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ABSTRACT. In this paper, we introduce the subcla®$ (4, B, «, 1) which is defined by con-

cept of subordination. According to this, we obtain a necessary and sufficient condition which is
equivalent to this class. Further, we apply todheneighborhoods for belonging fq\ (A, B, a, 1)

to this condition.
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1. INTRODUCTION AND DEFINITIONS

LetU={z: 2z € Cand|z| < 1} andH (U) be the set of all functions analytic ii, and let
A:={feH(U): f(0)=f(0)—1=0}.

Given two functionsf andg, which are analytic ifiJ. The functionf is said to besubordinate
to g, written

f=g and f(z2)<g(z) (2€0),
if there exists a Schwarz functiananalytic inU, with
w(0)=0 and |w(z)] <1 (z € U),
and such that
f)=g(z) (2€0).
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2 OzNUR OZKAN AND OSMAN ALTINTAS

In particular, ifg is univalent inU, thenf < g ifand only if f (0) = ¢ (0) andf (U) C ¢ (U)
in [[7].
Next, for the functionsf; (j = 1, 2) given by

fi(2) :z+2ak7jzk (1=1,2).
k=2
Let f; % f, denote theHadamardproduct(or convolution)of f; andf, , defined by

(1.1) (frfo) (2) = 24 araanad® = (fax 1) (2).

k=2
(a), denotes thePochhammesymbol(or the shifted factorial)since
(1), =n! for neNy:=NU{0},
defined (fora,v € C and in terms of the Gamma function) by
Pla+v) [ (v="0,a€C\{0}),
(a), == I'(a) B { ala+1)...(a+n—-1); (wv=neN;aecC).

The earlier investigations by Goodman [1] and Ruscheweyh [9], we defire-timeighbor-
hood of a functionf € A by

NG () = {geA:f<z>—z+Zakz’f,
k=2

g(z) :z—|—Zbk2k and Zk|ak—bk| §5}
k=2

k=2

so that, obviously,

M(e):z{gEA:g(z):z—l—Zbkzk and Zk|bk|§5},
k=2 k=2

wheree (z) := z.
Ruscheweyh[[8] introduced an linear operafotr : A — A, defined by the Hadamard
product as follows:

D f () :—O_—'z)m*f(z) (A >—1; z € U),

which implies that
n—1 (n)
Dy = 2ESG) (n € Ny := NU{0}).

n!

Clearly, we have

Df(2)=f(2), Df(2)=2f(2)

a Zk+1 = N (/\ + 1>kzk+1 * z
k+1 (Z (1)k f) ( ) ’

k=0

and

D'f(z)=) G ;:)k

gl
wheref € A.
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Therefore, we can write the following equality, the easily verified result from the above defi-
nitions:

w2  |1-p 1

+u (DM (2))'] * FSE

where f € A, A (A > —1), u (p > 0) and for allz € U.
Foreachd andB suchthat-1 < B < A < 1 and for all real numbers such thad < o < 1,
we define the function

DAJ; (2) = (DM (2) + 2 (D (2)),

1+{(1—a)A+aB}z
14 Bz

Also, leth (a) denote the extremal function of functions with positive real part of order
(0 < a < 1), defined by

h(A, B,a;z) =

(z € U).

1+ (1 —2a)z
1—=2
The classR? (A, B) is studied by Premabai inl[3]. According to this, we introduce the
subclassk? (A, B, a, 1) which is a generalization of this class, as follows:

h(a):=h(l,-1,a;2) = (z€U).

(1.3) 1+ % [(D{f (2)) + pz (D f (2))" = 1} < h(A B,a;2),

where f € A, b € C/{0}, for some real numberd, B (-1 < B<A<1), A\ (A>-1),
a(0<a<1),p(p>0)and foralz € Uwith Ry (4,B,a,n) := RY (A, B,«a, ) and
RY (A, B) := Ry (A, B,0,0).

We note that the clasR® (1) := R, (1, 1,0, i) is studied by Altintas and Ozkan inl[4].
ThereforeC (b) := R, (1, —1,0,0) is the class of close-to-convex functions of complex order b.
C(a) :==Ri1-4(1,—1,0,0) is the class of close-to-convex functions of ordei0 < a < 1).

Also, let 7, (A, B, o) denote the class of functiomsnormalized by

Lt {1} - s
(1.4) b (2) = {(11 _) 1+{(1_Q)A+QB}6: (t € (0,2m)),
14+ Bett

whereb € C/ {0}, for some real numberd, B (—1 <
(b

B<A<1),foralla(0<a<1)and
for all z € Uwith 7, (A, B) := ﬂ(ABO)andT =7(1,—1,

) 0)-

2. THE MAIN RESULTS

A theorem that contains the relationship between the above classes is given as follows:

Theorem 2.1. f € R} (A, B, a, u) if and only if

D> /
1-w L @) | o 20
forall p € 7, (A, B,a) and for all f € A.
Proof. Firstly, let

P 2) = (1= n) + (D (2))

and we suppose that

(2.1) FA(fp52) % ¢ (2) #0

D*f (2)
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forall f € Aandforallp € 7, (A, B,a). Inview of ., we have

_ o it
T P (fo o) 5 i — 1) — PlUgeltabie

1—2)2

FA(f 2) ¢ (2) = RIS
1= 1+ Bett
1 + % {(D/\f (Z))/ + [z (D,\f (Z))” _ 1} . 1+{(1Ii)é464;a3}€z

1 1+{(1—a)A+aB}eit
14+ Bet

# 0.
From this inequality we find that

L % {(DAf (2)) +pz (DMf (2))" = 1} #h (A B,azet),

wheret € (0,27).

This means that + 1 {(D{f (2)) 4 pz (D (2))" — 1} does not take any value on the im-
age of underh (A, B,«a;z) function of the boundary ofU. Therefore we note that
1+ %{(DAf (2)) 4 pz (DM (2))" — 1} takes the valud for z = 0. Since0 < o < 1
andB < A, 1is contained by the image undef A, B, a; z) function of U.Thus, we can write

]_ / "
1+ {(D () + 02 (DY (2)" = 1} < (4, Bas2).

Hence f € Ry (A, B,a, ).
Conversely, assume the functighis in the classR; (A, B, a, ;1) . From the definition of
subordination, we can write the following inequality:

L % {(D @) +pz (DM ()" =1} # 0 (A, Boase™)

wheret € (0, 27) . From (|1.2]) we can write

1+%{F’\(f,,u;z)* 2—1}7&h(A,B,a;e“)

1
(1—2)

or equivalently,

1+ 3 (—(1712)2 — 1> —h(A, B, a;e")
FA(fo p;2) * » :
1 —h(A, B, a;e)

Thus, from the definition of the functiof, we can write

A
-0 ZLE @ )| o) 20
forall¢p € 7, (A, B,a) and for all f € A. O

Corollary 2.2. f € Ry (A, B, a, ) if and only if [(1 — 1) %Z) +uf (2)| * ¢ (2) # 0 for all
¢ €T, (A B,a)andforall f € A.

Proof. By putting A = 0 in Theorenj 2.]1. O

Corollary 2.3. f € Rb (A, B) if and only if@ x ¢ (2) # 0forall ¢ € 7, (A, B) and for all
feA
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Proof. By puttinga = 0, 1o = 0 in Corollary[2.2. And, we obtain the result of Theorem 1 in

3. O
Corollary 2.4. f € C (b) if and only |ff x¢(z) #0forall ¢ € T (b)andforall f € A.
Proof. By putting A = 1, B = —1 in Corollary[2.3. O
Theorem 2.5.Letf  (z) = {2%< fore € Candf € A.If F. € R) (A, B, a, ) for [¢| < &,
then

2.2) a-w m Fa (@) 0|28 e,

where¢ € 7, (A, B,«) and for all f € A.
Proof. Let¢ € 7, (4, B,a) andf . € R} (A, B, a, u) . From Theorem 2]1, we can write

D F . (2)
-2t
Using D* (ez) = ez, we find that the following inequality

1 {{(1—/1) DA,Z(,Z) —{—pJ(D)‘f(z))/} *¢(z)+€} 20

1+¢

+ 1 (DMF. (z)),} x ¢ (z) #0.

that is,

-2 @) o £

or equivalently(2.2)) . O
Lemma2.6.1f ¢ (z) =1+ > 2, 2" € T, (A, B, a), then we have

(k+1) (1 +|B])
(1 —a) o[ |B — A

Proof. We suppose that (z) = 1 + ZZil ez € T, (A, B, o) . From (1.4)) , we have

(k=1,2,3,...).

it
0o 1+ {1+Zk 2 1} 1+{(1— oeAe—:—taB}e
1+ Z o2 = | _ LH(-a)A+aB}e" = (t € (0,2m)).
B 1+ Bett

We write the following equality result which is easily verified result from the above equality:

(k+1) (1+ Bet)
b(1—a) (B— A)et’

Taking the modulus of both sides, we obtain inequafity) . O
Theorem 2.7.1f F . € R} (A, B, a, p) for |e| < 6%, then
Ns (f)C Ry (A, B, ),

C —

(—a)plB=A] g
(1+/\)(1+u)(1+\3\)

Proof. Letg € N (f) foro = 1+1)\)E3¢1)_Lbltl)131+1¢|1]|53| 0%
If we take

where) :=

Dg (2)

/

+u(Dg(2))

F (g.52) == (1= p)
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then

|F* (g, 115 2) % ¢ (2)]

A — z
H“‘“)D YR

+pu(DMf+g-f) (Z))l] *9(2)
> |FM (fos2) \—v*g Fru2) % ¢ (2)]

and using Theorem 2.5 we can write

(2.4) Z b — ay) cr_12°71
k=2
where
A+1),_
\p(k)zw(uk—uﬂ).
(1)

We know thatV (k) is an increasing function df and

0<VU©2)=14+N(1+p <V(k) (uZO;kEN;)\z(l;Mjk)>.

Sincer . € Ry (A, B, a, ) for |e| < §* and using Lemmia 2.6 if2.4) we have

) 0 k(1+ |B|)
|[F2 (g, m32) % 6 (2)] > 6 _‘I’(Q”Z’;'a’“_b’“’ (1—a) o |B - A

. (I+N T 4+p)(1+B))
T T A= WB =4 Z’“’“’“ bl

N0+ B
2O B A
>0
That is, we can write
1-w P Dy @) [ ws 20 e,

Thus, from Theorerh 2|1 we can find thag R} (A, B, a, i) . O
Corollary 2.8. If F. € R, (A, B, a, ) for |e| < 6*, then
N5 (f)c 7?’b (A,B,Oé“l,b),

— (=a)pl[B—A] s«
whered = ‘5250 En 0
Proof. By putting A = 0 in Theorenj 2.]7. O

Corollary 2.9. If F. € R, (A, B) for |¢| < ¢*, then
Ns (f)C Ry (A, B)

[bl|B—A|
whereé := ) 0*.
Proof. By puttinga = 0, ¢ = 0 in Corollary[2.8. Thus, we obtain the result of Theofen} 2.7 in
[3]. O
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Corollary 2.10. If . € C (b) for |¢| < 6*, then

whereo := |b| §*.
Proof. By puttingA = 1, B = —1 in Corollary[2.9. O
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