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ABSTRACT. We present in this work a new and shorter proof of the generalizedλ-Newton in-
equalities for elementary symmetric functions defined on a self-conjugate set which lies es-
sentially in the open right half-plane. We also point out some interesting consequences of the
generalizedλ-Newton inequalities. In particular, we establish an improved complex version of
the arithmetic mean-geometric mean inequality along with the corresponding determinant-trace
inequality for positive stable matrices.
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1. I NTRODUCTION

The elementary symmetric functions on a setS = {x1, x2, . . . , xn} ⊂ C are defined to be
E0(x1, x2, . . . , xn) = 1 and

Ek(x1, x2, . . . , xn) =

∑
1≤j1<j2<···<jk≤n xj1xj2 · · ·xjk(

n
k

) , k = 1, 2, . . . , n.

Throughout this paper, we simply write such functions asEk, Ẽk, or Êk if the setS is specified
or is clear from the context. In addition, we denote by#S the cardinality ofS. We comment
that if S represents the spectrum of some matrixA, then the elementary symmetric functions
can be formulated in terms of the principal minors ofA. The elementary symmetric functions
can also be interpreted as the normalized coefficients in the monic polynomial whose zeros are
given byS, counting multiplicities.

The celebrated Newton’s inequalities concern a quadratic type relationship among the el-
ementary symmetric functions, provided thatS consists of real numbers. Specifically, this
relationship can be expressed as follows: On anyS ⊂ R with #S = n,

E2
k ≥ Ek−1Ek+1, 1 ≤ k ≤ n− 1.

The author thanks an anonymous referee for the constructive comment regarding the reflection of the wedge across the imaginary axis,

which has lead to the addition of inequalities as in (2.5).
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2 JIANHONG XU

For background material with respect to Newton’s inequalities, we refer the reader to [3, 8, 9]. In
[8, 9], such inequalities are also extended to include higher order terms involving the elementary
symmetric functions.

In light of the circumstances as mentioned earlier, in whichS stands for the spectrum of
a matrix or the zeros of a polynomial, it is natural to raise the question of whether Newton’s
inequalities continue to hold in the complex domain, i.e. onS ⊂ C. In this scenario, the set
S is always assumed to be self-conjugate, meaning that the non-real elements ofS appear in
conjugate pairs. Such a condition onS ensures that the elementary symmetric functions remain
real-valued.

Continuing with the question regarding Newton’s inequalities on a self-conjugate set, the
answer turns out to be, in general, negative. Nevertheless, it is shown in [6] that for any self-
conjugateS in the open right half-plane, possibly including zero elements, with#S = n, there
exists some0 < λ ≤ 1 such that

E2
k ≥ λEk−1Ek+1, 1 ≤ k ≤ n− 1.

These inequalities are developed independently in [7] over a self-conjugate set representing the
spectrum of the Drazin inverse of a singularM -matrix. In addition, they are termed in [7] the
Newton-like inequalities. In order to avoid potential ambiguity, from now on, we shall refer
to such inequalities as theλ-Newton inequalities.1 Obviously, theλ-Newton inequalities reflect
a generalized quadratic type relationship among the elementary symmetric functions when it
comes to the complex domain.

The results of [6, 7] are further broadened in [11]. It is illustrated there that the following
generalizedλ-Newton inequalities are fulfilled under the same assumptions as in [6]:

EkEl ≥ λEk−1El+1, 1 ≤ k ≤ l ≤ n− 1.

As pointed out in [11], the above formulation includes theλ-Newton, withl = k, as well as
Newton’s, withl = k andλ = 1, inequalities; moreover, it constitutes a stronger result in that it
does not follow from theλ-Newton inequalities.

We mention that the notion of generalizedλ-Newton inequalities is also motivated by the
literature regarding log-concave, or second order Pólya-frequency, sequences [1, 10]. In fact,
a sequence{Ek} consisting of nonnegative numbersEk is said to be log-concave ifE2

k ≥
Ek−1Ek+1 for all k. It is well-known that{Ek} is log-concave iffEkEl ≥ Ek−1El+1 for all
k ≤ l, assuming that{Ek} has no internal zeros. This shows the close connection, in the
special case whenλ = 1, between theλ-Newton and the generalizedλ-Newton inequalities,
prompting us to look into the latter for the overall situation with0 < λ ≤ 1.

The method in [11] is, in essence, in line with that of [3]. It reveals how the elementary
symmetric functions change as the setS is augmented by a real number or a conjugate pair.
Such an approach, therefore, may be useful for further investigating, for example, theλ-Newton
inequalities involving higher order terms as studied in [6, 8] and other problems related to the
λ-Newton inequalities as treated in [4, 7]. The proof in [11], however, is quite lengthy.

As a follow-up to [11], we demonstrate in this work that the generalizedλ-Newton inequali-
ties can be confirmed in a more elegant fashion without explicit knowledge of the variations in
the elementary symmetric functions due to the changes in#S. This new and briefer proof is
largely inspired by [6, 8, 9]. In addition to the proof, we derive some interesting implications
of the generalizedλ-Newton inequalities. In particular, we strengthen a complex version of the
arithmetic mean-geometric mean inequality which appears in [6]. The associated determinant-
trace inequality for positive stable matrices is also established.

1The author would like to thank Professor Charles R. Johnson for discussion on this terminology.
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2. M AIN RESULTS

We begin with some necessary preliminary results. The following conclusion can be found
in [8, 9], whose proof is included here for completeness.

Lemma 2.1([8, 9]). Letp(x) be a monic polynomial of degreen whose zeros arex1, x2, . . . , xn ∈
C, counting multiplicities. Denote the zeros ofp′(x), the derivative ofp(x), byy1, y2, . . . , yn−1,
again counting multiplicities. Then for all0 ≤ k ≤ n− 1,

Ek(x1, x2, . . . , xn) = Ek(y1, y2, . . . , yn−1).

Proof. Denote thatEk = Ek(x1, x2, . . . , xn) andẼk = Ek(y1, y2, . . . , yn−1). It is a familiar fact
that

(2.1) p(x) =
n∑

j=0

(−1)j

(
n

j

)
Ejx

n−j.

From this, the monic polynomial associated withp′(x) can be written as

q(x) =
1

n
p′(x) =

n−1∑
j=0

(−1)j n− j

n

(
n

j

)
Ejx

n−j−1.

On the other hand, we notice that, similar to (2.1),

q(x) =
n−1∑
j=0

(−1)j

(
n− 1

j

)
Ẽjx

n−j−1.

The conclusion now follows immediately from a comparison of the two expressions forq(x) in
terms ofEj andẼj, respectively. �

The next result is a direct consequence of Lemma 2.1.

Theorem 2.2.Suppose thatp(x) is a monic polynomial of degreen with zerosx1, x2, . . . , xn ∈
C, counting multiplicities. For any1 ≤ m ≤ n, denote the zeros ofp(n−m)(x), the(n −m)-th
derivative ofp(x), byy1, y2, . . . , ym, also counting multiplicities. Then for all0 ≤ k ≤ m,

Ek(x1, x2, . . . , xn) = Ek(y1, y2, . . . , ym).

We also need the conclusion below, which is stated in [8, 9] for the case of real numbers. The
proof is straightforward and thus is omitted.

Lemma 2.3 ([8, 9]). Suppose thatx1, x2, . . . , xn ∈ C are such thatxj 6= 0, 1 ≤ j ≤ n. Set
zj = x−1

j for all j. Denote thatEk = Ek(x1, x2, . . . , xn) and Êk = Ek(z1, z2, . . . , zn). Then

for any0 ≤ k ≤ n, Ek = EnÊn−k.

In the sequel, we assume that0 < λ ≤ 1.
We are now ready to prove by induction that the generalizedλ-Newton inequalities hold on

any self-conjugate setS = {x1, x2, . . . , xn} under the assumption thatS ⊂ Ω, whereΩ is a
wedge in the form [6, 11]

(2.2) Ω =
{

z : | arg z| ≤ cos−1
√

λ
}

.

An immediate outcome of this assumption, i.e.S ⊂ Ω, is thatEk ≥ 0 for any k. Before
proceeding, we also remark that this condition is equivalent to the following: For any nonzero
xj ∈ S,

(2.3)
Re xj

|xj|
≥
√

λ.
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4 JIANHONG XU

Similar to [11], we first verify the cases whenn = 2, 3. Seeing the fact that Newton’s
inequalities are satisfied wheneverS ⊂ R, we only consider here the situation that at least one
nonzero conjugate pair is present inS. In what follows,a, b, andc are all real numbers.

Lemma 2.4. Suppose thatS = {a± bi} ⊂ Ω, wherea > 0 andΩ is given as in (2.2). Then the
generalizedλ-Newton inequality holds onS, i.e.

E2
1 ≥ λE0E2.

Proof. Let p(x) = (x−x1)(x−x2) be the monic polynomial with zerosx1,2 = a± bi. Clearly,
p(x) = x2 − 2ax + a2 + b2. Next, by comparing with (2.1), we obtain thatE1 = a and
E2 = a2 + b2. Hence

E2
1 − λE0E2 = a2 − λ(a2 + b2) ≥ 0.

�

We comment that, although it seems simple, the foregoing proof indeed suggests several im-
portant issues. First, equalities are possible in the generalizedλ-Newton inequalities. Second,
such inequalities may fail onS when it contains nonzero purely imaginary conjugate pairs. And
finally, generally speaking, such inequalities may not hold ifλ is chosen to be greater than1.

Lemma 2.5. Suppose thatS = {a± bi, c} ⊂ Ω, wherea > 0 andΩ is given as in (2.2). Then
the generalizedλ-Newton inequalities hold onS, i.e.

E2
1 ≥ λE0E2, E2

2 ≥ λE1E3, and E1E2 ≥ λE0E3.

Proof. In a similar fashion as in the proof of Lemma 2.4, we find that

E1 =
2a + c

3
, E2 =

a2 + b2 + 2ac

3
, and E3 = c(a2 + b2).

Hence we arrive at:

E2
1 − λE0E2 ≥ E2

1 −
a2

a2 + b2
E0E2

=
(a− c)2

9
+

2ab2c

3(a2 + b2)
≥ 0,

E2
2 − λE1E3 ≥ E2

2 −
a2

a2 + b2
E1E3

=
1

9

[
a2(a− c)2 + 2a2b2 + 4ab2c + b4

]
≥ 0,

and

E1E2 − λE0E3 ≥ E1E2 −
a2

a2 + b2
E0E3

=
1

9

[
2a(a− c)2 + 2ab2 + b2c

]
≥ 0.

�

The proof of Lemma 2.5 indicates the possible failure of the generalizedλ-Newton inequali-
ties for the case whenS, except for its zero elements if present, does not lie entirely in the open
right half-plane. One such instance can be observed by considering the lower bound estimate
of E1E2 − λE0E3, assuming thata andc are both negative. Thus the restriction thatS ⊂ Ω is
necessary to ensure the satisfaction of the generalizedλ-Newton inequalities.

Next, we turn to an inductive hypothesis: Suppose that the generalizedλ-Newton inequalities
are realized on all self-conjugateS ⊂ Ω such that#S ≤ n− 1. The following result illustrates
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GENERALIZED λ-NEWTON INEQUALITIES 5

how this hypothesis guarantees that those inequalities continue to hold on any self-conjugate
S ⊂ Ω with #S = n.

Lemma 2.6. Suppose that the generalizedλ-Newton inequalities hold on any self-conjugate set
S̃ ⊂ Ω with #S̃ ≤ n− 1, whereΩ is given as in (2.2). Then such inequalities are also satisfied
on any self-conjugate setS ⊂ Ω with #S = n. In other words, for any1 ≤ k ≤ l ≤ n− 1,

EkEl ≥ λEk−1El+1

holds onS.

Proof. LetS = {x1, x2, . . . , xn} be a self-conjugate set inΩ. Denote thatEk = Ek(x1, x2, . . . , xn).
Setp(x) =

∏n
j=1(x− xj), the monic polynomial of degreen with zeros as inS.

For arbitrary, but fixed,1 ≤ m ≤ n − 1, we considerq(x) = p(n−m)(x), the (n − m)-
th derivative ofp(x). The zeros ofq(x) form a self-conjugate set̃S = {y1, y2, . . . , ym} with
#S̃ ≤ n − 1. By the Gauss-Lucas theorem [2], we see thatS̃ ⊂ Ω. Hence the generalized
λ-Newton inequalities hold oñS, i.e. on lettingẼk = Ek(y1, y2, . . . , ym), we have that

ẼkẼl ≥ λẼk−1Ẽl+1

for all 1 ≤ k ≤ l ≤ m − 1. This, according to Theorem 2.2, verifies that for all1 ≤ k ≤ l ≤
m− 1,

EkEl ≥ λEk−1El+1.

Since1 ≤ m ≤ n − 1 is arbitrary, we conclude that the generalizedλ-Newton inequalities are
satisfied onS for all 1 ≤ k ≤ l ≤ n− 2.

It remains to show that for each1 ≤ k ≤ n− 1,

EkEn−1 ≥ λEk−1En.

Obviously, this statement is true whenEn = 0. We assume, therefore, thatEn > 0, which
translates intoxj 6= 0 for 1 ≤ j ≤ n. Setzj = x−1

j for all j. Notice thatŜ = {z1, z2, . . . , zn}
is self-conjugate and, additionally, thatŜ ⊂ Ω. Denote that̂Ek = Ek(z1, z2, . . . , zn). Then, by
Lemma 2.3,

Ek = EnÊn−k

for all k. We now observe that for any1 ≤ k ≤ n− 1, EkEn−1 ≥ λEk−1En iff

Ê1Êk ≥ λÊk+1 = λÊ0Êk+1.

Again, based on Theorem 2.2 and the Gauss-Lucas theorem, the validity of this latter statement
can be justified whenever1 ≤ k ≤ n− 2. Thus it is enough to establish that

Ê1Ên−1 ≥ λÊn.

It is more convenient to write the above asÊ1
Ên−1

Ên
≥ λ. Note that

Ê1 =
1

n

n∑
j=1

zj =
1

n

n∑
j=1

Re xj

|xj|2
and

Ên−1

Ên

=
1

n

n∑
j=1

xj =
1

n

n∑
j=1

Re xj.

By Cauchy’s inequality, we obtain that

Ê1
Ên−1

Ên

≥ 1

n2

(
n∑

j=1

Re xj

|xj|

)2

≥ λ.

This completes the proof. �
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6 JIANHONG XU

With either Lemma 2.4 or Lemma 2.5, along with the fact that the stronger Newton’s inequal-
ities hold on sets of real numbers, it is clear that Lemma 2.6 serves as the final step towards an
inductive proof of the generalizedλ-Newton inequalities. Our main conclusion can be stated as
follows.

Theorem 2.7. For any fixed0 < λ ≤ 1, let Ω be given as in (2.2). Suppose thatS is a self-
conjugate set such thatS ⊂ Ω and that#S = n. Then, for all1 ≤ k ≤ l ≤ n − 1, the
generalizedλ-Newton inequalities

(2.4) EkEl ≥ λEk−1El+1

hold onS.

We comment that a similar conclusion follows from Theorem 2.7 when the wedge-shaped
region is reflected across the imaginary axis. Specifically, for0 < λ ≤ 1, we consider

Ω =
{

z : | arg z − π| ≤ cos−1
√

λ
}

and a self-conjugate setS = {x1, x2, . . . , xn} ⊂ Ω. Let Ek be the elementary symmetric
functions onS and Ẽk be those oñS = {−x1,−x2, . . . ,−xn}. It is observed in [6] that
Ẽk = (−1)kEk. Hence, by applying Theorem 2.7 tõEk, we obtain that

(2.5) |EkEl| ≥ λ|Ek−1El+1|
for all 1 ≤ k ≤ l ≤ n− 1.

As a final remark in this section, we mention that our results can also be interpreted in the
context that the setS is prescribed whileλ is allowed to vary in(0, 1]. In this alternative setting,
by (2.3), we see that the bestλ can be written as

λmax = min
0 6=xj∈S

Re2xj

|xj|2
,

provided that the trivial case is excluded, i.e. that{x ∈ S : x 6= 0} 6= ∅.

3. I MPLICATIONS

In this section, we discuss some interesting consequences of the generalizedλ-Newton in-
equalities.

First, we look at a complex counterpart of the arithmetic mean-geometric mean inequality. It
is illustrated in [6] that under the same assumptions as in Theorem 2.7,

E1 ≥ λ
n−1

2 E
1
n
n .

In view of Theorem 2.7, this inequality can be improved as follows.

Theorem 3.1.For any fixed0 < λ ≤ 1, letΩ be as in (2.2). Suppose thatS = {x1, x2, . . . , xn}
is a self-conjugate set such thatS ⊂ Ω. Then

(3.1) E1 ≥ λ
n−1

n E
1
n
n ,

i.e.

1

n

n∑
j=1

xj ≥ λ
n−1

n

(
n∏

j=1

xj

) 1
n

.
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Proof. For any fixed1 ≤ k ≤ n− 1, we see from (2.4) that

(EkEk)(EkEk+1) · · · (EkEn−1) ≥ λn−k(Ek−1Ek+1)(Ek−1Ek+2) · · · (Ek−1En),

which yields that

En−k+1
k ≥ λn−kEn−k

k−1 En.

In particular, on settingk = 1, the above inequality reduces to (3.1). �

It should be pointed out that from (2.4), we can also derive an expression involving two
consecutiveEl’s. Specifically, fixing any1 ≤ l ≤ n− 1, we obtain that

(E1El)(E2El) · · · (ElEl) ≥ λl(E0El+1)(E1El+1) · · · (El−1El+1)

and, consequently, that

(3.2) E
1
l
l ≥ λ

1
l+1 E

1
l+1

l+1

for any 1 ≤ l ≤ n − 1. It is interesting to note that formula (3.2) provides another way of
showing (3.1) on condition thatxj 6= 0. On lettingl = n− 1 and considerinĝEk as defined in
the proof of Theorem 2.7, we have that

Ên
n−1 ≥ λn−1Ên−1

n ,

which yields that

Ên−1

Ên

≥ λ
n−1

n Ê
− 1

n
n ,

and thus (3.1) after replacingz−1
j with xj.

We remark, however, that by takingl = 1, 2, . . . , n− 1 in (3.2), it follows that

E1 ≥ λ
1
2
+ 1

3
+···+ 1

n E
1
n
n ,

which turns out to be not as tight as (3.1) since1
2

+ 1
3

+ · · ·+ 1
n
≥ n−1

n
.

Finally, we apply Theorem 3.1 to positive stable matrices. For references, see, for example,
[5]. Obviously, given anyn × n matrix A, its spectrum is self-conjugate,E1 = 1

n
trA, and

En = det A, whereEk are defined on the spectrum ofA. Recall that a matrix is said to be
positive stable when its spectrum is located in the open right half-plane. Therefore, Theorem
3.1 can be rephrased in the following manner:

Theorem 3.2.LetA be ann× n positive stable matrix whose spectrumσ(A) ⊂ Ω, whereΩ is
defined as in (2.2). Then

(3.3)

(
1

n
trA

)n

≥ λn−1 det A.

We comment that a special case of (3.3) withλ = 1 applies toM - and inverseM -matrices,
on which Newton’s inequalities are indeed fulfilled [4]. It should be pointed out, however,
thatM - and inverseM -matrices form the only class of positive stable matrices with non-real
eigenvalues which is known in the literature to satisfy Newton’s inequalities. Hence (3.3) serves
as an overall result which applies to general positive stable matrices.
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4. CONCLUSIONS

Inspired by [6, 8, 9], we propose here a more elegant inductive proof of the generalizedλ-
Newton inequalities which are verified in [11]. We show that it is possible to confirm these in-
equalities without explicit formulations of the elementary symmetric functions being involved,
which is a noteworthy difference between the current work and [11].

As illustrated in [11], the generalizedλ-Newton inequalities are indeed in a stronger form as
compared with theλ-Newton inequalities in [6, 7]. We also explore here several useful results
which follow directly from the generalizedλ-Newton inequalities. In particular, we show that it
is possible to strengthen the complex version of the important arithmetic mean-geometric mean
inequality as in [6].

Regarding potential future work, we mention herein a few topics: First, the generalizedλ-
Newton inequalities may be further improved by considering a subset of the wedgeΩ. Second,
it is an intriguing question as to fully characterize the case of equalities. Third, it remains to be
answered whether similar inequalities can be developed on a self-conjugate set which does not
lie entirely in the open right or left half-plane. Fourth, the generalizedλ-Newton inequalities
may be applied to, for example, other problems related to eigenvalues and even problems in
combinatorics. To sum up, we strongly believe that much work still needs to be done concerning
the generalizedλ-Newton and associated inequalities.
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