PYTHAGOREAN PARAMETERS AND NORMAL STRUCTURE IN BANACH SPACES

HONGWEI JIAO

Department of Mathematics Henan Institute of Science and Technology Xinxiang 453003, P.R. China.

EMail: hongwjiao@163.com

BIJUN PANG

Department of Mathematics Luoyang Teachers College Luoyang 471022, P.R. China.

Received: 16 August, 2007

Accepted: 15 February, 2008

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 46B20.

Key words: Uniform non-squareness; Normal structure.

Abstract: Recently, Gao introduced some quadratic parameters, such as $E_{\epsilon}(X)$ and $f_{\epsilon}(X)$.

In this paper, we obtain some sufficient conditions for normal structure in terms

of Gao's parameters, improving some known results.

Acknowledgements: The author would like to thank the anonymous referees for their helpful sugges-

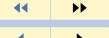
tions on this paper.

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents



Page 1 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

Introduction	3
	Introduction

2 Main Results 5

Pythagorean Parameters
Hongwei Jiao and Bijun Pang

vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

Page 2 of 10

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

1. Introduction

There are several parameters and constants which are defined on the unit sphere or the unit ball of a Banach space. These parameters and constants, such as the James and von Neumann-Jordan constants, have been proved to be very useful in the descriptions of the geometric structure of Banach spaces.

Based on a Pythagorean theorem, Gao introduced some quadratic parameters recently [1, 2]. Using these parameters, one can easily distinguish several important classes of spaces such as uniform non-squareness or spaces having normal structure.

In this paper, we are going to continue the study in Gao's parameters. Moreover, we obtain some sufficient conditions for a Banach space to have normal structure.

Let X be a Banach space and X^* its dual. We shall assume throughout this paper that B_X and S_X denote the unit ball and unit sphere of X, respectively.

One of Gao's parameters $E_{\epsilon}(X)$ is defined by the formula

$$E_{\epsilon}(X) = \sup\{\|x + \epsilon y\|^2 + \|x - \epsilon y\|^2 : x, y \in S_X\},\$$

where ϵ is a nonnegative number. It is worth noting that $E_{\epsilon}(X)$ was also introduced by Saejung [3] and Yang-Wang [5] recently. Let us now collect some properties related to this parameter (see [1, 4, 5]).

- (1) X is uniformly non-square if and only if $E_{\epsilon}(X) < 2(1+\epsilon)^2$ for some $\epsilon \in (0,1]$.
- (2) X has uniform normal structure if $E_{\epsilon}(X) < 1 + (1 + \epsilon)^2$ for some $\epsilon \in (0, 1]$.
- (3) $E_{\epsilon}(X) = E_{\epsilon}(\widetilde{X})$, where \widetilde{X} is the ultrapower of X.
- (4) $E_{\epsilon}(X) = \sup\{\|x + \epsilon y\|^2 + \|x \epsilon y\|^2 : x, y \in B_X\}.$

It follows from the property (4) that

$$E_{\epsilon}(X) = \inf \left\{ \frac{\|x + \epsilon y\|^2 + \|x - \epsilon y\|^2}{\max(\|x\|^2, \|y\|^2)} : x, y \in X, \|x\| + \|y\| \neq 0 \right\}.$$

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

Page 3 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Now let us pay attention to another Gao's parameter $f_{\epsilon}(X)$, which is defined by the formula

$$f_{\epsilon}(X) = \inf\{\|x + \epsilon y\|^2 + \|x - \epsilon y\|^2 : x, y \in S_X\},\$$

where ϵ is a nonnegative number.

We quote some properties related to this parameter (see [1, 2]).

- (1) If $f_{\epsilon}(X) > 2$ for some $\epsilon \in (0,1]$, then X is uniformly non-square.
- (2) X has uniform normal structure if $f_1(X) > 32/9$. Using a similar method to [4, Theorem 3], we can also deduce that $f_{\epsilon}(X) = f_{\epsilon}(\widetilde{X})$, where \widetilde{X} is the ultrapower of X.

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

44

>>

Page 4 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Main Results

We start this section with some definitions. Recall that X is called *uniformly non-square* if there exists $\delta > 0$, such that if $x, y \in S_X$ then $||x + y||/2 \le 1 - \delta$ or $||x - y||/2 \le 1 - \delta$. In what follows, we shall show that $f_{\epsilon}(X)$ also provides a characterization of the uniformly non-square spaces, namely $f_1(X) > 2$.

Theorem 2.1. X is uniformly non-square if and only if $f_1(X) > 2$.

Proof. It is convenient for us to assume in this proof that $\dim X < \infty$. The extension of the results to the general case is immediate, depending only on the formula

$$f_{\epsilon}(X) = \inf\{f_{\epsilon}(Y) : Y \text{ subspace of } X \text{ and } \dim Y = 2\}.$$

We are going to prove that uniform non-squareness implies $f_1(X) > 2$. Assume on the contrary that $f_1(X) = 2$. It follows from the definition of $f_{\epsilon}(X)$ that there exist $x, y \in S_X$ so that

$$||x + y||^2 + ||x - y||^2 = 2.$$

Then, since $||x + y|| + ||x - y|| \ge 2$, we have

$$||x \pm y||^2 = 2 - ||x \mp y||^2 \le 2 - (2 - ||x \pm y||)^2,$$

which implies that $||x\pm y||=1$. Now let us put $u=x+y,\ v=x-y$, then $u,v\in S_X$ and $||u\pm v||=2$. This is a contradiction. The converse of this assertion was proved by Gao [2, Theorem 2.8], and thus the proof is complete.

Consider now the definitions of normal structure. A Banach space X is said to have (weak) normal structure provided that every (weakly compact) closed bounded convex subset C of X with $\operatorname{diam}(C) > 0$, contains a non-diametral point, i.e., there exists $x_0 \in C$ such that $\sup\{\|x - x_0\| : x \in C\} < \operatorname{diam}(C)$. It is clear that normal

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

44 >>

Page 5 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

structure and weak normal structure coincides when X is reflexive. A Banach space X is said to have *uniform normal structure* if $\inf\{\operatorname{diam}(C)/\operatorname{rad}(C)\} > 1$, where the infimum is taken over all bounded closed convex subsets C of X with $\operatorname{diam}(C) > 0$.

To study the relation between normal structure and Gao's parameter, we need a sufficient condition for normal structure, which was posed by Saejung [4, Lemma 2] recently.

Theorem 2.2. Let X be a Banach space with

$$E_{\epsilon}(X) < 2 + \epsilon^2 + \epsilon \sqrt{4 + \epsilon^2}$$

for some $\epsilon \in (0,1]$, then X has uniform normal structure.

Proof. By our hypothesis it is enough to show that X has normal structure. Suppose that X lacks normal structure, then by [4, Lemma 2], there exist $\widetilde{x}_1, \widetilde{x}_2, \widetilde{x}_3 \in S_{\widetilde{X}}$ and $\widetilde{f}_1, \widetilde{f}_2, \widetilde{f}_3 \in S_{\widetilde{X}^*}$ satisfying:

(a)
$$\|\widetilde{x}_i - \widetilde{x}_j\| = 1$$
 and $\widetilde{f}_i(\widetilde{x}_j) = 0$ for all $i \neq j$.

(b)
$$\widetilde{f}_i(\widetilde{x}_i) = 1$$
 for $i = 1, 2, 3$ and

(c)
$$\|\widetilde{x}_3 - (\widetilde{x}_2 + \widetilde{x}_1)\| \ge \|\widetilde{x}_2 + \widetilde{x}_1\|$$
.

Let $2\alpha(\epsilon) = \sqrt{4 + \epsilon^2} + 2 - \epsilon$ and consider three possible cases.

CASE 1. $\|\widetilde{x}_1 + \widetilde{x}_2\| \le \alpha(\epsilon)$. In this case, let us put $\widetilde{x} = \widetilde{x}_1 - \widetilde{x}_2$ and $\widetilde{y} = (\widetilde{x}_1 + \widetilde{x}_2)/\alpha(\epsilon)$. It follows that $\widetilde{x}, \widetilde{y} \in B_{\widetilde{X}}$, and

$$\|\widetilde{x} + \epsilon \widetilde{y}\| = \|(1 + (\epsilon/\alpha(\epsilon)))\widetilde{x}_1 - (1 - (\epsilon/\alpha(\epsilon)))\widetilde{x}_2\|$$

$$\geq (1 + (\epsilon/\alpha(\epsilon)))\widetilde{f}_1(\widetilde{x}_1) - (1 - (\epsilon/\alpha(\epsilon)))\widetilde{f}_1(\widetilde{x}_2)$$

$$= 1 + (\epsilon/\alpha(\epsilon)),$$

Pythagorean Parameters

Hongwei Jiao and Bijun Pang

vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

44

Page 6 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

$$\begin{aligned} \|\widetilde{x} - \epsilon \widetilde{y}\| &= \|(1 + (\epsilon/\alpha(\epsilon))) \, \widetilde{x}_2 - (1 - (\epsilon/\alpha(\epsilon))) \, \widetilde{x}_1\| \\ &\geq (1 + (\epsilon/\alpha(\epsilon))) \, \widetilde{f}_2(\widetilde{x}_2) - (1 - (\epsilon/\alpha(\epsilon))) \, \widetilde{f}_2(\widetilde{x}_1) \\ &= 1 + (\epsilon/\alpha(\epsilon)). \end{aligned}$$

CASE 2. $\|\widetilde{x}_1 + \widetilde{x}_2\| \ge \alpha(\epsilon)$ and $\|\widetilde{x}_3 + \widetilde{x}_2 - \widetilde{x}_1\| \le \alpha(\epsilon)$. In this case, let us put $\widetilde{x} = \widetilde{x}_2 - \widetilde{x}_3$ and $\widetilde{y} = (\widetilde{x}_3 + \widetilde{x}_2 - \widetilde{x}_1)/\alpha(\epsilon)$. It follows that $\widetilde{x}, \widetilde{y} \in B_{\widetilde{x}}$, and

$$\|\widetilde{x} + \epsilon \widetilde{y}\| = \|(1 + (\epsilon/\alpha(\epsilon)))\widetilde{x}_2 - (1 - (\epsilon/\alpha(\epsilon)))\widetilde{x}_3 - (\epsilon/\alpha(\epsilon))\widetilde{x}_1\|$$

$$\geq (1 + (\epsilon/\alpha(\epsilon)))\widetilde{f}_2(\widetilde{x}_2) - (1 - (\epsilon/\alpha(\epsilon)))\widetilde{f}_2(\widetilde{x}_3) - (\epsilon/\alpha(\epsilon))\widetilde{f}_2(\widetilde{x}_1)$$

$$= 1 + (\epsilon/\alpha(\epsilon)),$$

$$\begin{aligned} \|\widetilde{x} - \epsilon \widetilde{y}\| &= \| (1 + (\epsilon/\alpha(\epsilon))) \, \widetilde{x}_3 - (1 - (\epsilon/\alpha(\epsilon))) \, \widetilde{x}_2 - (\epsilon/\alpha(\epsilon)) \widetilde{x}_1) \| \\ &\geq (1 + (\epsilon/\alpha(\epsilon))) \, \widetilde{f}_3(\widetilde{x}_3) - (1 - (\epsilon/\alpha(\epsilon))) \, \widetilde{f}_3(\widetilde{x}_2) - (\epsilon/\alpha(\epsilon)) \widetilde{f}_3(\widetilde{x}_1) \\ &= 1 + (\epsilon/\alpha(\epsilon)). \end{aligned}$$

CASE 3. $\|\widetilde{x}_1 + \widetilde{x}_2\| \ge \alpha(\epsilon)$ and $\|\widetilde{x}_3 + \widetilde{x}_2 - \widetilde{x}_1\| \ge \alpha(\epsilon)$. In this case, let us put $\widetilde{x} = \widetilde{x}_3 - \widetilde{x}_1$ and $\widetilde{y} = \widetilde{x}_2$. It follows that $\widetilde{x}, \widetilde{y} \in S_{\widetilde{x}}$, and

$$\|\widetilde{x} + \epsilon \widetilde{y}\| = \|\widetilde{x}_3 + \epsilon \widetilde{x}_2 - \widetilde{x}_1\|$$

$$\geq \|\widetilde{x}_3 + \widetilde{x}_2 - \widetilde{x}_1\| - (1 - \epsilon)$$

$$\geq \alpha(\epsilon) + \epsilon - 1,$$

$$\|\widetilde{x} - \epsilon \widetilde{y}\| = \|\widetilde{x}_3 - (\epsilon \widetilde{x}_2 + \widetilde{x}_1)\|$$

$$\geq \|\widetilde{x}_3 - (\widetilde{x}_2 + \widetilde{x}_1)\| - (1 - \epsilon)$$

$$\geq \alpha(\epsilon) + \epsilon - 1.$$

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

44 >>

Page 7 of 10

Go Back

Full Screen
Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Then, by definition of $E_{\epsilon}(X)$ and the fact $E_{\epsilon}(X) = E_{\epsilon}(\widetilde{X})$,

$$E_{\epsilon}(X) \ge 2 \min \{1 + (\epsilon/\alpha(\epsilon)), \ \alpha(\epsilon) + \epsilon - 1\}^2$$

= $2 + \epsilon^2 + \epsilon \sqrt{4 + \epsilon^2}$.

This is a contradiction and thus the proof is complete.

Remark 1. It is proved that $E_{\epsilon}(X) < 1 + (1 + \epsilon)^2$ for some $\epsilon \in (0, 1]$ implies that X has uniform normal structure. So Theorem 2.2 is an improvement of such a result.

Theorem 2.3. Let X be a Banach space with

$$f_{\epsilon}(X) > ((1+\epsilon^2)^2 + 2\epsilon(1-\epsilon^2))(2+\epsilon^2 - \epsilon\sqrt{4+\epsilon^2})$$

for some $\epsilon \in (0,1]$, then X has uniform normal structure.

Proof. By our hypothesis it is enough to show that X has normal structure. Assume that X lacks normal structure, then from the proof of Theorem 2.2 we can find $\widetilde{x},\widetilde{y}\in B_{\widetilde{X}}$ such that

$$\|\widetilde{x} \pm \epsilon \widetilde{y}\| \ge 1 + (\epsilon/\alpha(\epsilon)) = \alpha(\epsilon) + \epsilon - 1 =: \beta(\epsilon).$$

Put $\widetilde{u} = (\widetilde{x} + \epsilon \widetilde{y})/\beta(\epsilon)$ and $\widetilde{v} = (\widetilde{x} - \epsilon \widetilde{y})/\beta(\epsilon)$. It follows that $\|\widetilde{u}\|, \|\widetilde{v}\| \ge 1$, and

$$\|\widetilde{u} + \epsilon \widetilde{v}\| = \left\| \frac{1}{\beta(\epsilon)} ((1+\epsilon)\widetilde{x} + \epsilon(1-\epsilon)\widetilde{y}) \right\|$$

$$\leq \frac{(1+\epsilon) + \epsilon(1-\epsilon)}{\beta(\epsilon)},$$

$$\|\widetilde{u} - \epsilon \widetilde{v}\| = \frac{1}{\beta(\epsilon)} ((1-\epsilon)\widetilde{x} + \epsilon(1+\epsilon)\widetilde{y})$$

$$\leq \frac{(1-\epsilon) + \epsilon(1+\epsilon)}{\beta(\epsilon)}.$$

Pythagorean Parameters

Hongwei Jiao and Bijun Pang

vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

Page 8 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Hence, by the definition of $f_{\epsilon}(X)$ and the fact $f_{\epsilon}(X) = f_{\epsilon}(\widetilde{X})$, we have

$$f_{\epsilon}(X) \leq \frac{((1+\epsilon)+\epsilon(1-\epsilon))^2 + ((1-\epsilon)+\epsilon(1+\epsilon))^2}{\beta^2(\epsilon)}$$
$$= ((1+\epsilon^2)^2 + 2\epsilon(1-\epsilon^2))(2+\epsilon^2 - \epsilon\sqrt{4+\epsilon^2}),$$

which contradicts our hypothesis.

Remark 2. Letting $\epsilon = 1$, one can easily get that if $f_1(X) > 4(3 - \sqrt{5})$, then X has uniform normal structure. So this is an extension and an improvement of [2, Theorem 5.3].

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

Page 9 of 10

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

References

- [1] J. GAO, Normal structure and Pythagorean approach in Banach spaces, *Period. Math. Hungar.*, **51**(2) (2005), 19–30.
- [2] J. GAO, A Pythagorean approach in Banach spaces, *J. Inequal. Appl.*, (2006), 1-11. Article ID 94982
- [3] S. SAEJUNG, On James and von Neumann-Jordan constants and sufficient conditions for the fixed point property, *J. Math. Anal. Appl.*, **323** (2006), 1018–1024.
- [4] S. SAEJUNG, Sufficient conditions for uniform normal structure of Banach spaces and their duals, *J. Math. Anal. Appl.*, **330** (2007), 597–604.
- [5] C. YANG AND F. WANG, On a new geometric constant related to the von Neumann-Jordan constant, *J. Math. Anal. Appl.*, **324** (2006), 555–565.

Pythagorean Parameters

Hongwei Jiao and Bijun Pang vol. 9, iss. 1, art. 21, 2008

Title Page

Contents

•

Page 10 of 10

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756