journal of inequalities in pure and
applied mathematics

http://jipam.vu.edu.au
issn: 1443-5756

Volume 10 (2009), Issue 2, Article 58, 10 pp. © 2009 Victoria University. All rights reserved.

ON MAXIMAL INEQUALITIES ARISING IN BEST APPROXIMATION

F. D. MAZZONE AND F. ZO

CONICETAND DEPARTAMENTO DE MATEMATICA
UNIVERSIDAD NACIONAL DE Rio CUARTO
(5800) Ro CUARTO, ARGENTINA

fmazzone@exa.unrc.edu.ar

INSTITUTO DE MATEMATICA APLICADA SAN LUIS
CONICETAND DEPARTAMENTO DEMATEMATICA
UNIVERSIDAD NACIONAL DE SAN LUIS
(5700) S\N Luls, ARGENTINA

fzo@unsl.edu.ar

Received 07 November, 2006; accepted 02 June, 2009
Communicated by S.S. Dragomir

ABSTRACT. Let f be a function in an Orlicz spack® and u(f, £) be the set of all the best
d-approximants tof, given ac—lattice £. Weak type inequalities are proved for the maximal
operatorf* = sup, |f.|, where f,, is any selection of functions ip(f, £, ), and L, is an
increasing sequence oflattices. Strong inequalities are proved in an abstract set up which can
be used for an operator g3.
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1. INTRODUCTION AND MAIN RESULT

Let (2, A, 1) be a finite measure space and = M((2, A, i) the set of allA-measurable
real valued functions. Leb be a Young function, that is an even and convex funcftarR —
R* such thatb(a) = 0 iff « = 0. We denote by..? the space of all the functions € M such
that

(1.2) /QQ(tf)du < 00,

for somet > 0.
We say that the functiow satisfies theA, condition @ € A,) if there exists a positive
constantA = A4 such that for alk € R

?(2a) < AD(a).
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2 F. D. MAZZONE AND F. ZO

Under this condition, it is easy to check thfat L? iff inequality (I.1) holds for every positive
numbert.

The function® satisfies thévV, condition € € V,) if there exists a constatkt = \g > 2
such that

D(2a) > \P(a).

A subsetl C A is aoc-lattice iff §),Q2 € £ and L is closed under countable unions and
intersections. Sek?(L) for the set ofC-measurable functions ih?(€2). Here,£-measurable
function means the class of functiofis 2 — R such thaf f > a} € £, foralla € R.

A functiong € L?(L) is called a bespb-approximation tof € L? iff

/Q O(f — g)du Jouin /Q O(f — h)dp.
We denote by.( f, £) the set of all the begt-approximants tg. Itis well known thau(f, £) #
0, foreveryf € L?, seel[9].

When/ is ac-field B ¢ A and®(t) = t2, the setu( f, B) has exactly one element, namely
the conditional expectatiofs( f) relative toB, which is a linear operator ifi> and can be
continuously extended to all'. For®(t) = t*, 1 < p < oo we obtain thep-predictor Ps( f)
in the sense of Ando and Amemiya [1], which coincides with the conditional expectation for
p = 2. Thep-predictor operatoPs( f) is generally non-linear, and it is possible to extend it to
LP~1 as a unique operator preserving a property of monotone continuity, See [10], Rhire
studied for thes-lattice £. The operatoP.(f), when L is ac-lattice andp = 2, falls within
what is called the theory of isotonic regression, first introduced by Biiunk [4] (for applications
and further development, see [2, 14]). Whifx) = = andB is ao-field, a functiong in the
setu(f, B) is a conditional median, see [15] and[11] for more recent results. All the situations
described above are dealt with by considering minimization problems using convex functions
and Orlicz Space£?. For other and more detailed applications, $éé [2, 14] and chapter 7 of
[13].

We adjust a Young functiod to the origin by®(z) = Jo e@)dt with p(z) = () —
v+ (0)sign(z), wherep, denotes the right continuous derivatived@fNow we can state our
principal result.

Theorem 1.1.Let @ be a Young function such thet As N Vy. Suppose that, is an
increasing sequence oflattices, i.e. £,, C L, for everyn € N. Let f be a nonnegative
function in L?, let f, be any selection of functions im(f, £,), and consider the maximal
function f* = sup,, f,.. Then there exists constanisand ¢ such thatf* satisfies the following
weak type inequality:

(1.2) u({f* > a)) < —C

o+ (f)dp,
SO-F(CY) /{f>ca} +( )
for everya > 0.

The constan€ only depends o\ ; andc depends o ; and \;.
If ©4(0) = 0 we can set = 1 and we also have

(1.3) p{f > a}) <

o+ (f)dp,
904_(()[) -‘r(f) H
{f*>a}
for everya > 0.
The constantg\; and \; are those used in the definitions of the conditidnsand V re-
spectively.
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Theoren| 1.1 (in particular inequality (1.3) with, (t) = "=, 1 < p < o0) is an Orlicz
version of the “martingale maximal theorem”, Theorem 5.1 given lin [6]. The classical Doob
result is given by inequality (1].3) with,.(t) = ¢ and f,, = Eg, [f] whereB, is a increasing
sequence of-fields in A.

We emphasise that our maximal operafois built up with functionsf,, € u(f, £,,) obtained
as a minimization problem in?, though [I.2) and (I} 3) can be seen as some sorts of weak type
inequalities inL#+ for functionsf € L%, a strictly smaller subset df*+. The extension of the
operatoru( f, £) to all L¥+ is not an easy task for generaland £, see[5] for some results in
this direction and Theorem 1.1 can be applied to the extension operator given there.

Since operators such &% as well as other operators obtained as a best approximation func-
tion are not linear or even not sublinear, and in many cases are not positive homogeneous oper-
ators, we will assume that the inequalities [1.2] or](1.3) hold for two fixed measurable functions
fandf*and anyz > 0. From this set up, we interpolate to obtain the so called strong inequal-
ities. Now we state the interpolation problem as follows.

Let » be a nondecreasing function frdRt into itself, and we consider two fixed measurable
functionsf, g : Q — R™ satisfying the followingveak type inequality

C
(1.4) p({f >a}) < — / w(g)dp,
V== 0] fipn
for anya > 0.
We try to find functiong/ such that thestrong type inequalitypelow holds:
(15) [ oz c. [ v
whereC = C,(¢, ¥, C,). That is,C depends only o, ¥ and the constant’,, in inequality
9.
An inequality closely related t¢ (1.4) is the following one:
Cu
(1.6) p({f >a}) < — / e(g)dp,
({ } QO(CL) {g>ca} (

for everya > 0, andc a constant less than one.

It is well known in harmonic analysis and classical differentiation theory that is possible to
obtain inequality[(1)6) from inequality (1.4) when the functighg are related by = T'g and
the functionT is a sublinear operator bounded frdiff into itself (seel[6] or([16], and the last
part of the proof of the Theorejm 1.1). In this case we need to assume that ineduality (1.4) holds
for any measurable functiopin the domain ofl” and anya > 0. We see that inequality (1.4)
implies inequality[(T.B) if the functio®(z) = [ ¢(t)dt is V; (see Lemm2).

The strong inequality (I]5) will be a consequence of standard arguments in interpolation the-
ory [16]. In Theoren 2]3 we introduce the notion of quasi-increasing functions which implicitly
appears in some theorems (see Theorem 1.21 in [8]). The notion of quasi-increasing functions
is used to define when a functidn is “bigger” than a functior?; and we will write®; < &,

(see Definitiorf 2J2). This notation is used to state interpolation results for Orlicz spaces in
Corollarie§ 2.4, 2]5 and 2.6. 111[8] a condition related:to< ®(x) is used to obtain strong
inequalities. The relatiom < ¢(z) is also named as a Dini condition, i.e.

/w @dt < C¢(x),

for all z > 0 (see Theorem 1 and Proposition 3lih [3]). More on the relafipr< @, is given
in Sectiorf 8 where we extend some results of [7].
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The results of Sectiorjg 2 anp@l 3 can be used to obtain the strong inequglitles (1.5) for the
particular operatoy™* given in Theorem 1]1.

It was proved in[[7], in an abstract set up, that if two functigrend¢ are related by a weak
type inequality[(1.4) with respect to the functidh that is,

C
(L.7) u(ln>ah) < o [ @
({n > a}) 5(a) /o, (€)
for anya > 0, thenn and¢ satisfy the strong inequality
[vwaus s [wiean

for the functions¥ : ¥ = (¢, 1 < p, and¥ = (P)?, for 1 < p (also for some in the range
0 < p < 1). In proving these results the conjugate functi@nwas heavily used. We recall that

d*(s) = SI:p{st — ()}

As consequence of Sectidns 2 and 3 we obtain a result more general than those in [7] without
appealing to the conjugate function.

2. A SIMPLE THEOREM
The following lemma is well known, see [12].

Lemma 2.1. For everya € Rt we haved(a) < ap,(a). Moreoverd € A, iff there exists a
constant”' > 0 such thaiuy, (a) < CP(a).

Lemma 2.2. Letp be a nondecreasing function froRt" into itself such thatp(rz) < 1p(z),
for a constant) < r < 1, and everyr > 0. Suppose thaf and g are nonnegative measurable
functions defined of satisfying inequality(1.4). Then there exists a positive constant
c(r,Cy) < 1 such that

20,
2.1) uis > ap < 2t /{ el

for everya > 0.

Proof. By an inductive argument we get

(2.2) 2%p(r"a) < p(a).
Letn € N be such tha% < %, and setc = . Now, we split the integral on the right hand
side of [1.4) into the setsyy < ca} and{g > ca}. By (2.3) we get

Cu 1
u(>an < 2o | claydncs gults > )
Therefore inequality (2]1) follows. O

Remark 1. Itis not difficult to see that a Young functiahsatisfies th&/, condition iff its right
derivativev . fulfills the condition on Lemm2. That s, (rz) < 4, (x), for a constant
0 <r < 1,andeveryr > 0.

Proof. SinceW¥ (z) = [ v(t)dt, the condition ony, implies that¥(rz) < ;¥ (x), for every
x > 0, which is equivalent to th&/, condition given before, seé [12]. Now, if we have this
condition forV, it is readily seen thap. (fz) < 3¢, (z). O

We note that ifs € V, thenyp_ (0) = ¢_(0) = 0, see Remark|1.
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Definition 2.1. We say that the function : R — R is a quasi-increasing function iff there
exists a constant > 0 such that

(2.3) lé%@ﬁéw@,

X

for everyzr € R™.

Theorem 2.3. Let f and g be measurable and positive functions definedosatisfying in-
equality(2-1). Let¥ be aC' ([0, +o0)) Young function and lep be its derivative. Assume that
% is a quasi-increasing function.Then

(2.4) AWUMMSX%QAW(%OdM

Proof. We have that

/Q B (f)dy = / TS > a))du

o [ (] )

~ae foto ([ ) o

Now, we get
c_lg —1
/ ¢(a)da S pc—lg¢(0_1g)
W (2c1g)
p(clg)
Therefore, from equation§ (2.5), (R.6) and siace 1 in Lemma[ 2.2, we obtain Theorem
2.3. O

Definition 2.2. Let ¢, y, be two functions fronR, into R,. We say thaty; < s iff pop0;?
is a quasi-increasing function.

The notation®, < &, is also used if both?; and @, are Young functions, in this case
Definition[2.2 is applied for the restriction of these function&ta

Remark 2. Let ¢, and®, be two Young functions and let, ., ¢, be their right derivatives.
If &1,®, € Ay, using Lemm@l, we hawe, < &, < @1, < g .

Remark 3. Despite the symbol uses is not an order relation. We hav < z2 andz2 < z,
but the relation:? < z is false. In fact, for two arbitrary powers we have < z° < a—1 < 3.

We may define, and it is useful, the relatipn < ¢, only for z near zero, sag < = < 1,
and only for large values af, i.e. 1 < x. In the example given below, we will omit the rather
straightforward calculations.

Example 2.1.For0 < = < 1 we haver® < In(1 + z) ifand only if0 < « < 2, and forl < z
the same relation is true only in the range: a < 1. On the other hanth(1 + z) < z* for all
x and0 < «. All the functions involved here arA, functions, but(1 + ) In(1 + z) — x is not
V., so its derivativén(1 + z) does not fulfill the condition on Lemnfia 2.2 (see Renjark 1).
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In the following corollaries of Theorem 2.3 the Young functibiis the one given by(z) =
Ji (t)dt. They are obtained using this theorem, Lemima 2.2, Refjark 1 and Rgmark 2.

Corollary 2.4. Let f and g be measurable and positive functions definedosatisfying in-
equality(T-4). Let¥ be aC' ([0, +o0)) Young function and lep be its derivative. Assume that
¢ < ¢ and theV, condition for the functior® holds. Then we have inequalif®.4).

Corollary 2.5. Let f and g be measurable and positive functions definedsatisfying in-
equality(2.1), and assumé is a A, function. Letd be aC' ([0, +o0)) N A, Young function. If
® < U then

(2.7) /QW(f)du < C/W(g)dm

Q
where the constant' is independent of the functiorfsand g.

Corollary 2.6. Let f and g be measurable and positive functions definedosatisfying in-
equality (T.4) , and assumé is a A, N V, function. Let¥ be aC'(]0, +00)) N A, Young
function. If® < ¥, then

(2.8) /QW(f)dM < C/W(g)dm

Q
where the constant' is independent of the functiorfsand g.

Remark 4. By Corollary[2.6 we obtain inequality (1.5) for the following functiows(all the
theorems quoted here belong(td [7] and see that paper for a proof using conjugate functions). If
U = ¢, clearly® < &, that is Theorem 3.3. The cage> 1 of Theorem 3.8 follows by setting

U = ®P. For Theorem 3.4, sek = 7, p > 1 and observe that < pe?P~ 1y’

The operatorf* introduced in[[7] is a monotone operator afyfl+ ¢)* = f* + ¢ for any
constant. We can use Corollafy 2.5 to obtain

2.9) Jowiansc [ o
for every functionf € LY, and all¥ quoted in Remark|4. Now the conditiah, is dropped.

3. THE RELATION & < V¥

If n: R* — R* is a nondecreasing function theris clearly a quasi-increasing function. On
the other hand, there are decreasing functions which are quasi-increasing functions. We note
that if  is a quasi-increasing and nonincreasing function then

z 3 T /T
> > >Tp(Z).
pana) = [ ooyt = [ nioyae = 3a (3)
Therefore, there exists a constdfitsuch that
s
. — ) < .
(3.1) n(3) < Kn@)

Lemma 3.1. Lety : Rt — R™ be a nonincreasing function. if satisfies inequality3.) with
K < 2, thenn is a quasi-increasing function.

Proof. In addition to the continuous average)(x) = + [, n(t)dt, is convenient to introduce

the discrete averages(z) = > o 5xn(%) andAln = Aqn — 1.
As n is a nonincreasing function we have

1
(3.2) Aan < An < Agn.
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We estimate the discrete averadg),

@) o) =300 () <32 (5) ko) = 7250t

Now the lemma follows by[ (3]2) and (3.3). O

Corollary 3.2. Let¥d~! be a nonincreasing functio® € A, and¥ ¢ V,. Moreover if we
assume that,'Ag < 2, thend < ¥.

The next corollary is a version of Theorem 3.8[in [7] for the casep < 1.

Corollary 3.3. Lety : Rt — R* be a nondecreasing function with the condition2¢(x) <
Ko(3). Let f and g be measurable nonnegative functions defined)aatisfying inequality

(2.0). Then

(3.4) | @than=c / ¥ (g)dp,

foranyl > p > In(K/2)(In K)~ " and®(z = [, ¢(t)dt. Moreover the constartt is O(1/(2—
K'P))asp — In(K/2)(In k)

Proof. Since®(z) < K®(%) we haved? ! (%) < K'? *~!(z) for 0 < p < 1. Therefore, by
Lemmd 3.1 & < ®” wheneverk'? < 2, and inequality[(3}4) follows by Corollafy 3.5. O

Remark 5. It is possible to replacé (4.1) by (1.4) to again obtain inequdlity (3.4) for the same
range ofp if we place ony the conditiony(rz) < Z¢(z) with a constanb < r < 1, and
2p(r) < Ko(3), thatis, if® € Ay NV, (see Lemma 212).

Proposition 3.4. Letqﬁ be in C*(]0,+o0)) N Ay and let¥ be a quasi increasing function. For
the functiony; (= fo t)dt, suppose that there exists a constant- 1 such that[g]lp IS
non-decreasing. Thegﬁ < w

Proof. We have thalog ¥, — plog @ is a non-decreasing function @' ((0, +o0)). Thengpl1 >
pg, or (q — 1) > ¢Z% with ¢ = p/(p — 1). Therefore

@2
(quﬁ—qs'gpl) v
g ———) > —.

P2 -

Integrating the above inequality dn =] we get

(3.5
From the hypotheses we have tlate)/®(¢) — 0, whene — 0. Therefore inequality] (3]5)
implies that
Lpl (ZL‘) '
> —dt.
To(z) = /0 Iz
Taking into account that is a quasi-increasing function, it follows that< . O

We can use Propositign 3.4 to prove a generalization of Theorem 3.4 of [7] (see the end of
Remark 4). Indeed, given functlomse € C'NA,y setd(z) = [ (t)dt and¥(z) = 0(¢p()).
Then we have < W if §(z) <+ 2 is a nondecreasing functlon for some 1. Infact,®" < V'

by Proposition 3 4.
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4. PROOF OF THE THEOREM [1.1

We need some additional considerations.

Lemma4.1.Let® be a convex function satisfying the condition. Then there exists a constant
C > 0 such that for everyt, z > 0 we have that

pi(a) + C%py( —a) < (C* + Dpy(2).

Proof. If x > a the assertion in the lemma is trivial. We suppose that a. Thusg <
max{z,a —x}. Then

a

pi(a) < Koy (5)
< Koy (z) + Koy (a—2)

(4.1) _
< Ky (x) + K¢y (a 5 x)
< K20, (x) + K2p_(a - x).
The lemma follows using_ (y) = —p_(—y) and [4.1). O

The following theorem was proved in [11]. We denotebyhe o-lattice of the setsD such
thatQ \ D € L.

Theorem 4.2.Let f € L? and L C A be ao-lattice. Theng € u(f, £) iff for everyC € L,
D e £ anda € R the following inequalities hold

(4.2) /{ el a0 and pu(f — ) <0,

{g<a}nC

The setu(f, £) admits a minimum and a maximum, i.e. there exist eleménys L) €
w(f, L)andU(f, L) € u(f, L) such that foraly € u(f, L)

L(f, L) < g <U(f,L).

Seel[9, Theorem 14].
Now we prove Theorein 1.1.

Proof. We define4,,; = {f; > a} and

Aj,n = {flng,..., j,lga,fj>04}

forj=2,....,n.
Then we have that

An:{sup fj>oz}:A1,nU---UAn7n.

1<j<n

As a consequence of Theorém|4.2, we obtain
| et —aduzo.
Ajn
SinceA;,, N A;,, = 0 fori # j, it follows that

/ o+(f —a)dp = lim / e+ (f —a)dp = 0.
{f*>a} n—ee J A,
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Therefore

(4.3) pr(Ou({f <apn{f">a})

<o O > a} N {f > a}) + /{ e

Now, using Lemma 4|1 we have
@y [ eU-adesc [ G- Coplalis > a)
{f*>a} {f*>a}
with C;, © = 1, 2, constants depending only dip. Taking into accoun{ (4]3) anf (4.4), we get
@8 pu@nls > ) S CoOu(f ey nis > ap+e [ ppin
*>a

whereC' = C(A,). Thus we have proved inequalify (1.3) of Theofen] 1.1.

In order to prove inequality (1.2) of Theorém]L.1, we consider two cases.

Let us begin by assuming that, (0) > 0. We then split the seff* > «} in the integral of
(4.5) in the two regiong f* > a} N {f > ca} and{f < ca} N {f* > a}. Now we use the
fact thatd ¢ V5 and by Remarél there exist constadts: ¢ < 1 and0 < r small such that
o(cx) < ro(x). Then we have:

(4.6) pr(@u{f" > a}) < Co. (0)u({f = a})
v [ ppdut rCor@ul(f > o)
{f>ca}
We now use the Chebyshev inequalit§; < 1 andy., (0) < ¢ () to obtain inequality[(1]2)

with constantlC.
The second case {s, (0) = 0. Now we have

C /

Let f € L? and definef, = fX{fz%}- Thusf < f1 + «/2. Thenf, < U(f1,L,) + «/2 and

p{f*>a}) <

{f*>a}C {supU(fl,,Cn) > %}

Therefore

ullr > ah < ({sw e > 51)

%C(a) g o (fr)dp

C
= @) /{f>§} o+ (f)dp.

IN

i

J. Inequal. Pure and Appl. Mathl0(2) (2009), Art. 58, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

10

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

F. D. MAZZONE AND F. ZO

REFERENCES

T. ANDO AND J. AMEMIYA, Almost everywhere convergence of prediction sequendg,ifl <
p < o0), Z. Wahrscheinlichkeitstheorie verw. Ga#h(1965), 113-120.

R. BARLOW, D. BARTHOLOMEW, J. BREMNERAND H. BRUNK, Statistical Inference under
Order Restrictions, The Theory and Applications of Isotonic Regresdodm Wiley & Sons, New
York, 1972.

S. BLOOM aND K. KERMAN, Weighted Orlicz space integral inequalities for the Hardy-
Littlewood maximal operatoStudia Mathematical10(2) (1994), 149-167.

H.D. BRUNK, On a extension of the concept of conditioned expectaBoo;. Amer. Math. Soc
14(1963), 298-304.

|. CARRIZO, S. FAVIERAND F. ZO, Extension of the best approximation operator in Orlicz
spaces, to appear Abstract and Applied Analysis

M. de GUZMAN, Differentiation of Integrals inR™, Springer-Verlag, Berlin-Heidelberg-New
York, 1975.

S. FAVIER AND F. ZO, Extension of the best approximation operator in Orlicz spaces and weak-
type inequalitiesAbstract and Applied Analysié (2001), 101-114.

V. KOKILASHVILI AND M. KRBEC, Weighted Inequalities in Lorentz and Orlicz Spad&syid
Scientific, Singapore, 1991.

D. LANDERS AND L. ROGGE, Best approximants ibg-spacesZ. Wahrsch. Verw. Gabieté1
(1980), 215-237.

D. LANDERS AND L. ROGGE, Isotonic approximation ih, Journal of Approximation Theory
31(1981), 199-223.

F. MAZZONE AND H. CUENYA, A characterization of begt-approximants with applications to
multidimensional isotonic approximatioBonstructive Approximatiqr21 (2005), 201-223.

M. RAO AND Z. REN, Theory of Orlicz Space#larcel Dekker Inc., New York, 1991.
M. RAO AND Z. REN, Applications of Orlicz SpaceMarcel Dekker Inc., New York, 2002.

T. ROBERTSON, F. WRIGHTAND L. DYKSTRA, Order Restricted Statistical Inferencéohn
Wiley & Sons, New York, 1988.

T. SHINTANI AND T. ANDO, Best approximants in-spaceZ. Wahrscheinlichkeitstheorie verw.
Gab, 33(1975), 33-39.

A. TORCHINSKY, Real-Variable Methods in Harmonic Analysfcademic Press Inc., New York,
1986.

J. Inequal. Pure and Appl. Mathl0(2) (2009), Art. 58, 10 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction and Main Result
	2. A Simple Theorem
	3. The Relation 
	4. Proof of the Theorem 1.1
	References

