

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 7, Issue 1, Article 29, 2006

SOME NEW INEQUALITIES FOR THE GAMMA, BETA AND ZETA FUNCTIONS

A.McD. MERCER

DEPARTMENT OF MATHEMATICS AND STATISTICS
UNIVERSITY OF GUELPH
GUELPH, ONTARIO K8N 2W1
CANADA.

amercer@reach.net

Received 04 November, 2005; accepted 13 November, 2005 Communicated by P.S. Bullen

ABSTRACT. An inequality involving a positive linear operator acting on the composition of two continuous functions is presented. This inequality leads to new inequalities involving the Beta, Gamma and Zeta functions and a large family of functions which are Mellin transforms.

Key words and phrases: Gamma functions, Beta functions, Zeta functions, Mellin transforms.

 $2000\ \textit{Mathematics Subject Classification.}\ \ 26D15,\ 33B15.$

1. Introduction

Let I be the interval (0,1) or $(0,+\infty)$ and let f and g be functions which are strictly increasing, strictly positive and continuous on I. To fix ideas, we shall suppose that $f(x) \to 0$ and $g(x) \to 0$ as $x \to 0+$. Suppose also that f/g is strictly increasing.

Let L be a positive linear functional defined on a subspace $C^*(I) \subset C(I)$; see Note below. Supposing that $f, g \in C^*(I)$, define the function ϕ by

$$\phi = g \frac{L(f)}{L(g)}.$$

Next, let F be defined on the ranges of f and g so that the compositions F(f) and F(g) each belong to $C^*(I)$.

Note. In our applications the functional L will involve an integral over the interval I, and so that L will be well-defined, it is necessary to require extra end conditions to be satisfied by the members of C(I). The subspace arrived at in this way will be denoted by $C^*(I)$ and this will be the domain of L.

The subspace $C^*(I)$ may vary from case to case but, for technical reasons, it will always be supposed that the functions e_k , where $e_k(x) = x^k$ (k = 0, 1, 2), are in $C^*(I)$.

Our object is to prove the results:

ISSN (electronic): 1443-5756

© 2006 Victoria University. All rights reserved.

2 A.McD. MERCER

Theorem 1.1.

(a) If F is convex then

$$(1.2a) L[F(f)] \ge L[F(\phi)].$$

(b) *If F is concave then*

$$(1.2b) L[F(f)] \le L[F(\phi)].$$

Clearly it is sufficient to consider only (1.2a) and, prior to Section 3 where we present our applications, we shall proceed with this understanding.

In the note [1] this result was proved for the case in which I was [0,1], g(x) was x, and F was differentiable but it has since been realised that the more general results of the present theorem are a source of interesting inequalities involving the Gamma, Beta and Zeta functions.

The method of proof in [1] could possibly be adapted to the present case but, instead, we shall give a proof which is entirely different. As well as using the more general g(x) it allows the less stringent hypothesis that F is merely convex and deals with intervals other than [0,1]. We also believe that this proof is of some interest in its own right.

2. PROOFS

First, we need the following lemma:

Lemma 2.1.

(2.1)
$$L(f^2) - L(\phi^2) \ge 0.$$

Proof. It is seen from (1.1) that

$$L(f) - L(\phi) = 0.$$

Since L is positive, this negates the possibility that

$$f(x) - \phi(x) > 0$$
 or $f(x) - \phi(x) < 0$ for all $x \in I$.

Hence $f - \phi$ changes sign in I and since

$$f - \phi = f - g \frac{L(f)}{L(g)}$$

and

$$\frac{f}{g}$$
 is strictly increasing in I ,

this change of sign is from - to +.

We suppose that the change of sign occurs at $x = \gamma$ and that $f(\gamma) = \phi(\gamma) = K$ (say). Since $f - \phi$ is non-negative on $x \ge \gamma$ and $f + \phi \ge 2K$ there, then

$$(f - \phi)(f + \phi) \ge 2K(f - \phi)$$
 on $x \ge \gamma$.

Since $f - \phi$ is negative on $x < \gamma$ and $f + \phi < 2K$ there then

$$(f-\phi)(f+\phi) > 2K(f-\phi)$$
 on $x < \gamma$.

Hence

$$f^2 - \phi^2 = (f - \phi)(f + \phi) \ge 2K(f - \phi)$$
 on *I*.

Applying L we get the result of the lemma.

Proof of the theorem (part (a)). Let us introduce the functional Λ defined on $C^*(I)$ by

$$\Lambda(G) = L[G(f)] - L[G(\phi)],$$

in which f and ϕ are fixed. It is easily seen that Λ is a continuous linear functional.

According to the theorem, we will be interested in those F for which $F \in S$ where S is the subset of $C^*(I)$ consisting of continuous convex functions.

Now the set S is itself convex and closed so that the maximum and/or minimum values of Λ , when acting on S, will be taken in its set of extreme points, say Ext(S).

But

$$Ext(S) = \{Ae_0 + Be_1\},\$$

where $e_k(x) = x^k$ (k = 0, 1, 2).

Now

$$\Lambda(e_0) = L[e_0(f)] - L[e_0(\phi)] = L(1) - L(1) = 0$$

$$\Lambda(e_1) = L[e_1(f)] - L[e_1(\phi)] = L(f) - L(\phi) = 0 \quad \text{by (1.1)}$$

so that zero is the (unique) extreme value of Λ .

Next

$$\Lambda(e_2) = L[e_2(f)] - L[e_2(\phi)] = L(f^2) - L(\phi^2) \ge 0$$
 by (2.1)

so this extreme value is a minimum. That is to say that

$$\Lambda(F) = L[F(f)] - L[F(\phi)] \ge 0 \text{ for all } F \in S$$

and this concludes the proof of the theorem.

3. Preparation for the Applications

In (1.2a) and (1.2b) take

$$F(u) = u^{\alpha}$$

which is convex if $(\alpha < 0 \text{ or } \alpha > 1)$ and concave if $0 < \alpha < 1$. So now we have

$$L(f^{\alpha}) \geq L(\phi^{\alpha})$$

with \geq (upper and lower) respectively, in the cases 'convex', 'concave'. There is equality in case $\alpha=0$ or $\alpha=1$.

Substituting for ϕ this reads:

(3.1)
$$\frac{[L(g)]^{\alpha}}{L(g^{\alpha})} \geqslant \frac{[L(f)]^{\alpha}}{L(f^{\alpha})}.$$

Finally, take

$$f(x) = x^{\beta}$$
 and $g(x) = x^{\delta}$ with $\beta > \delta > 0$.

Then (3.1) becomes (using incorrect, but simpler, notation):

(3.2)
$$\frac{[L(x^{\delta})]^{\alpha}}{L(x^{\alpha\delta})} \geqslant \frac{[L(x^{\beta})]^{\alpha}}{L(x^{\alpha\beta})}.$$

The inequality (3.2) is the source of our various examples.

4. APPLICATIONS

Note. To avoid repetition in the examples below (except at (4.8)) it is to be understood that \geq correspond to the cases ($\alpha < 0$ or $\alpha > 1$) and ($0 < \alpha < 1$) respectively. There will be equality if $\alpha = 0$ or 1. Furthermore, it will always be the case that $\beta > \delta > 0$.

4.1. **The Gamma function.** Referring back to the Note in the Introduction, the subspace $C^*(I)$ for this application is obtained from C(I) by requiring its members to satisfy:

(i)
$$w(x) = O(x^{\theta})$$
 (for any $\theta > -1$) as $x \to 0$

(ii)
$$w(x) = O(x^{\varphi})$$
 (for any finite φ) as $x \to +\infty$.

Then we define

$$L(w) = \int_0^\infty w(x)e^{-x}dx.$$

In this case (3.2) gives:

(4.1)
$$\frac{[\Gamma(1+\delta)]^{\alpha}}{\Gamma(1+\alpha\delta)} \geqslant \frac{[\Gamma(1+\beta)]^{\alpha}}{\Gamma(1+\alpha\beta)}$$

in which, $\alpha\beta > -1$ and $\alpha\delta > -1$.

In [2] this result was obtained partially in the form

$$\frac{[\Gamma(1+y)]^n}{\Gamma(1+ny)} > \frac{[\Gamma(1+x)]^n}{\Gamma(1+nx)},$$

where $1 \ge x > y > 0$ and n = 2, 3,

Then, in [3] this was improved to

$$\frac{[\Gamma(1+y)]^{\alpha}}{\Gamma(1+\alpha y)} > \frac{[\Gamma(1+x)]^{\alpha}}{\Gamma(1+\alpha x)},$$

where $1 \ge x > y > 0$ and $\alpha > 1$.

The methods used in [2] and [3] to obtain these results are quite different from that used here.

4.2. **The Beta function.** The subspace $C^*(I)$ for this application is obtained from C(I) by requiring its members to satisfy:

$$w(x) = O(x^{\theta})$$
 (for any $\theta > -1$) as $x \to 0$,
 $w(x) = O(1)$ as $x \to 1$.

Then we define

$$L(w) = \int_0^1 w(x)(1-x)^{\zeta-1} dx : (\zeta > 0).$$

From (3.2) we have

(4.2)
$$\frac{[B(1+\delta,\zeta)]^{\alpha}}{B(1+\alpha\delta,\zeta)} \geqslant \frac{[B(1+\beta,\zeta)]^{\alpha}}{B(1+\alpha\beta,\zeta)},$$

in which $\alpha \delta > -1$, $\alpha \beta > -1$ and $\zeta > 0$.

4.3. The Zeta function (i). For this example the subspace $C^*(I)$ is the same as for the Gamma function case above. L is defined by

$$L(w) = \int_0^\infty w(x) \frac{xe^{-x}}{1 - e^{-x}} dx.$$

We recall here (see [4]) that when s is real and s > 1 then

$$\Gamma(s)\zeta(s) = \int_0^\infty x^{s-1} \frac{e^{-x}}{1 - e^{-x}} dx.$$

Using (3.2) this leads to

(4.3)
$$\frac{[\Gamma(2+\delta)\zeta(2+\delta)]^{\alpha}}{\Gamma(2+\alpha\delta)\zeta(2+\alpha\delta)} \geqslant \frac{[\Gamma(2+\beta)\zeta(2+\beta)]^{\alpha}}{\Gamma(2+\alpha\beta)\zeta(2+\alpha\beta)},$$

in which $\alpha\beta > -1$ and $\alpha\delta > -1$.

The number of examples of this nature could be enlarged considerably. For example, the formula

$$\Gamma(s)\eta(s) = \int_0^\infty x^{s-1} \frac{e^{-x}}{1 + e^{-x}} dx, \quad s > 0,$$

where

$$\eta(s) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^s}$$

leads, via (3.2), to similar inequalities.

Indeed, recalling that the Mellin transform [5] of a function q is defined by

$$Q(s) = \int_0^\infty q(x)x^{s-1}dx,$$

we see that the Mellin transform of any non-negative function satisfies an inequality of the type (3.2). In fact, (4.1) and (4.3) are examples of this.

4.4. **The Zeta function (ii).** We conclude by presenting a family of inequalities in which the Zeta function appears alone, in contrast with (4.3).

With a > 1 define the non-decreasing function $w_N \in [0, 1]$ as follows:

$$w_N(x) = 0 \quad \left(0 \le x < \frac{1}{N}\right)$$

$$= \sum_{k=m}^{\infty} \frac{1}{k^a} \quad \left(\frac{1}{m} \le x < \frac{1}{m-1}\right), \quad m = N, N - 1, ..., 2$$

$$= \sum_{k=1}^{\infty} \frac{1}{k^a} \quad (x = 1)$$

Then we have

(4.4)
$$\int_0^1 x^s dw_N(x) = \sum_{k=1}^{N-1} \frac{1}{k^{s+a}} + \frac{1}{N^s} \sum_{k=N}^{\infty} \frac{1}{k^a}$$

and we note that

(4.5)
$$\sum_{k=N}^{\infty} \frac{1}{k^a} < \frac{1}{a-1} \cdot \frac{1}{N^{a-1}}.$$

Writing

$$V_N(s) = \int_0^1 x^s dw_N(x) \left(\equiv \int_{\frac{1}{N}}^1 x^s dw_N(x) \right)$$

and defining L on $C[0,1]^{\dagger}$ by

$$L(v) = \int_0^1 v(x) dw_N(x)$$

then (3.2) gives the inequalities

$$\frac{[V_N(\delta)]^{\alpha}}{V_N(\alpha\delta)} \gtrless \frac{[V_N(\beta)]^{\alpha}}{V_N(\alpha\beta)}.$$

[†]Not a subspace of C(0,1) but the theorem is true in this context also.

But, from (4.4) and (4.5), letting $N \to \infty$ shows that $V_N(s) \to \zeta(s+a)$ provided that a>1 and s>0 and so (4.6) gives the Zeta function inequality:

(4.7)
$$\frac{[\zeta(a+\delta)]^{\alpha}}{\zeta(a+\alpha\delta)} \geqslant \frac{[\zeta(a+\beta)]^{\alpha}}{\zeta(a+\alpha\beta)},$$

provided a > 1, $\alpha\beta > 0$ and $\alpha\delta > 0$.

Finally, since the $\zeta(s)$ is known to be continuous for s>1 we can now let $a\to 1$ in (4.7) provided that we keep $\alpha>0$ when we get

(4.8)
$$\frac{[\zeta(1+\delta)]^{\alpha}}{\zeta(1+\alpha\delta)} \geqslant \frac{[\zeta(1+\beta)]^{\alpha}}{\zeta(1+\alpha\beta)},$$

in which $\beta > \delta > 0$ and $\alpha > 0$. Regarding the directions of the inequalities here, we note that the option $\alpha \leq 0$ does not arise.

REFERENCES

- [1] A.McD. MERCER, A generalisation of Andersson's inequality, *J. Ineq. Pure. App. Math.*, **6**(2) (2005), Art. 57. [ONLINE: http://jipam.vu.edu.au/article.php?sid=527].
- [2] C. ALSINA AND M.S. TOMAS, A geometrical proof of a new inequality for the gamma function, *J. Ineq. Pure. App. Math.*, **6**(2) (2005), Art. 48. [ONLINE: http://jipam.vu.edu.au/article.php?sid=517].
- [3] J. SÁNDOR, A note on certain inequalities for the gamma function, *J. Ineq. Pure. App. Math.*, **6**(3) (2005), Art. 61. [ONLINE: http://jipam.vu.edu.au/article.php?sid=534].
- [4] H.M. EDWARDS, Riemann's Zeta Function, Acad. Press, Inc. 1974.
- [5] E.C. TITCHMARSH, *Introduction to the Theory of Fourier Integrals*, Oxford Univ. Press (1948); reprinted New York, Chelsea, (1986).