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ABSTRACT. Inthis article, we give the monotonicity and concavity properties of some functions
involving the gamma function and some equivalence sequences to the segl@itteexact
equivalence constants.
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1. INTRODUCTION AND MAIN RESULTS

Throughout the paper, |8 denote the set of all positive integers adgd= N U {0}.
We saya,, ~ b, (n > ny) if there exist two constants > 0 andc, > 0 such that

(11) Clbn <a, < C2bn

hold for alln > ny. The fixed numbers; ande, in (1.1) are called equivalence constants.
The incomplete gamma function is defined farz > 0 by

(1.2) F(z,x):/ e tdt, 7(2,1’):/ = te tdt,
T 0

andI'(z,0) = I'(z) is called the gamma function. The logarithmic derivativd'¢f), denoted
by v (z) = I'(2)/I'(2), is called the psi or digamma function, antf) for & € N are called the
polygamma functions. One of the elementary properties of the gamma funclién is 1) =
2L (z). In particular,'(n + 1) = n.
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In [13], it was proved by F. Qi that the functions

s, 1) = L(s) |
(13) e =]
(1.4) f(s,r,x) = Il:Ei:i; o
and

are increasing with respectto> 0, s > 0, orx > 0.
E. A. Karatsuba [9] proved that the function

(1.6) filx) = [g(2)]° — (82° + 42” + =),
where
e I(1+2)
(L.7) o0 =(5) — =
is strictly increasing fromil, oco) onto[f;(1), f1(o0)) with

6
A1) =513 and fi(oo) = oo

30
In 2003, in [1], H. Alzer proved that

0 < fi(z) < =, e (0,00),

30°
where
a= m>161 fi(z) = 0.0100450 - - - = f1(z0)
for somex, € [0.6,0.7]. Sincefi(xy) < f1(1) and
1
li =
f1($0)<x£51+f1($) Jr

his result shows that, () is not still monotonic o0, 1].
In [3], it was shown in 1997, by G. Anderson and S. Qiu, that the function

(1.8) fola) = 2L L)

rlnx
is strictly increasing froni1, co) onto(1 — ~, 1), wherey is the Euler-Mascheroni constant. H.
Alzer, in 1998 in [2], proved thaf,(z), with

(1.9) fo(1) = }Clﬂ folx) =1—7,

is strictly increasing orf0, co). Also note that the functiorf,(z) was proved to be concave on
(1,00) in [6] in 2000 by A. Elbert and A. Laforgia.

In [5,18,/10/12| 14, 17], monotonicity properties of other functions related to the (di)gamma
function were obtained.

In this article, we shall give some monotonicity and concavity properties of several functions
involving the gamma function and, as applications, deduce some equivalence sequences to the
sequence! with best equivalence constants.

Our main results are as follows.
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Theorem 1.1. The functions

A
and
(1.11) F@y:fﬂiiﬂ

are strictly logarithmically concave and strictly increasing froffh oc), respectively, onto
(0,1/+/2m) and onto(1, co).

Theorem 1.2. The function

Tz +1)

(1.12) (x) :
ey

is strictly logarithmically concave and strictly increasing frgm 3, oo) onto (« /7/e, /27r/e> .

Theorem 1.3. The function

Tz +1)Vo —1

xa}+1

(1.13) h(z) =

is strictly logarithmically concave and strictly increasing frdi occ) onto (0, \/27r).
As applications of these theorems, we have the following corollaries.
Corollary 1.4. Forn € N,

(1.14) n! ~ e p 2,
Moreover, for alln € N,
(115) \/27‘(‘ . e_nnn+1/2 < n] S e - e—nnn-‘rl/Q.

The equivalence constan{@r ande in (I.15)are best possible.
Corollary 1.5. Forn € Ny,

1\"*?
(1.16) nl~e™" (n + —) :

Moreover, for alln € Ny,

1 1
1 n+s3 2 1 n+3
(1.17) V2e™ (n + 5) <nl <4/ e (n + 5) )
e

The equivalence constant® and/2x /e in (L.I7)are best possible.
Corollary 1.6. Forn > 2,

(1.18) nl ~

Furthermore, for alln > 2,

2
(1.19) (E> _V ongnt1)2 <nl < V2r M ngntl/2
2 n—1 n—1

The equivalence constar(is/2)> and /27 in (T.19)are best possible.
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Remark 1.7. In [16, Theorem 5], it was proved that far> 2,

1

3
(1.20) 2me "2 < nl < ( n 1) Vor e /2,

which can be directly deduced froin (1115) ahd (1.19).

2. LEMMAS
We need the following lemmas to prove our results.
Lemma 2.1([4} p. 20]) Asz — oo,

(2.1) Inl(z) = (m—%) Inz —z +Inv2r +O(i>.

Lemma 2.2([[7, p. 892] and[[11, p. 17])For = > 0,

1 o tdt
2.2 =lnzr—— —2
(2.2) Y(r) =Inz 97 /0 (12 + 22) (e — 1)’
1 > tdt

2.3 — | =1 2 :
(2:3) w(‘x+2> ot /0 (2 + 422)(e™ + 1)
Lemma 2.3. The function

z+1 1
2.4 =1 S
(2.4) plr) =In—— T
is strictly increasing fron{0, co) onto (—oo, 0).
Proof. We omit the proof of this lemma due to its simplicity. O

3. PROOF OF MAIN RESULTS

Proof of Theorer 1]1Taking the logarithm off (x) defined by [(1.10) and differentiating di-
rectly yields

(3.1) In f(x) = (x—%) Inz —z—1InT(x),

(3.2) In f(2)] = Ine — % —(a).

Then by formula[(2.2) of Lemnia 2.2,

3.3) In f(z)] = 2/00 fdt r>0
' T o (24 a?) (et — 1)’ '

Hence,[ln f(x)] > 0 for z € (0,00), which means thaln f(x), and thenf(z), is strictly
increasing or{0, co).
It is easy to see thdim, .. f(z) = 0. By (3-1) and Lemmp 21, we have

(3.4) lnf(x):—ln\/%—i—()(%)—dn\/%_ﬂ, T — 00,

which implieslim, .., f(z) = 1/v/2m.
Taking the logarithm of"(z) defined by|[(1.1]1) and differentiating easily gives

(3.5) InF(z)=z+ml(zr+1)—zlnz,
(3.6) InF(z)] =¢(x+1) —Inz.

J. Inequal. Pure and Appl. Math?(2) Art. 45, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

MONOTONICITY AND CONCAVITY PROPERTIES OF SOMEFUNCTIONS 5

Then by [(2.8) of Lemmp 2,2, for all > 0,

37)  mF@)]=h (1 * %) " 2/0 44 j d;ﬂ e

Hencen F(x), and thenF'(x), is strictly increasing o0, co).
Itis easy to see thaim, .o+ F(z) = 1. By using Lemma 2]1, froni (3.5),

1 1
(3.8) lnF(x):§lnx+ln\/27r+O<—), T — 00.
x

Therefore]n F'(z), and thenF'(z) tends toco asz — oo.
Formulas [(3.8) and (3.7) tell us thah f(z)]" and [In F'(x)]" are both strictly decreasing.
Therefore]n f(z) andln F'(x) are strictly concave, that is, the functigiz) and F'(z) are both

logarithmically concave. O
Proof of Theorem 1]2Taking the logarithm of(z) defined by[(1.12) and differentiating shows
(3.9) Ing(z) =+ Inl'(zx+1) - (954—%) In <x—|—%> ,
(3.10) ng(z)] =¢(x+1)—1In (x + %) .
Then, by formula[(2]3) of Lemnja 2.2, we have
° tdt 1
. 1 "= —.
(3.11) I g()] 2/0 [t2 4+ (2z + 1)?](e™ + 1)’ =73
So
1
(3.12) ng(x)] >0, xe€ (—5, oo> :

which means that g(z), theng(z), is strictly increasing off—3, o).
Sincel'(1/2) = /m, itis easy to verify that lin11/2g(x) =\/7/e.
From (3.9) and Lemma 2.1, it is obtained that

1

1 1
(3.13) Ing(x)=|x+ = lnx+ +Inv2r —14+0(—-), x— .
1
2 T+ T

2

Henceln g(z) — In /27 /e asz — oo, and thenlim ¢(z) = /27 /e.
Formula [3.1]1) shows thdin g(x)]’ is strictly decreasing. Therefork g(x) is strictly con-
cave, that is, the functiog(x) is logarithmically concave. O

Proof of Theorer 1]3Taking the logarithm of(z) defined by[(1.13) and differentiating straight-
forwardly reveals

(3.14) Inh(z) = InT(x) + 2 + 3 Inz — 1) ~ Iz,
(3.15) (In h(z)] = v(z) + ﬁ oz

By settingz — u + 1 with u > 0, we have

(3.16) I h(@)]' = (1) + 5~ I+ 1) = [ng(u)] — p(u),
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whereg(u) and p(u) are respectively defined by (1]12) and [2.4). Frém (3.12) and Lemma
2.3, itis deduced thdtn i (x)]" > 0 for z > 1. Thereforeln i(z), and themi(z), is strictly
increasing or1, co).

It is obvious thatlim A(z) = 0. From [3:1#) and Lemn@.l, we see

r—14

(3.17) Inh(z) = %ln

—1 1
a +ln\/27r+0<—)—>ln\/27r, T — 00.
x x

So lim h(z) = /2.

—00

Considering the logarithmic concavity gfx) and the increasing monotonicity of(z) in
(3.18) reveals thdtn h(x)]" is strictly decreasing. Therefork, h(x) is strictly concave, that is,
the functionh(z) is logarithmically concave. O

Proof of Corollary{I.4.By Theorenj 1.1L, we know that the functigitz) is strictly increasing
from (0, co) onto (O, sz) , hence

318 1 . nn+1/2 1
. - = < =
(3.18) =W fm = < o=
forn € N, and
nn+l/2 1
3.19 li = .
( ) b el V2
From (3.18) and (3.19), we see that Corollary 1.4 is true. O

Proof of Corollary{I.5.By Theoren| 1.2, we see that the functigx) is strictly increasing

from (—31,00) onto <\/7r_/e, \/F/e) . So

e"n! /27
(n+3)
and
e"n! 2T
3.21 lim —————— =/ —.
( ) nl_{IC;lo (n+ %)n+1/2 e

Inequality [3.20) is equivalent tf (T]17). Since the constaftsand /27 /e are best possible
in (3.20), they are also best possible[in (1.17). O

Proof of Corollary{ I.6. The monotonicity of:(x) by Theorenj 1]3 implies

e\ 2 e"nlvn — 1
(3.22) (5) = h(2) < h(n) = == < VT, n>2
and
"ly/m— 1
(3.23) lim % — Vor.
From (3.22) and (3.23), we see that Corollary 1.6 is valid. O
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