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ABSTRACT. We prove an Orlicz type version of the multiplicative embedding inequality for
Sobolev spaces.

Key words and phrases:Orlicz spaces, Sobolev embedding theorem, Orlicz-Sobolev spaces.

2000Mathematics Subject Classification.46E35, 26D15, 46E30.

1. I NTRODUCTION AND PRELIMINARY RESULTS

Let Ω be a non-empty bounded open set inR, n > 1 and let1 ≤ p < n. The most important
result of Sobolev space theory is the well-knownSobolev imbedding theorem(see e.g. [1]),
which - in the case of functions vanishing on the boundary - gives an estimate of the norm in
the Lebesgue spaceLq(Ω), q = np/(n − p) of a functionu in the Sobolev spaceW 1,p

0 (Ω), in
terms of itsW 1,p

0 (Ω)-norm. Such an estimate, due to Gagliardo and Nirenberg ([6], [12]) can
be stated in the following multiplicative form (see e.g. [4], [10]).

Theorem 1.1. Let Ω be a non-empty bounded open set inR, n > 1 and let1 ≤ p < n. Let
u ∈ W 1,p

0 (Ω)
⋂

Lr(Ω) for somer ≥ 1. If q lies in the closed interval bounded by the numbers
r andnp/(n− p), then the following inequality holds

(1.1) ‖u‖q ≤ c‖|Du|‖θ
p‖u‖1−θ

r ,

where

θ =

1
r
− 1

q

1
n
− 1

p
+ 1

r

∈ [0, 1]

and

c = c(n, p, θ) =

[
p(n− 1)

n− p

]θ

.
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The constantc = c(n, p, θ) is not optimal (see [16], [7] for details).
The goal of this paper is to provide an Orlicz version of inequality (1.1), in which the role

of the parameterθ is played by a certain concave function. Our approach uses a generalized
Hölder inequality proved in [8] (see Lemma 1.2 below).

We summarize some basic facts of Orlicz space theory; we refer the reader to Krasnosel’skiı̆
and Rutickĭı [9], Maligranda [11], or Rao and Ren [14] for further details.

A function A : [0,∞) → [0,∞) is anN -function if it is continuous, convex and strictly
increasing, and ifA(0) = 0, A(t)/t → 0 ast → 0, A(t)/t → +∞ ast → +∞.

If A, B are N -functions (in the following we will adopt the next symbol for the inverse
function ofN -functions, too), we writeA(t) ≈ B(t) if there are constantsc1, c2 > 0 such that
c1A(t) ≤ B(t) ≤ c2A(t) for all t > 0. Also, we say thatB dominatesA, and denote this
by A � B, if there existsc > 0 such that for allt > 0, A(t) ≤ B(ct). If this is true for all
t ≥ t0 > 0, we say thatA � B near infinity.

An N -functionA is said to be doubling if there exists a positive constantc such thatA(2t) ≤
cA(t) for all t > 0; A is called submultiplicative ifA(st) ≤ cA(s)A(t) for all s, t > 0.
Clearly A(t) = tr, r ≥ 1, is submultiplicative. A straightforward computation shows that
A(t) = ta[log(e + t)]b, a ≥ 1, b > 0, is also submultiplicative.

Given anN−function A, the Orlicz spaceLA(Ω) is the Banach space of Lebesgue mea-
surable functionsf such thatA(|f |/λ) is (Lebesgue) integrable onA for someλ > 0. It is

equipped with the Luxemburg norm‖f‖A = inf
{

λ > 0 :
∫

Ω
A

(
|f |
λ

)
dx ≤ 1

}
.

If A � B near infinity then there exists a constantc, depending onA andB, such that for all
functionsf ,

(1.2) ‖f‖A ≤ c‖f‖B.

This follows from the standard embedding theorem which shows thatLB(Ω) ⊂ LA(Ω).
Given anN -functionA, the complementaryN -functionÃ is defined by

Ã(t) = sup
s>0

{st− A(s)}, t ≥ 0.

TheN -functionsA andÃ satisfy the following inequality (see e.g. [1, (7) p. 230]):

(1.3) t ≤ A−1(t)Ã−1(t) ≤ 2t.

The Hölder’s inequality in Orlicz spaces reads as∫
Ω

|fg| dx ≤ 2‖f‖A‖g‖Ã.

We will need the following generalization of Hölder’s inequality to Orlicz spaces due to Hogan,
Li, McIntosh, Zhang [8] (see also [3] and references therein).

Lemma 1.2. If A, B andC areN−functions such that for allt > 0,

B−1(t)C−1(t) ≤ A−1(t),

then
‖fg‖A ≤ 2‖f‖B‖g‖C .

If A is anN−function, let us denote byW 1,A(Ω) the space of all functions inLA(Ω) such
that the distributional partial derivatives belong toLA(Ω), and byW 1,A

0 (Ω) the closure of the
C∞0 (Ω) functions in this space. Such spaces are well-known in the literature asOrlicz-Sobolev
spaces (see e.g. [1]) and share various properties of the classical Sobolev spaces. References
for main properties and applications are for instance [5] and [15].
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If u ∈ W 1,A
0 (Ω) and ∫ ∞

1

Ã(s)

sn′+1
ds = +∞, n′ = n/(n− 1)

then the continuous embedding inequality

(1.4) ‖u‖A∗ ≤ c ‖|Du|‖A

holds, whereA∗ is the so-calledSobolev conjugateof A, defined in [1], andc is a positive
constant depending only onA andn. In the following it will be not essential, for our purposes,
to know the exact expression ofA∗. However, we stress here that one could consider thebest
functionA∗ such that inequality (1.4) holds (see [2], [13] for details).

In the sequel we will need the following definition.

Definition 1.1. Given anN−functionA, define the functionhA by

hA(s) = sup
t>0

A(st)

A(t)
, 0 ≤ s < ∞.

Remark 1.3. The functionhA could be infinite ifs > 1, but if A is doubling then it is finite for
all 0 < s < ∞ (see Maligranda [11, Theorem 11.7]). IfA is submultiplicative thenhA ≈ A.
More generally, given anyA, for all s, t ≥ 0, A(st) ≤ hA(s)A(t).

The property of the functionhA which will play a role in the following is that it can be
inverted, in fact the following lemma holds.

Lemma 1.4. If A is a doublingN−function thenhA is nonnegative, submultiplicative, strictly
increasing in[0,∞) andhA(1) = 1.

For the (easy) proof see [3, Lemma 3.1] or [11, p. 84].

2. THE M AIN RESULT

We will begin by proving two auxiliary results. The first one concerns two functions that
we call K = K(t) andH = H(t): they are a way to “measure”, in the final multiplicative
inequality, how far the right hand side is with respect to the norms ofu and of |Du|. In the
standard case it isK(t) = tθ, 0 ≤ θ ≤ 1 andH(t) = t1−θ.

Lemma 2.1. LetK ∈ C([0, +∞[)
⋂
C2(]0, +∞[) be:

- a positive, constant function,
or
- K(t) = αt for someα > 0,
or
- the inverse function of anN−function which is doubling together with its complementary

N−function.
Then the functionH : [0, +∞[→ [0, +∞[ defined by

H(t) =


t

K(t)
if t > 0

lim
t→0

t
K(t)

if t = 0

belongs toC([0, +∞[)
⋂
C2(]0, +∞[), and is:

- a positive, constant function,
or
- H(t) = βt for someβ > 0,
or
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- is equivalent to the inverse function of anN−function which is doubling together with its
complementaryN−function.

Proof. In the first two possibilities forK the statement is easy to prove. IfK is the inverse of a
doublingN -functionA, it is sufficient to observe that from inequality (1.3) it isH ≈ Ã−1. �

Lemma 2.2. LetΦ be anN−function, and letF be a doublingN−function such thatΦ ◦ F−1

is anN−function. The following inequality holds for everyu ∈ LΦ(Ω):

(2.1) ‖u‖Φ ≤ ξF−1(‖F ◦ |u|‖Φ◦F−1),

whereξF−1 is the increasing function defined by

(2.2) ξF−1(µ) =
1

h−1
F

(
1
µ

) ∀µ > 0.

Proof. By definition ofhF (see Definition 1.1; note that by the assumption thatF is doubling,
hF is everywhere finite, see Remark 1.3) we have

F (s)hF (t) ≥ F (st) ∀ s, t > 0

and therefore

shF (t) ≥ F (F−1(s)t) ∀ s, t > 0,

(2.3) F−1(shF (t)) ≥ F−1(s)t ∀ s, t > 0.

Setting

µ = µ(λ) =
1

hF

(
1
λ

)
it is

λ =
1

h−1
F

(
1
µ

) := ξF−1(µ),

therefore from inequality (2.3), fort = 1
λ

ands = F (|u|), taking into account thatξF−1 is
increasing, we have

‖u‖Φ = inf

{
λ > 0 :

∫
Ω

Φ

(
|u|
λ

)
dx ≤ 1

}
= inf

{
λ > 0 :

∫
Ω

Φ

(
F−1(F (|u|))

λ

)
dx ≤ 1

}
≤ inf

{
λ > 0 :

∫
Ω

Φ

(
F−1

(
F (|u|)hF

(
1

λ

)))
dx ≤ 1

}
= inf

{
ξF−1(µ) > 0 :

∫
Ω

Φ

(
F−1

(
F (|u|)

µ

))
dx ≤ 1

}
= ξF−1

(
inf

{
µ > 0 :

∫
Ω

Φ

(
F−1

(
F (|u|)

µ

))
dx ≤ 1

})
= ξF−1(‖F ◦ |u|‖Φ◦F−1)

�

J. Inequal. Pure and Appl. Math., 7(1) Art. 33, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


MULTIPLICATIVE INEQUALITY 5

We can prove now the main theorem of the paper. The symbolξK which appears in the
statement is the function considered in Lemma 2.2, defined in equation (2.2). However, since
this symbol is used for any functionK considered in Lemma 2.1, we agree to denote

ξK(µ) := 1 ∀µ ≥ 0 if K is constant

and
ξK(µ) := µ ∀µ ≥ 0 if K(t) = αt for someα > 0.

The same conventions will be adopted for the symbolξH . Note that from Lemma 2.1 we know
thatH is equivalentto the inverse of a doublingN−function, let us call itB−1. We will agree to
denote still byξH the function that we should denote byξB−1. This convention does not create
ambiguities because ifB ≈ C thenhB ≈ hC andξB−1 ≈ ξC−1, thereforeξH is well defined up
to a multiplicative positive constant.

Theorem 2.3.LetΩ be a non-empty bounded open set inR, n > 1 and letP be anN−function
satisfying ∫ ∞

1

P̃ (s)

sn′+1
ds = +∞, n′ = n/(n− 1).

Letu ∈ W 1,P
0 (Ω)

⋂
LR(Ω) for someN−functionR. If Q is anN−function such that

(2.4) K((P ∗)−1(s)) ·H(R−1(s)) ≤ Q−1(s) ∀s > 0

then the following inequality holds

(2.5) ‖u‖Q ≤ ξK(c‖|Du|‖P )ξH(‖u‖R),

whereK andH are functions as in Lemma 2.1 andc is a constant depending only onn, P, K.

Proof. Let K andH be functions as in Lemma 2.1. IfK is a positive, constant function or
K(t) = αt for someα > 0, then the statement reduces respectively to a direct consequence of
inequality (1.2) (withA andB replaced respectively byQ andR) or to inequality (1.4) (withA
replaced byP ). We may therefore assume in the following thatK is the inverse function of an
N−function which is doubling together with its complementaryN−function. Let

Φ1 = P ∗ ◦K−1 Φ2 = R ◦H−1.

It is easy to verify thatΦ1 andΦ2 areN−functions. By assumption (2.4) and Lemma 1.2 we
have

(2.6) ‖u‖Q = ‖K(u)H(u)‖Q ≤ ‖K(u)‖Φ1 ‖H(u)‖Φ2 .

By inequality (2.1),

(2.7) ‖K(u)‖Φ1 ≤ ξK(‖u‖Φ1◦K) = ξK(‖u‖P ∗) ≤ ξK(c‖|Du|‖P ),

wherec is a positive constant depending onn andP only. On the other hand,

(2.8) ‖H(u)‖Φ2 ≤ ξH(‖u‖Φ2◦H) = ξH(‖u‖R).

From inequalities (2.6), (2.7), (2.8), we get the inequality (2.5) and the theorem is therefore
proved. �

We remark that the natural choice of powers forP, Q, R,K,H reduce Theorem 2.3 to Theo-
rem 1.1 (in Theorem 2.3 also the casep = n is allowed); on the other hand, if inequality (2.5)
allows growths ofξK different power types, in general it is not true thatξK(t)ξH(t) = t, and
this is the “price” to pay for the major “freedom” given to the growthK.
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