$$

We will need the following generalization of Hölder's inequality to Orlicz spaces due to Hogan, Li, McIntosh, Zhang [8] (see also [3] and references therein).

Lemma 1.2. If A, B and C are N-functions such that for all t > 0,

$$B^{-1}(t)C^{-1}(t) \le A^{-1}(t),$$

then

$$||fg||_A \le 2||f||_B ||g||_C.$$

If A is an N-function, let us denote by $W^{1,A}(\Omega)$ the space of all functions in $L^A(\Omega)$ such that the distributional partial derivatives belong to $L^A(\Omega)$, and by $W_0^{1,A}(\Omega)$ the closure of the $C_0^{\infty}(\Omega)$ functions in this space. Such spaces are well-known in the literature as *Orlicz-Sobolev* spaces (see e.g. [1]) and share various properties of the classical Sobolev spaces. References for main properties and applications are for instance [5] and [15].

If $u \in W_0^{1,A}(\Omega)$ and

$$\int_{1}^{\infty} \frac{\tilde{A}(s)}{s^{n'+1}} ds = +\infty, \qquad n' = n/(n-1)$$

then the continuous embedding inequality

(1.4)
$$||u||_{A^*} \le c ||Du|||_A$$

holds, where A^* is the so-called *Sobolev conjugate* of A, defined in [1], and c is a positive constant depending only on A and n. In the following it will be not essential, for our purposes, to know the exact expression of A^* . However, we stress here that one could consider the *best* function A^* such that inequality (1.4) holds (see [2], [13] for details).

In the sequel we will need the following definition.

Definition 1.1. Given an N-function A, define the function h_A by

$$h_A(s) = \sup_{t>0} \frac{A(st)}{A(t)}, \qquad 0 \le s < \infty.$$

Remark 1.3. The function h_A could be infinite if s > 1, but if A is doubling then it is finite for all $0 < s < \infty$ (see Maligranda [11, Theorem 11.7]). If A is submultiplicative then $h_A \approx A$. More generally, given any A, for all $s, t \ge 0$, $A(st) \le h_A(s)A(t)$.

The property of the function h_A which will play a role in the following is that it can be inverted, in fact the following lemma holds.

Lemma 1.4. If A is a doubling N-function then h_A is nonnegative, submultiplicative, strictly increasing in $[0, \infty)$ and $h_A(1) = 1$.

For the (easy) proof see [3, Lemma 3.1] or [11, p. 84].

2. THE MAIN RESULT

We will begin by proving two auxiliary results. The first one concerns two functions that we call K = K(t) and H = H(t): they are a way to "measure", in the final multiplicative inequality, how far the right hand side is with respect to the norms of u and of |Du|. In the standard case it is $K(t) = t^{\theta}$, $0 \le \theta \le 1$ and $H(t) = t^{1-\theta}$.

Lemma 2.1. Let $K \in C([0, +\infty[) \cap C^2(]0, +\infty[) be:$

- a positive, constant function, or

- $K(t) = \alpha t$ for some $\alpha > 0$, or

- the inverse function of an N-function which is doubling together with its complementary N-function.

Then the function $H : [0, +\infty[\rightarrow [0, +\infty[$ defined by

$$H(t) = \begin{cases} \frac{t}{K(t)} & \text{if } t > 0\\ \lim_{t \to 0} \frac{t}{K(t)} & \text{if } t = 0 \end{cases}$$

belongs to $C([0, +\infty[) \cap C^2(]0, +\infty[))$, and is:

- a positive, constant function, or - $H(t) = \beta t$ for some $\beta > 0$, or - is equivalent to the inverse function of an N-function which is doubling together with its complementary N-function.

Proof. In the first two possibilities for K the statement is easy to prove. If K is the inverse of a doubling N-function A, it is sufficient to observe that from inequality (1.3) it is $H \approx \tilde{A}^{-1}$. \Box

Lemma 2.2. Let Φ be an *N*-function, and let *F* be a doubling *N*-function such that $\Phi \circ F^{-1}$ is an *N*-function. The following inequality holds for every $u \in L^{\Phi}(\Omega)$:

(2.1)
$$||u||_{\Phi} \leq \xi_{F^{-1}}(||F \circ |u|||_{\Phi \circ F^{-1}}),$$

where $\xi_{F^{-1}}$ is the increasing function defined by

(2.2)
$$\xi_{F^{-1}}(\mu) = \frac{1}{h_F^{-1}\left(\frac{1}{\mu}\right)} \quad \forall \mu > 0.$$

Proof. By definition of h_F (see Definition 1.1; note that by the assumption that F is doubling, h_F is everywhere finite, see Remark 1.3) we have

$$F(s)h_F(t) \ge F(st) \qquad \forall s, t > 0$$

and therefore

$$sh_F(t) \ge F(F^{-1}(s)t) \qquad \forall s, t > 0,$$

(2.3)
$$F^{-1}(sh_F(t)) \ge F^{-1}(s)t \quad \forall s, t > 0.$$

Setting

$$\mu = \mu(\lambda) = \frac{1}{h_F\left(\frac{1}{\lambda}\right)}$$

it is

$$\lambda = \frac{1}{h_F^{-1}\left(\frac{1}{\mu}\right)} := \xi_{F^{-1}}(\mu),$$

therefore from inequality (2.3), for $t = \frac{1}{\lambda}$ and s = F(|u|), taking into account that $\xi_{F^{-1}}$ is increasing, we have

$$\begin{aligned} \|u\|_{\Phi} &= \inf\left\{\lambda > 0 \ : \int_{\Omega} \Phi\left(\frac{|u|}{\lambda}\right) dx \le 1\right\} \\ &= \inf\left\{\lambda > 0 \ : \int_{\Omega} \Phi\left(\frac{F^{-1}(F(|u|))}{\lambda}\right) dx \le 1\right\} \\ &\le \inf\left\{\lambda > 0 \ : \int_{\Omega} \Phi\left(F^{-1}\left(F(|u|)h_{F}\left(\frac{1}{\lambda}\right)\right)\right) dx \le 1\right\} \\ &= \inf\left\{\xi_{F^{-1}}(\mu) > 0 \ : \int_{\Omega} \Phi\left(F^{-1}\left(\frac{F(|u|)}{\mu}\right)\right) dx \le 1\right\} \\ &= \xi_{F^{-1}}\left(\inf\left\{\mu > 0 \ : \int_{\Omega} \Phi\left(F^{-1}\left(\frac{F(|u|)}{\mu}\right)\right) dx \le 1\right\}\right) \\ &= \xi_{F^{-1}}(\|F \circ |u\|\|_{\Phi \circ F^{-1}}) \end{aligned}$$

We can prove now the main theorem of the paper. The symbol ξ_K which appears in the statement is the function considered in Lemma 2.2, defined in equation (2.2). However, since this symbol is used for any function K considered in Lemma 2.1, we agree to denote

$$\xi_K(\mu) := 1 \quad \forall \mu \ge 0 \quad \text{if} \quad K \text{ is constant}$$

and

$$\xi_K(\mu) := \mu \quad \forall \mu \ge 0 \qquad \text{if} \qquad K(t) = \alpha t \text{ for some } \alpha > 0.$$

The same conventions will be adopted for the symbol ξ_H . Note that from Lemma 2.1 we know that H is *equivalent* to the inverse of a doubling N-function, let us call it B^{-1} . We will agree to denote still by ξ_H the function that we should denote by $\xi_{B^{-1}}$. This convention does not create ambiguities because if $B \approx C$ then $h_B \approx h_C$ and $\xi_{B^{-1}} \approx \xi_{C^{-1}}$, therefore ξ_H is well defined up to a multiplicative positive constant.

Theorem 2.3. Let Ω be a non-empty bounded open set in \mathbb{R} , n > 1 and let P be an N-function satisfying

$$\int_{1}^{\infty} \frac{\tilde{P}(s)}{s^{n'+1}} \, ds = +\infty, \qquad n' = n/(n-1).$$

Let $u \in W_0^{1,P}(\Omega) \bigcap L^R(\Omega)$ for some N-function R. If Q is an N-function such that

(2.4)
$$K((P^*)^{-1}(s)) \cdot H(R^{-1}(s)) \le Q^{-1}(s) \quad \forall s > 0$$

then the following inequality holds

(2.5)
$$||u||_Q \le \xi_K(c|||Du|||_P)\xi_H(||u||_R),$$

where K and H are functions as in Lemma 2.1 and c is a constant depending only on n, P, K.

Proof. Let K and H be functions as in Lemma 2.1. If K is a positive, constant function or $K(t) = \alpha t$ for some $\alpha > 0$, then the statement reduces respectively to a direct consequence of inequality (1.2) (with A and B replaced respectively by Q and R) or to inequality (1.4) (with A replaced by P). We may therefore assume in the following that K is the inverse function of an N-function which is doubling together with its complementary N-function. Let

$$\Phi_1 = P^* \circ K^{-1} \qquad \Phi_2 = R \circ H^{-1}.$$

It is easy to verify that Φ_1 and Φ_2 are N-functions. By assumption (2.4) and Lemma 1.2 we have

(2.6)
$$\|u\|_Q = \|K(u)H(u)\|_Q \le \|K(u)\|_{\Phi_1} \|H(u)\|_{\Phi_2}.$$

By inequality (2.1),

(2.7)
$$||K(u)||_{\Phi_1} \le \xi_K(||u||_{\Phi_1 \circ K}) = \xi_K(||u||_{P^*}) \le \xi_K(c|||Du|||_P),$$

where c is a positive constant depending on n and P only. On the other hand,

(2.8)
$$\|H(u)\|_{\Phi_2} \le \xi_H(\|u\|_{\Phi_2 \circ H}) = \xi_H(\|u\|_R).$$

From inequalities (2.6), (2.7), (2.8), we get the inequality (2.5) and the theorem is therefore proved. \Box

We remark that the natural choice of powers for P, Q, R, K, H reduce Theorem 2.3 to Theorem 1.1 (in Theorem 2.3 also the case p = n is allowed); on the other hand, if inequality (2.5) allows growths of ξ_K different power types, in general it is not true that $\xi_K(t)\xi_H(t) = t$, and this is the "price" to pay for the major "freedom" given to the growth K.

REFERENCES

- [1] R.A. ADAMS, Sobolev Spaces, Academic Press, New York 1975.
- [2] A. CIANCHI, Some results in the theory of Orlicz spaces and applications to variational problems, *Nonlinear Analysis, Function Spaces and Applications, Vol. 6*, (M. Krbec and A. Kufner eds.), Proceedings of the Spring School held in Prague (1998) (Prague), Acad. Sci. Czech Rep., (1999), 50–92.
- [3] D. CRUZ-URIBE, SFO AND A. FIORENZA, The A_{∞} property for Young functions and weighted norm inequalities, *Houston J. Math.*, **28** (2002), 169–182.
- [4] E. DiBENEDETTO, Real Analysis, Birkhäuser, Boston 2002.
- [5] T.K. DONALDSON AND N.S. TRUDINGER Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal., 8 (1971), 52–75.
- [6] E. GAGLIARDO, Proprietà di alcune funzioni in *n* variabili, *Ricerche Mat.*, 7 (1958), 102–137.
- [7] D. GILBARG AND N.S. TRUDINGER, *Elliptic Partial Differential Equations of Second Order*, 2nd Ed., Grundlehren der mathematischen Wissenschaften, **224**, Springer-Verlag, Berlin 1983.
- [8] J. HOGAN, C. LI, A. McINTOSH AND K. ZHANG, Global higher integrability of Jacobians on bounded domains, *Ann. Inst. Henri Poincaré, Analyse non linéaire*, **17**(2) (2000), 193–217.
- [9] M.A. KRASNOSEL'SKI AND YA.B. RUTICKII, *Convex Functions and Orlicz Spaces*, P. Noordhoff, Groningen 1961.
- [10] O.A. LADYZHENSKAYA AND N.N. URAL'CEVA, *Linear and Quasilinear Elliptic Equations*, Academic Press, New York 1968.
- [11] L. MALIGRANDA, *Orlicz spaces and interpolation*, Seminars in Mathematics 5, IMECC, Universidad Estadual de Campinas, Campinas, Brazil 1989.
- [12] L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 3(13) (1959), 115–162.
- [13] L. PICK, Optimal Sobolev embeddings, *Nonlinear Analysis, Function Spaces and Applications*, 6, (M. Krbec and A. Kufner eds.), Proceedings of the Spring School held in Prague (1998) (Prague), *Acad. Sci. Czech Rep.*, (1999), 156–199.
- [14] M.M. RAO AND Z.D. REN, *Theory of Orlicz Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, **146** Marcel Dekker, New York 1991.
- [15] M.M. RAO AND Z.D. REN, *Applications of Orlicz Spaces*, Monographs and Textbooks in Pure and Applied Mathematics, **250** Marcel Dekker, New York 2002.
- [16] G. TALENTI, Best constants in Sobolev inequalities, Ann. Mat. Pura Appl., 110 (1976), 353–372.