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ABSTRACT. Let f be a function in an Orlicz spaceLΦ andµ(f,L) be the set of all the best
Φ-approximants tof, given aσ−latticeL. Weak type inequalities are proved for the maximal
operatorf∗ = supn |fn|, wherefn is any selection of functions inµ(f,Ln), andLn is an
increasing sequence ofσ-lattices. Strong inequalities are proved in an abstract set up which can
be used for an operator asf∗.
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1. I NTRODUCTION AND M AIN RESULT

Let (Ω,A, µ) be a finite measure space andM = M(Ω,A, µ) the set of allA-measurable
real valued functions. LetΦ be a Young function, that is an even and convex functionΦ : R →
R+ such thatΦ(a) = 0 iff a = 0. We denote byLΦ the space of all the functionsf ∈ M such
that

(1.1)
∫

Ω

Φ(tf)dµ <∞,

for somet > 0.
We say that the functionΦ satisfies the∆2 condition (Φ ∈ ∆2) if there exists a positive

constantΛ = ΛΦ such that for alla ∈ R

Φ(2a) ≤ ΛΦ(a).
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2 F. D. MAZZONE AND F. ZÓ

Under this condition, it is easy to check thatf ∈ LΦ iff inequality (1.1) holds for every positive
numbert.

The functionΦ satisfies the∇2 condition (Φ ∈ ∇2) if there exists a constantλ = λΦ > 2
such that

Φ(2a) ≥ λΦ(a).

A subsetL ⊂ A is a σ-lattice iff ∅,Ω ∈ L andL is closed under countable unions and
intersections. SetLΦ(L) for the set ofL-measurable functions inLΦ(Ω). Here,L-measurable
function means the class of functionsf : Ω → R such that{f > a} ∈ L, for all a ∈ R.

A functiong ∈ LΦ(L) is called a bestΦ-approximation tof ∈ LΦ iff∫
Ω

Φ(f − g)dµ = min
h∈LΦ(L)

∫
Ω

Φ(f − h)dµ.

We denote byµ(f,L) the set of all the bestΦ-approximants tof . It is well known thatµ(f,L) 6=
∅, for everyf ∈ LΦ, see [9].

WhenL is aσ-field B ⊂ A andΦ(t) = t2, the setµ(f,B) has exactly one element, namely
the conditional expectationEB(f) relative toB, which is a linear operator inL2 and can be
continuously extended to allL1. ForΦ(t) = tp, 1 < p < ∞ we obtain thep-predictorPB(f)
in the sense of Ando and Amemiya [1], which coincides with the conditional expectation for
p = 2. Thep-predictor operatorPB(f) is generally non-linear, and it is possible to extend it to
Lp−1 as a unique operator preserving a property of monotone continuity, see [10], wherePL is
studied for theσ-latticeL. The operatorPL(f), whenL is aσ-lattice andp = 2, falls within
what is called the theory of isotonic regression, first introduced by Brunk [4] (for applications
and further development, see [2, 14]). WhenΦ(x) = x andB is aσ-field, a functiong in the
setµ(f,B) is a conditional median, see [15] and [11] for more recent results. All the situations
described above are dealt with by considering minimization problems using convex functions
and Orlicz SpacesLΦ. For other and more detailed applications, see [2, 14] and chapter 7 of
[13].

We adjust a Young functionΦ to the origin byΦ̂(x) =
∫ x

0
ϕ̂(t)dt with ϕ̂(x) = ϕ+(x) −

ϕ+(0)sign(x), whereϕ+ denotes the right continuous derivative ofΦ. Now we can state our
principal result.

Theorem 1.1. Let Φ be a Young function such that̂Φ ∈ ∆2 ∩ ∇2. Suppose thatLn is an
increasing sequence ofσ-lattices, i.e.Ln ⊂ Ln+1 for everyn ∈ N. Let f be a nonnegative
function inLΦ, let fn be any selection of functions inµ(f,Ln), and consider the maximal
functionf ∗ = supn fn. Then there exists constantsC andc such thatf ∗ satisfies the following
weak type inequality:

(1.2) µ({f ∗ > α}) ≤ C

ϕ+(α)

∫
{f>cα}

ϕ+(f)dµ,

for everyα > 0.
The constantC only depends onΛΦ̂ andc depends onΛΦ̂ andλΦ̂.
If ϕ+(0) = 0 we can setc = 1

2
and we also have

(1.3) µ({f ∗ > α}) ≤ C

ϕ+(α)

∫
{f∗>α}

ϕ+(f)dµ,

for everyα > 0.

The constantsΛΦ̂ andλΦ̂ are those used in the definitions of the conditions∆2 and∇2 re-
spectively.
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MAXIMAL INEQUALITIES 3

Theorem 1.1 (in particular inequality (1.3) withϕ+(t) = tp−1, 1 < p < ∞) is an Orlicz
version of the “martingale maximal theorem”, Theorem 5.1 given in [6]. The classical Doob
result is given by inequality (1.3) withϕ+(t) = t andfn = EBn

[
f
]

whereBn is a increasing
sequence ofσ-fields inA.

We emphasise that our maximal operatorf ∗ is built up with functionsfn ∈ µ(f,Ln) obtained
as a minimization problem inLΦ, though (1.2) and (1.3) can be seen as some sorts of weak type
inequalities inLϕ+ for functionsf ∈ LΦ, a strictly smaller subset ofLϕ+ . The extension of the
operatorµ(f,L) to all Lϕ+ is not an easy task for generalΦ andL, see [5] for some results in
this direction and Theorem 1.1 can be applied to the extension operator given there.

Since operators such asf ∗ as well as other operators obtained as a best approximation func-
tion are not linear or even not sublinear, and in many cases are not positive homogeneous oper-
ators, we will assume that the inequalities (1.2) or (1.3) hold for two fixed measurable functions
f andf ∗ and anya > 0. From this set up, we interpolate to obtain the so called strong inequal-
ities. Now we state the interpolation problem as follows.

Letϕ be a nondecreasing function fromR+ into itself, and we consider two fixed measurable
functionsf, g : Ω → R+ satisfying the followingweak type inequality

(1.4) µ({f > a}) ≤ Cw
ϕ(a)

∫
{f>a}

ϕ(g)dµ,

for anya > 0.
We try to find functionsΨ such that thestrong type inequalitybelow holds:

(1.5)
∫

Ω

Ψ(f)dµ ≤ Cs

∫
Ω

Ψ(g)dµ,

whereCs = Cs(ϕ, Ψ, Cw). That is,Cs depends only onϕ, Ψ and the constantCw in inequality
(1.4).

An inequality closely related to (1.4) is the following one:

(1.6) µ({f > a}) ≤ C̃w
ϕ(a)

∫
{g>ca}

ϕ(g)dµ,

for everya > 0, andc a constant less than one.
It is well known in harmonic analysis and classical differentiation theory that is possible to

obtain inequality (1.6) from inequality (1.4) when the functionsf, g are related byf = Tg and
the functionT is a sublinear operator bounded fromL∞ into itself (see [6] or [16], and the last
part of the proof of the Theorem 1.1). In this case we need to assume that inequality (1.4) holds
for any measurable functiong in the domain ofT and anya > 0. We see that inequality (1.4)
implies inequality (1.6) if the functionΦ(x) =

∫ x
0
ϕ(t)dt is∇2 (see Lemma 2.2).

The strong inequality (1.5) will be a consequence of standard arguments in interpolation the-
ory [16]. In Theorem 2.3 we introduce the notion of quasi-increasing functions which implicitly
appears in some theorems (see Theorem 1.2.1 in [8]). The notion of quasi-increasing functions
is used to define when a functionΦ2 is “bigger” than a functionΦ1 and we will writeΦ1 ≺ Φ2

(see Definition 2.2). This notation is used to state interpolation results for Orlicz spaces in
Corollaries 2.4, 2.5 and 2.6. In [8] a condition related tox2 ≺ Φ(x) is used to obtain strong
inequalities. The relationx ≺ ϕ(x) is also named as a Dini condition, i.e.∫ x

0

ϕ(t)

t
dt ≤ Cφ(x),

for all x > 0 (see Theorem 1 and Proposition 3 in [3]). More on the relationΦ1 ≺ Φ2 is given
in Section 3 where we extend some results of [7].
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4 F. D. MAZZONE AND F. ZÓ

The results of Sections 2 and 3 can be used to obtain the strong inequalities (1.5) for the
particular operatorf ∗ given in Theorem 1.1.

It was proved in [7], in an abstract set up, that if two functionsη andξ are related by a weak
type inequality (1.4) with respect to the functionΦ′, that is,

(1.7) µ({η > a}) ≤ Cw
Φ′(a)

∫
{η>a}

Φ′(ξ)dµ,

for anya > 0, thenη andξ satisfy the strong inequality∫
Ψ(η)dµ ≤ CΨ

∫
Ψ(ξ)dµ,

for the functionsΨ : Ψ = (Φ′p, 1 ≤ p, andΨ = (Φ)p, for 1 ≤ p (also for somep in the range
0 < p < 1). In proving these results the conjugate functionΦ∗ was heavily used. We recall that

Φ∗(s) = sup
t
{st− Φ(t)}.

As consequence of Sections 2 and 3 we obtain a result more general than those in [7] without
appealing to the conjugate function.

2. A SIMPLE THEOREM

The following lemma is well known, see [12].

Lemma 2.1. For everya ∈ R+ we haveΦ(a) ≤ aϕ+(a). Moreover,Φ ∈ ∆2 iff there exists a
constantC > 0 such thataϕ+(a) ≤ CΦ(a).

Lemma 2.2. Letϕ be a nondecreasing function fromR+ into itself such thatϕ(rx) ≤ 1
2
ϕ(x),

for a constant0 < r < 1, and everyx > 0. Suppose thatf andg are nonnegative measurable
functions defined onΩ satisfying inequality(1.4). Then there exists a positive constantc =
c(r, Cw) < 1 such that

(2.1) µ({f > a}) ≤ 2Cw
ϕ(a)

∫
{g>ca}

ϕ(g)dµ,

for everya > 0.

Proof. By an inductive argument we get

(2.2) 2nϕ(rna) ≤ ϕ(a).

Let n ∈ N be such thatCw

2n < 1
2
, and setc = rn. Now, we split the integral on the right hand

side of (1.4) into the sets{g ≤ ca} and{g > ca}. By (2.2) we get

µ({f > a}) ≤ Cw
ϕ(a)

∫
{g>ca}

ϕ(g)dµ+
1

2
µ({f > a}).

Therefore inequality (2.1) follows. �

Remark 1. It is not difficult to see that a Young functionΨ satisfies the∇2 condition iff its right
derivativeψ+ fulfills the condition on Lemma 2.2. That is,ψ+(rx) ≤ 1

2
ψ+(x), for a constant

0 < r < 1, and everyx > 0.

Proof. SinceΨ(x) =
∫ x

0
ψ+(t)dt, the condition onψ+ implies thatΨ(rx) ≤ 1

2
Ψ(x), for every

x > 0, which is equivalent to the∇2 condition given before, see [12]. Now, if we have this
condition forΨ, it is readily seen thatψ+( r

2
x) ≤ 1

2
ψ+(x). �

We note that ifΦ ∈ ∇2 thenϕ+(0) = ϕ−(0) = 0, see Remark 1.
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MAXIMAL INEQUALITIES 5

Definition 2.1. We say that the functionη : R+ → R+ is a quasi-increasing function iff there
exists a constantρ > 0 such that

(2.3)
1

x

∫ x

0

η(t)dt ≤ ρη(x),

for everyx ∈ R+.

Theorem 2.3. Let f and g be measurable and positive functions defined onΩ satisfying in-
equality(2.1). LetΨ be aC1([0,+∞)) Young function and letψ be its derivative. Assume that
ψ
ϕ

is a quasi-increasing function.Then

(2.4)
∫

Ω

Ψ(f)dµ ≤ 2Cwρ

∫
Ω

Ψ

(
2

c
g

)
dµ.

Proof. We have that∫
Ω

Ψ(f)dµ =

∫ ∞

0

ψ(a)µ({f > a})dµ

≤ 2Cw

∫ ∞

0

ψ(a)

ϕ(a)

(∫
{g>ca}

ϕ(g)dµ

)
da

= 2Cw

∫
Ω

ϕ(g)

(∫ c−1g

0

ψ(a)

ϕ(a)
da

)
dµ.

(2.5)

Now, we get ∫ c−1g

0

ψ(a)

ϕ(a)
da ≤ ρc−1g

ψ(c−1g)

ϕ(c−1g)

≤ ρ
Ψ(2c−1g)

ϕ(c−1g)

(2.6)

Therefore, from equations (2.5), (2.6) and sincec < 1 in Lemma 2.2, we obtain Theorem
2.3. �

Definition 2.2. Let ϕ1, ϕ2 be two functions fromR+ into R+. We say thatϕ1 ≺ ϕ2 iff ϕ2ϕ
−1
1

is a quasi-increasing function.

The notationΦ1 ≺ Φ2 is also used if bothΦ1 andΦ2 are Young functions, in this case
Definition 2.2 is applied for the restriction of these functions toR+.

Remark 2. Let Φ1 andΦ2 be two Young functions and letϕ1+, ϕ2+ be their right derivatives.
If Φ1, Φ2 ∈ ∆2, using Lemma 2.1, we haveΦ1 ≺ Φ2 ⇔ ϕ1+ ≺ ϕ2+.

Remark 3. Despite the symbol used,≺ is not an order relation. We havex2 ≺ x
3
2 andx

3
2 ≺ x,

but the relationx2 ≺ x is false. In fact, for two arbitrary powers we havexα ≺ xβ ⇔ α−1 < β.

We may define, and it is useful, the relationϕ1 ≺ ϕ2 only for x near zero, say0 < x ≤ 1,
and only for large values ofx, i.e. 1 ≤ x. In the example given below, we will omit the rather
straightforward calculations.

Example 2.1. For0 < x ≤ 1 we havexα ≺ ln(1 + x) if and only if 0 < α < 2, and for1 ≤ x
the same relation is true only in the range0 < α < 1. On the other handln(1 + x) ≺ xα for all
x and0 < α. All the functions involved here are∆2 functions, but(1 + x) ln(1 + x)− x is not
∇2, so its derivativeln(1 + x) does not fulfill the condition on Lemma 2.2 (see Remark 1).
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6 F. D. MAZZONE AND F. ZÓ

In the following corollaries of Theorem 2.3 the Young functionΦ is the one given byΦ(x) =∫ x
0
ϕ(t)dt. They are obtained using this theorem, Lemma 2.2, Remark 1 and Remark 2.

Corollary 2.4. Let f and g be measurable and positive functions defined onΩ satisfying in-
equality(1.4). LetΨ be aC1([0,+∞)) Young function and letψ be its derivative. Assume that
ϕ ≺ ψ and the∇2 condition for the functionΦ holds. Then we have inequality(2.4).

Corollary 2.5. Let f and g be measurable and positive functions defined onΩ satisfying in-
equality(2.1), and assumeΦ is a∆2 function. LetΨ be aC1([0,+∞))∩∆2 Young function. If
Φ ≺ Ψ, then

(2.7)
∫

Ω

Ψ(f)dµ ≤ C

∫
Ω

Ψ(g)dµ,

where the constantC is independent of the functionsf andg.

Corollary 2.6. Let f and g be measurable and positive functions defined onΩ satisfying in-
equality (1.4) , and assumeΦ is a ∆2 ∩ ∇2 function. LetΨ be aC1([0,+∞)) ∩ ∆2 Young
function. IfΦ ≺ Ψ, then

(2.8)
∫

Ω

Ψ(f)dµ ≤ C

∫
Ω

Ψ(g)dµ,

where the constantC is independent of the functionsf andg.

Remark 4. By Corollary 2.6 we obtain inequality (1.5) for the following functionsΨ (all the
theorems quoted here belong to [7] and see that paper for a proof using conjugate functions). If
Ψ = Φ, clearlyΦ ≺ Φ, that is Theorem 3.3. The casep > 1 of Theorem 3.8 follows by setting
Ψ = Φp. For Theorem 3.4, setΨ = ϕp, p > 1 and observe thatϕ ≺ pϕp−1ϕ′.

The operatorf ∗ introduced in [7] is a monotone operator and(f + c)∗ = f ∗ + c for any
constantc. We can use Corollary 2.5 to obtain

(2.9)
∫

Ω

Ψ(f ∗)dµ ≤ C

∫
Ω

Ψ(f)dµ,

for every functionf ∈ LΨ, and allΨ quoted in Remark 4. Now the condition∇2 is dropped.

3. THE RELATION Φ ≺ Ψ

If η : R+ → R+ is a nondecreasing function thenη is clearly a quasi-increasing function. On
the other hand, there are decreasing functions which are quasi-increasing functions. We note
that if η is a quasi-increasing and nonincreasing function then

ρxη(x) ≥
∫ x

0

η(t)dt ≥
∫ x

2

0

η(t)dt ≥ x

2
η
(x

2

)
.

Therefore, there exists a constantK such that

(3.1) η
(x

2

)
≤ Kη(x).

Lemma 3.1. Let η : R+ → R+ be a nonincreasing function. Ifη satisfies inequality(3.1)with
K < 2, thenη is a quasi-increasing function.

Proof. In addition to the continuous averageAη(x) = 1
x

∫ x
0
η(t)dt, is convenient to introduce

the discrete averagesAdη(x) =
∑∞

0
1
2k η(

x
2k ) andA′dη = Adη − η.

As η is a nonincreasing function we have

(3.2)
1

2
Adη ≤ Aη ≤ A′dη.
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We estimate the discrete averageA′dη,

(3.3) A′dη(x) =
∞∑
1

1

2n
η
( x

2n

)
≤

∞∑
1

(
K

2

)n
η(x) =

K

2−K
η(x).

Now the lemma follows by (3.2) and (3.3). �

Corollary 3.2. Let ΨΦ−1 be a nonincreasing function,Φ ∈ ∆2 andΨ ∈ ∇2. Moreover if we
assume thatλ−1

Ψ ΛΦ < 2, thenΦ ≺ Ψ .

The next corollary is a version of Theorem 3.8 in [7] for the case0 < p < 1.

Corollary 3.3. Letϕ : R+ → R+ be a nondecreasing function with the∆2 condition2ϕ(x) ≤
Kϕ(x

2
). Let f and g be measurable nonnegative functions defined onΩ satisfying inequality

(2.1). Then

(3.4)
∫

Ω

Φp(f)dµ ≤ C

∫
Ω

Φp(g)dµ,

for any1 ≥ p > ln(K/2)(lnK)−1 andΦ(x) =
∫ x

0
ϕ(t)dt.Moreover the constantC isO(1/(2−

K1−p)) asp→ ln(K/2)(lnK)−1.

Proof. SinceΦ(x) ≤ KΦ(x
2
) we haveΦp−1(x

2
) ≤ K1−p Φp−1(x) for 0 < p < 1. Therefore, by

Lemma 3.1,Φ ≺ Φp wheneverK1−p < 2, and inequality (3.4) follows by Corollary 2.5. �

Remark 5. It is possible to replace (2.1) by (1.4) to again obtain inequality (3.4) for the same
range ofp if we place onϕ the conditionϕ(rx) ≤ 1

2
ϕ(x) with a constant0 < r < 1, and

2ϕ(x) ≤ Kϕ(x
2
), that is, ifΦ ∈ ∆2 ∩∇2 (see Lemma 2.2).

Proposition 3.4. LetΦ be inC1([0,+∞)) ∩∆2 and letΨ be a quasi increasing function. For
the functionΨ1(x) =

∫ x
0
Ψ(t)dt, suppose that there exists a constantp > 1 such that Ψ1

[Φ]p
is

non-decreasing. ThenΦ ≺ Ψ .

Proof. We have thatlog Ψ1 − p logΦ is a non-decreasing function inC1((0,+∞)). Then Ψ
Ψ1
≥

pΦ
′

Φ
, or (q − 1)Ψ

Φ
≥ qΦ

′Ψ1

Φ2 , with q = p/(p− 1). Therefore

q

(
ΨΦ− Φ′Ψ1

Φ2

)
≥ Ψ

Φ
.

Integrating the above inequality on[ε, x] we get

(3.5) q
Ψ1(x)

Φ(x)
≥
∫ x

ε

Ψ

Φ
dt+

Ψ1(ε)

Φ(ε)
.

From the hypotheses we have thatΨ1(ε)/Φ(ε) → 0, whenε → 0. Therefore inequality (3.5)
implies that

q
Ψ1(x)

Φ(x)
≥
∫ x

0

Ψ

Φ
dt.

Taking into account thatΨ is a quasi-increasing function, it follows thatΦ ≺ Ψ . �

We can use Proposition 3.4 to prove a generalization of Theorem 3.4 of [7] (see the end of
Remark 4). Indeed, given functionsϕ, θ ∈ C1∩∆2 setΦ(x) =

∫ x
0
ϕ(t)dt andΨ(x) = θ(ϕ(x)).

Then we haveΦ ≺ Ψ if θ(x)÷ xp is a nondecreasing function for somep > 1. In fact,Φ′ ≺ Ψ′

by Proposition 3.4.
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8 F. D. MAZZONE AND F. ZÓ

4. PROOF OF THE THEOREM 1.1

We need some additional considerations.

Lemma 4.1.LetΦ be a convex function satisfying the∆2 condition. Then there exists a constant
C > 0 such that for everya, x ≥ 0 we have that

ϕ+(a) + C2ϕ+(x− a) ≤ (C2 + 1)ϕ+(x).

Proof. If x ≥ a the assertion in the lemma is trivial. We suppose thatx < a. Thus a
2
≤

max{x, a− x}. Then

ϕ+(a) ≤ Kϕ+

(a
2

)
≤ Kϕ+(x) +Kϕ+(a− x)

≤ K2ϕ+(x) +K2ϕ+

(
a− x

2

)
≤ K2ϕ+(x) +K2ϕ−(a− x).

(4.1)

The lemma follows usingϕ+(y) = −ϕ−(−y) and (4.1). �

The following theorem was proved in [11]. We denote byL theσ-lattice of the setsD such
thatΩ \D ∈ L.

Theorem 4.2. Let f ∈ LΦ andL ⊂ A be aσ-lattice. Theng ∈ µ(f,L) iff for everyC ∈ L,
D ∈ L anda ∈ R the following inequalities hold

(4.2)
∫
{g>a}∩D

ϕ±(f − a)dµ ≥ 0 and
∫
{g<a}∩C

ϕ±(f − a)dµ ≤ 0.

The setµ(f,L) admits a minimum and a maximum, i.e. there exist elementsL(f,L) ∈
µ(f,L) andU(f,L) ∈ µ(f,L) such that for allg ∈ µ(f,L)

L(f,L) ≤ g ≤ U(f,L).

See [9, Theorem 14].
Now we prove Theorem 1.1.

Proof. We defineAn,1 = {f1 > α} and

Aj,n := {f1 ≤ α, . . . , fj−1 ≤ α, fj > α}

for j = 2, . . . , n.
Then we have that

An =

{
sup

1≤j≤n
fj > α

}
= A1,n ∪ · · · ∪ An,n.

As a consequence of Theorem 4.2, we obtain∫
Aj,n

ϕ+(f − α)dµ ≥ 0.

SinceAj,n ∩ Ai,n = ∅ for i 6= j, it follows that∫
{f∗>α}

ϕ+(f − α)dµ = lim
n→∞

∫
An

ϕ+(f − α)dµ ≥ 0.
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Therefore

(4.3) ϕ+(0)µ({f < α} ∩ {f ∗ > α})

≤ ϕ+(0)µ({f ≥ α} ∩ {f ∗ > α}) +

∫
{f∗>α}

ϕ̂(f − α)dµ.

Now, using Lemma 4.1 we have

(4.4)
∫
{f∗>α}

ϕ̂(f − α)dµ ≤ C1

∫
{f∗>α}

ϕ̂(f)dµ− C2ϕ̂(α)µ({f ∗ > α})

with Ci, i = 1, 2, constants depending only onΛϕ̂. Taking into account (4.3) and (4.4), we get

(4.5) ϕ+(α)µ({f ∗ > α}) ≤ Cϕ+(0)µ({f ≥ α} ∩ {f ∗ > α}) + C

∫
{f∗>α}

ϕ̂(f)dµ,

whereC = C(Λϕ̂). Thus we have proved inequality (1.3) of Theorem 1.1.
In order to prove inequality (1.2) of Theorem 1.1, we consider two cases.
Let us begin by assuming thatϕ+(0) > 0. We then split the set{f ∗ > α} in the integral of

(4.5) in the two regions{f ∗ > α} ∩ {f > cα} and{f ≤ cα} ∩ {f ∗ > α}. Now we use the
fact thatΦ̂ ∈ ∇2 and by Remark 1 there exist constants0 < c < 1 and0 < r small such that
ϕ̂(cx) ≤ rϕ̂(x). Then we have:

(4.6) ϕ+(α)µ({f ∗ > α}) ≤ Cϕ+(0)µ({f ≥ α})

+ C

∫
{f>cα}

ϕ̂(f)dµ+ rCϕ+(α)µ({f ∗ > α}).

We now use the Chebyshev inequality,rC < 1
2

andϕ+(0) ≤ ϕ+(α) to obtain inequality (1.2)
with constant4C.

The second case isϕ+(0) = 0. Now we have

µ({f ∗ > α}) ≤ C

ϕ+(α)

∫
{f∗>α}

ϕ+(f)dµ

for everyf ∈ LΦ andα > 0.
Let f ∈ LΦ and definef1 = fχ{f≥α

2 }
. Thusf ≤ f1 + α/2. Thenfn ≤ U(f1,Ln) + α/2 and

{f ∗ > α} ⊂
{

sup
n
U(f1,Ln) >

α

2

}
.

Therefore

µ ({f ∗ > α}) ≤ µ

({
sup
n
U(f1,Ln) >

α

2

})
≤ C

ϕ+(α)

∫
Ω

ϕ+(f1)dµ

=
C

ϕ+(α)

∫
{f>α

2
}
ϕ+(f)dµ.

�
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