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ABSTRACT. In this paper, we consider univalent log-harmonic mappings of the foemzhg
defined on the unit disk which are starlike of order . Representation theorems and distortion

theorem are obtained.
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1. INTRODUCTION

Let H(U) be the linear space of all analytic functions defined on the unit &lisk {z : |z| <
1}. Allog-harmonic mapping is a solution of the nonlinear elliptic partial differential equation
(1.2) f:E = aé,
f S
where the second dilation functienc H(U) is such thata(z)| < 1 forall z € U. It has been
shown that iff is a non-vanishing log-harmonic mapping, théoan be expressed as

f(z) = h(2)g(2),

whereh andg are analytic functions i/. On the other hand, if vanishes at = 0 but is not
identically zero, therf admits the following representation

f(2) = 22" h(2)(2),

whereRe 8 > —1/2, andh andg are analytic functions i/, g(0) = 1 and 1(0) # 0 (seel[3]).
Univalent log-harmonic mappings have been studied extensively (for details seé [1] — [5]).
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2 Z. ABDULHADI AND Y. ABU MUHANNA

Let f = z|2|*’hg be a univalent log-harmonic mapping. We say tfias a starlike log-
harmonic mapping of order if
zfz - zf?

0

M‘%Q(TQ)ZRGT>Q, 0<ax<l1
forall z € U. Denote by STy,(«) the set of all starlike log-harmonic mappings of ordeif
a = 0, we get the class of starlike log-harmonic mappings. Alsa$ta) = {f € STrn(a)
and f € HU)}. If f € STru(0) thenF(¢) = log(f(e*)) is univalent and harmonic on
the half plane {¢ : Re{(} < 0}. Itis known that F' is closely related with the theory of
nonparametric minimal surfaces over domains of the formo < u < uy(v), up(v + 27) =
uo(v), (seell7]).

In Sectior] 2 we include two representation theorems which establish the linkage between the
classesSTy,(«) and ST (a). In Sectior] B we obtain a sharp distortion theorem for the class
STLh(a).

(1.2)

2. REPRESENTATION THEOREMS

In this section, we obtain two representation theorems for functio§gjn(«). In the first
one we establish the connection between the clas$es(a) and ST («). The second one is
an integral representation theorem.

Theorem 2.1. Let f(z) = zh(z)g(z) be a log-harmonic mapping obi, 0 ¢ hg(U). Then
f € STun(a) ifand only if p(z) = 22E&) € ST(q).

g(2)
h

Proof. Let f(z) = zh(2)g(z) € STrn(«), then it follows that
0 arg f(re?) 2f: —Zfz

oo ReT
/ =
= Re (1 + S @)
h 7
! !
:Re(l%—ﬁ—ﬁ) > .
h g
Setting
zh(z)
)= )
©(2) (2
we obtain 3 )
O R A
f @

Since f is univalent, we know thad ¢ f.(U). Furthermore,

pofHw)=aq(w)=wlgo fH(w)™?

is locally univalent onf(U).
Indeed, we havé% = (1 —a(2))®= # oforall z € U. From Lemma 2.3 in[4] we

conclude thap is univalent on/. Hencep € ST («).
Conversely, letp € ST(a) and a € H(U) such that|a(z)| < 1 forall z € U be given. We
consider

_ T a(s)¢'(s)
@ o= ([ ™)
=(1—a)p(z) + a,andp € H(U) such thatp(0) = 1 and Re(p) > 0.

wherez£2)
w(z)
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Also, let
hz) = p(2)g(z)
and )
(2.2) f(z) = 2h(2)g(2) = @(2)]g(2)]*.

Thenh andg are non-vanishing analytic functions definedidynormalized by.(0) = ¢(0) =
1 andf is a solution of[(1.]l) with respect to
Simple calculations give that

darg f(re”) 2f. —%f 2¢'z)
—————~ =Re = Re
a0 f o(2)
Using the same argument we conclude that

foyH(w) = ga(w) =wlgo g™ (w)[*
is locally univalent onp(U) and thatf is univalent from Lemma 2.3 in_[4]. It follows that
f € STru(e), which completes the proof of Theorgm[2.1. O

The next result is an integral representation fore ST, («) for the case:(0) = 0. For
v € ST(a), we have
2¢p'z)
p(2)
wherep € H(U) is suchthatp(0) =1 and Re(p) > 0. Hence, there is a probability measure
u defined on the Boret—algebra ofdU such that

zp'z) 1+¢z
(2.3) T o-a) [ a0+

= (1 —a)p(z) + o,

and therefore,

(2.4) o0) = zexp (~201- ) [ tontt = Cuc0)).

On the other hand, let € H(U) be such thata(z)| < 1 for all z € U anda(0) = 0. Then
there is a probability measuredefined on the Boret—algebra ofoU such that

a(z) £z
(2.5) ) /aU — gZdy(g).

Substituting [(2.8)[(2]4), an@ (2.5), info (R.1) ahd|2.2) we get
Fo) = e (<20 - a) [ o1 = (@) + L(2)

where

0 [ 15 [o-028 <o o

Integrating and simplifying implies the following theorem:

Theorem 2.2. f = zhg € STpn(«) with a(0) = 0 if and only if there are two probability
measureg andv such that

7(z) = zexp ( | e <,§>du<<>dv<s>) ,
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where o
1+ ¢z
1—-(z

K(:06.9) = (1= a)log (10 ) +7(:.6.6)

(2.6) T(2¢,)
~2(1 ) Tm (5 ) arg (15 ) — 2al0g 1 — €2f; if[¢] = J¢] = 1,¢ £ ¢

(1-a)Re (%) — 2alog |1 - ¢z; f1¢) =l =1,¢ = ¢
Remark 2.3. Theorem[ 2.2 can be used in order to solve extremal problems for the class
STrp () with a(0) = 0. For example see Theorgm [3.1.
3. DISTORTION THEOREM
The following is a distortion theorem for the claS%},, (o) with a(0) = 0.

Theorem 3.1.Let f(z) = zh(2)g(2) € STrr(a) with a(0) = 0. Then forz € U we have
|| —4/2| 2| 4z|
6 g (-5 ) VOIS e (0= 9ro)

The equalities occur if and only if (z) = Cfo(¢2), [¢| = 1, where

(3.2) fol2) = = G :j) i _15)2a exp ((1 Y ) |

1—=z2

Proof. Let f(z) = zh(2)g(2) € STyu(a) with a(0) = 0. It follows from (2.1) and[(2]2) that

admits the representation
(3.3) f(z) = ¢(z) exp (2 Re /OZ @(Z)(fl)gi/(;()s))ds) :

wherep € ST («) anda € H(U) such thafa(z)| < 1 forall z € U.
For |z| = r, the well known facts

2¢(2) 1+
< —
o) | S (1—-a) 1_r+a,
a(z) 1
<
z(l—a(z))‘ —1-7’
and
r
o(2)] < 1
imply that

IS e (2 [ 5 (-t a)a)

- ﬁexp ((1 _@)14—7}) .

Equality occurs if and only ifa(z) = ¢z andp(z) =
f(2) = CfolC2).

=== 1] = 1, which leads to
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For the left-hand side, we have

7(2) = zexp ( | ke c,odu(c)du@) ,

where
K6, = (1 - a)log (10 ) + 706,
—2(1 - a) Im (££) arg (1552) — 2alog |1 - €2l; i Ic] = ¢ = 1,¢ £ ¢
e (1 - a)Re (52 ) — 20log 1 - C2I if1c)=le=1.c=¢

For |z| = r we have

f(2)

log ‘
“re( [ KOO
> i [winte ([ K¢ 9au0ane) )|

v | |z|=r
1 ) ) (+¢& 1-¢2
vt 200 (£28) (15 )
1
B

. : . 1+ e 1 — ey —4r
+ min [ogﬁlgg {g}lznr (—2(1 —a)Im <m> arg < T ) ; (11— a)l g ,
where e? = (¢.

Let
B.(1) = { |I§|11:nr (—2(1 —a)Im (}fiiﬁ) arg <1_1+2;Z>> , o<l <% } |

Then,(l) is a continuous and even function gh< 7. Hence

f(2) i i
1 > (1) =1 £, (D).
Og‘ 2 | 2R oy ) = o e+ Il @)
Since
1 — ey 9 arct rsin(l)
max ar = 2arctan [ —————
izer S\ 12 1+rcos(l) )’
we get
£(2) . rsin(l)
log || > 10g — = f |—4(1 — a)cot(l) arctan [ — ) __
BT, | =B |1+ 7|2 +ogl<§ (1= ) cot({) arctan 14rcos(l) )]’
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and using the fact thatrctan(x)| < |z|, we have
f(2) . rcos(l)
log | —=| > log ———— f 141 —a)———=
o8 =08 |1+ 7|2 oi?<g (1-a) 14 rcos(l)
1 r
> log ——— inf |—4(1— .
- Og|1—|—r|2°‘+ogl<g [ ( Oé)l—l—r}
The case of equality is attained by the functigits) = { fo(C2), [¢| = 1. O

The next application is a consequence of Thedrem 2.1.

Theorem 3.2.Let f(z) = zh(2)g(z) € STix(a). Then
(2)

z

Proof. Let f(z) = zh(2)g(2) € STix(a). Theny(z) = 2 € ST(a) by Theorel. The

result follows immediately fromrg £ = arg £ and from [6, p. 142]. O

arg

' < 2(1 — «) arcsin(|z]).
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