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1. Introduction

It is well-known that the Gaussian, Poisson, Wigner and (discrete) uniform distribu-
tions are maximum entropy distributions in the appropriate context (for example see
[18, 6, 7]). On the other hand all the above quoted distributions can be characterized
as those distributions giving equality in the Stam inequality. Let us describe what
Stam inequality is about.

The Fisher informationIX of a real random variable (with strictly positive differ-
entiable density functionf ) is defined as

(1.1) IX :=

∫
(f ′(x)/f(x))

2
f(x)dx.

For X, Y independent random variables such thatIX , IY < ∞, Stam was able to
prove the inequality

(1.2)
1

IX+Y

≥ 1

IX

+
1

IY

,

where equality holds iffX, Y are Gaussian (see [16, 1]).
It is difficult to overestimate the importance of the above result because of its

links with other important results in analysis, probability, statistics, information the-
ory, statistical mechanics and so on (see [2, 3, 9, 17]). Different proofs and deep
generalizations of the theorem appear in the recent literature on the subject (see
[19, 13]).

A free analogue of Fisher information has been introduced in free probability.
Also in this case one can prove a Stam-like inequality. It is not surprising that the
equality case characterizes the Wigner distribution that, in many respects, is the free
analogue of the Gaussian distribution (see [18]).
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In the discrete setting, one can introduce appropriate versions of Fisher informa-
tion and prove the Stam inequality. On the integersZ, equality characterizes the
Poisson distribution, while on a finite groupG equality occurs for the uniform dis-
tribution (see [8, 15, 10, 11, 12, 14, 4, 5]).

In this short note we show that also on the circleS1 one can prove a version of
the Stam inequality. This result is obtained by suitable modifications of the standard
proofs. Moreover, equality occurs for the maximum entropy distribution, namely for
the uniform distribution on the circle.
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2. Fisher Information and Stam Inequality on R

Let f : R → R be a differentiable, strictly positive density. One may define the
f -scoreJf : R → R by

Jf :=
f ′

f
.

Note thatJf isf -centered in the sense thatEf (Jf ) = 0. In general, ifX : (Ω,F , p) →
R is a random variable with densityf , we writeJX = Jf and

IX = Varf (Jf ) = Ef [J
2
f ];

namely

(2.1) IX :=

∫
R

(f ′(x)/f(x))
2
f(x)dx.

Let us suppose thatIX , IY < ∞.

Theorem 2.1 ([16]). If X, Y : (Ω,F , p) → R are independent random variables
then

(2.2)
1

IX+Y

≥ 1

IX

+
1

IY

,

with equality if and only ifX, Y are Gaussian.
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3. Stam Inequality on S1

We denote byS1 the circle group, namely the multiplicative subgroup ofC \ {0}
defined as

S1 := {z ∈ C : |z| = 1}.
We say that a functionf : S1 → R has atangential derivativein z ∈ S1 if the
following limit exists and is finite

DT f(z) := lim
h→0

1

h

[
f(zeih)− f(z)

]
.

From now on we consider functionsf : S1 → R that are twice differentiable
strictly positive densities.
Then, thef -score is defined as

Jf :=
DT f

f
,

and isf -centered, in the sense thatEf (Jf ) = 0, whereEf (g) :=
∫

S1 gf dµ, andµ is
the normalized Haar measure onS1.

If X : (Ω,F , p) → S1 is a random variable with densityf , we writeJX = Jf

and define the Fisher information as

IX := Varf (Jf ) = Ef [J
2
f ].

The main result of this paper is the proof of the following version of Stam in-
equality on the circle.

Theorem 3.1. If X, Y : (Ω,F , p) → S1 are independent random variables then

(3.1)
1

IXY

≥ 1

IX

+
1

IY

,

with equality if and only ifX or Y are uniform.
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4. Proof of the Main Result

To prove our result we identifyS1 with the interval[0, 2π], where 0 and2π are
identified and the sum is modulo2π. Any function f : [0, 2π] → R, such that
f(0) = f(2π), can be thought of as a function onS1. In this representation, the
tangential derivative must be substituted by an ordinary derivative.

In this context, a density will be a nonnegative functionf : [0, 2π] → R such that

1

2π

∫ 2π

0

f(θ)dθ = 1.

The uniform density is the function

f(θ) = 1, ∀θ ∈ [0, 2π].

From now on, we shall considerf belonging to the class

P :=

{
f : [0, 2π] → R

∣∣∣∣ ∫ 2π

0

f(θ)dθ = 2π, f > 0 a.e.,

f ∈ C2(S1), f (k)(0) = f (k)(2π), k = 0, 1, 2

}
.

Let f ∈ P; then ∫ 2π

0

f ′(θ)dθ = 0

and therefore
Jf :=

f ′

f

is f -centered. Note thatJf (0) = Jf (2π).
If X : (Ω,F , p) → [0, 2π] is a random variable with densityf ∈ P, from the

scoreJX := Jf it is possible to define the Fisher information
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IX := Varf (Jf ) = Ef [J
2
f ].

In this additive (modulo2π) context the main result we want to prove takes the
following (more traditional) form.

Theorem 4.1. If X, Y : (Ω,F , p) → [0, 2π] are independent random variables then

(4.1)
1

IX+Y

≥ 1

IX

+
1

IY

,

with equality if and only ifX or Y are uniform

Note that, since[0, 2π] is compact, the conditionIX < ∞ always holds. However,
we cannot ensure in general thatIX 6= 0. In fact, it is easy to characterize this
degenerate case.

Proposition 4.2. The following conditions are equivalent

(i) X has uniform distribution;

(ii) IX = 0;

(iii) JX = constant.

Proof. (i) =⇒ (ii) Obvious.
(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Let JX(x) = β for everyx. ThenfX is the solution of the differential
equation

f ′
X(x)

fX(x)
= β, f(0) = f(2π).

ThusfX(x) = ceβx and the symmetry condition impliesβ = 0, so thatfX is the
uniform distribution.
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Proposition 4.3. Let X, Y : (Ω,F , p) → [0, 2π] be independent random variables
such that their densities belong toP. If X (or Y ) has a uniform distribution then

1

IX+Y

=
1

IX

+
1

IY

,

in the sense that both sides of equality are equal to infinity.

Proof. Because of independence one has, by the convolution formula, that ifX is
uniform then so isX + Y and therefore we are done by Proposition4.2.

As a result of the above proposition, in what follows we consider random vari-
ables with strictly positive Fisher information. Before the proof of the main result,
we need the following lemma.

Lemma 4.4. Let X, Y : (Ω,F , p) → [0, 2π] be two independent random variables
with densitiesfX , fY ∈ P and letZ := X + Y . Then

(4.2) JZ(Z) = Ep[JX(X)|Z] = Ep[JY (Y )|Z].

Proof. Let fZ be the density ofZ; namely,

fZ(z) =
1

2π

∫ 2π

0

fX(z − y)fY (y)dy, z ∈ [0, 2π],

with fZ ∈ P. Then,

f ′
Z(z) =

1

2π

d

dz

∫ 2π

0

fX(z − y)fY (y)dy

=
1

2π

∫ 2π

0

fY (y)f ′
X(z − y)dy

= f ′
X ∗ fY (z).
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Therefore, givenz ∈ [0, 2π],

JZ(z) =
f ′

Z(z)

fZ(z)

=
1

2π

∫ 2π

0

fX(x)fY (z − x)

fZ(z)

f ′
X(x)

fX(x)
dx

=
1

2π

∫ 2π

0

JX(x)fX|Z(x|z)dx

= EfX
[JX |Z]

= Ep[JX(X)|Z].

Similarly, by symmetry of the convolution formula one can obtain

JZ(z) = Ep[JY (Y )|Z], z ∈ [0, 2π],

proving Lemma4.4.

We are ready to prove the main result.

Theorem 4.5.LetX, Y : (Ω,F , p) → [0, 2π] be two independent random variables
such thatIX , IY > 0. Then

(4.3)
1

IX+Y

>
1

IX

+
1

IY

.

Proof. Let a, b ∈ R and letZ := X + Y ; then, by Lemma4.4

Ep[aJX(X) + bJY (Y )|Z] = aEp[JX(X)|Z] + bEp[JY (Y )|Z](4.4)

= (a + b)JZ(Z).
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Hence, applying Jensen’s inequality, we obtain

Ep[(aJX(X) + bJY (Y ))2] = Ep[Ep[(aJX(X) + bJY (Y ))2|Z]](4.5)

≥ Ep[Ep[aJX(X) + bJY (Y )|Z]2]

= Ep[(a + b)2JZ(Z)2]

= (a + b)2IZ ,

and thus

(a + b)2IZ ≤ Ep[(aJX(X) + bJY (Y ))2]

= a2Ep[JX(X)2] + 2abEp[JX(X)JY (Y )] + b2Ep[JY (Y )2]

= a2IX + b2IY + 2abEp[JX(X)JY (Y )]

= a2IX + b2IY ,

where the last equality follows from independence and since the score is a centered
random variable.

Now, takea := 1/IX andb := 1/IY ; then we obtain

(4.6)

(
1

IX

+
1

IY

)2

IZ ≤
1

IX

+
1

IY

.

It remains to be proved that equality cannot hold in (4.6). Definec := a + b, where,
again,a = 1/IX andb = 1/IY ; then equality holds in (4.6) if and only if

(4.7) c2IZ = a2IX + b2IY .

Let us prove that (4.7) is equivalent to

(4.8) aJX(X) + bJY (Y ) = cJZ(X + Y ) a.e.
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Indeed, letH := aJX(X) + bJY (Y ); then equality occurs in (4.5) if and only if

Ep[H
2|Z] = (Ep[H|Z])2, a.e.

i.e.
Ep[(H − Ep[H|Z])2|Z] = 0, a.e.

Therefore,H = Ep[H|Z] a.e., so that, by (4.4),

cJZ(Z) = Ep[aJX(X) + bJY (Y )|Z] = aJX(X) + bJY (Y ) a.e.,

i.e. (4.8) is true. Conversely, if (4.8) holds, then by applying the squared power and
taking the expectations we obtain (4.7).

Let x, y ∈ [0, 2π]; because of independence

fX,Y (x, y) = fX(x) · fY (y) 6= 0.

Thus, it makes sense to write equality (4.8) for x, y ∈ [0, 2π]

(4.9) aJX(x) + bJY (y) = cJZ(x + y).

By deriving (4.9) with respect to bothx andy and subtracting such relations one
obtains

aJ ′
X(x) = bJ ′

Y (y), ∀x, y ∈ [0, 2π],

which impliesJ ′
X(x) = α = constant, i.e.

JX(x) = β + αx, x ∈ [0, 2π].

In particular, by symmetry conditions one obtains

β = JX(0) = JX(2π) = β + 2πα.

This implies thatα = 0, that is,JX = constant. By Proposition4.2one hasIX = 0.
This fact contradicts the hypotheses and ends the proof.
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