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ABSTRACT. The general problem in this paper is minimizing theCp− norm of suitable affine
mappings fromB(H) to Cp, using convex and differential analysis (Gateaux derivative) as well
as input from operator theory. The mappings considered generalize the so-called elementary
operators and in particular the generalized derivations, which are of great interest by themselves.
The main results obtained characterize global minima in terms of (Banach space) orthogonality,
and constitute an interesting combination of infinite-dimensional differential analysis, operator
theory and duality. Note that the results obtained generalize all results in the literature concerning
operator which are orthogonal to the range of a derivation and the techniques used have not been
done by other authors.

Key words and phrases:Elementary operators, Schattenp-classes, orthogonality, Gateaux derivative.

2000Mathematics Subject Classification.Primary 47B47, 47A30, 47B20; Secondary 47B10.

1. I NTRODUCTION

LetE be a complex Banach space. We first define orthogonality inE. We say thatb ∈ E is
orthogonal toa ∈ E if for all complexλ there holds

(1.1) ‖a+ λb‖ ≥ ‖a‖ .
This definition has a natural geometric interpretation. Namely,b⊥a if and only if the complex
line {a+ λb | λ ∈ C} is disjoint with the open ballK (0, ‖a‖) , i.e., iff this complex line is a
tangent one. Note that ifb is orthogonal toa, thena need not be orthogonal tob. If E is a
Hilbert space, then from (1.1) follows〈a, b〉 = 0, i.e., orthogonality in the usual sense. Next we
define the von Neumann-Schatten classesCp (1 ≤ p <∞). LetB(H) denote the algebra of all
bounded linear operators on a complex separable and infinite dimensional Hilbert spaceH and
let T ∈ B(H) be compact, and lets1(T ) ≥ s2(T ) ≥ · · · ≥ 0 denote the singular values ofT ,
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2 SALAH MECHERI

i.e., the eigenvalues of|T | = (T ∗T )
1
2 arranged in their decreasing order. The operatorT is said

to belong to the Schattenp-classesCp if

‖T‖p =

[
∞∑
i=1

si(T )p

] 1
p

= [tr|T |p]
1
p <∞, 1 ≤ p <∞,

wheretr denotes the trace functional. HenceC1 is the trace class,C2 is the Hilbert-Schmidt
class, andC∞ corresponds to the class of compact operators with

‖T‖∞ = s1(T ) = sup
‖f‖=1

‖Tf‖

denoting the usual operator norm. For the general theory of the Schattenp-classes the reader
is referred to [16]. Recall (see [16]) that the norm‖·‖ of theB−spaceV is said to be Gâteaux
differentiable at non-zero elementsx ∈ V if there exists a unique support functional (in the dual
spaceV ∗) such that‖Dx‖ = 1 andDx(x) = ‖x‖, satisfying

lim
R3t→0

‖x+ ty‖ − ‖x‖
t

= ReDx(y),

for all y ∈ V . HereR denotes the set of all reals andRe denotes the real part. The Gâteaux
differentiability of the norm atx implies thatx is a smooth point of a sphere of radius‖x‖.

It is well known (see [6] and the references therein) that for1 < p < ∞, Cp is a uniformly
convex Banach space. Therefore every non-zeroT ∈ Cp is a smooth point and in this case the
support functional ofT is given by

(1.2) DT (X) = tr

[
|T |p−1 UX∗

‖T‖p−1
p

]
,

for all X ∈ Cp, whereT = U |T | is the polar decomposition ofT. The first result concerning
the orthogonality in a Banach space was given by Anderson [1] showing that ifA is a normal
operator on a Hilbert spaceH, thenAS = SA implies that for any bounded linear operatorX
there holds

(1.3) ‖S + AX −XA‖ ≥ ‖S‖ .
This means that the range of the derivationδA : B(H) → B(H) defined byδA(X) = AX−XA
is orthogonal to its kernel. This result has been generalized in two directions: by extending the
class of elementary mappings

EA,B : B(H) → B(H); EA,B(X) =
n∑
i=1

AiXBi −X

and
∼
EA,B : B(H) → B(H);

∼
EA,B(X) =

n∑
i=1

AiXBi,

where(A1, A2, . . . , An) and(B1, B2, . . . , Bn) aren− tuples of bounded operators onH, and
by extending the inequality (1.3) toCp-classes with1 < p < ∞ see [3], [6], [9]. The Gâteaux
derivative concept was used in [3, 5, 6, 7, 15] and [8], in order to characterize those opera-
tors which are orthogonal to the range of a derivation. The main purpose of this note is to
characterize the global minimum of the map

X 7→ ‖S + φ(X)‖Cp
, φ is a linear map inB(H),

in Cp by using the Gateaux derivative. These results are then applied to characterize the opera-
torsS ∈ Cp which are orthogonal to the range of elementary operators. It is very interesting to
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point out that our Theorem 2.3 and its Corollary 2.6 generalize Theorem 1 in [6] , Lemma 2 in
[3] and Theorem 2.1 in [18].

2. M AIN RESULTS

Let φ : B(H) → B(H) be a linear map, that is,φ(αX + βY ) = αφ(X) + βφ(Y ), for all
α, β ∈ C and allX,Y ∈ B(H), and letS ∈ Cp (1 < p <∞). Put

U = {X ∈ B(H) : φ(X) ∈ Cp} .

Let ψ : U → Cp be defined by
ψ(X) = S + φ(X).

Define the functionFψ : U → R+ byFψ(X) = ‖ψ(X)‖Cp
. Now we are ready to prove our first

result inCp-classes(1 < p < ∞). It gives a necessary and sufficient optimality condition for
minimizingFψ.

LetX be a Banach space,φ a linear mapX → X, andψ(x) = φ(x) + s for some element
s ∈ X. Use the notation

Dx(y) = lim
t→0+

1

t
(‖x+ ty‖ − ‖x‖).

It is obvious thatDx is sub-additive andDx(y) ≤ ‖y‖, alsoDx(x) = ‖x‖ andDx(−x) = −‖x‖.

Theorem 2.1.The mapFψ = ‖ψ(x)‖ has a global minimum atx ∈ X if and only if

(2.1) Dψ(x)(φ(y)) ≥ 0, ∀y ∈ X.

Proof. Necessity is immediate fromψ(x) + tφ(y) = ψ(x + ty). Sufficency: assume the stated
condition and choosey. Note thatφ(y − x) = ψ(y) − ψ(x). For brevity we letDψ(x) = L.
Then

‖ψ(x)‖ = −L(−ψ(x))

≤ −L(−ψ(x)) + L(ψ(y)− ψ(x)) by hypothesis

≤ L(ψ(y)) by sub-additivity

≤ ‖ψ(y)‖.

�

Theorem 2.2([7]). LetX, Y ∈ Cp. Then, there holds

DX(Y ) = pRe
{
tr(|X|p−1U∗Y )

}
,

whereX = U |X| is the polar decomposition ofX.

The following corollary establishes a characterization of the Gateaux derivative of the norm
in Cp-classes(1 < p < ∞). Now we are going to characterize the global minimum ofFψ on
Cp (1 < p <∞), whenφ is a linear map satisfying the following useful condition:

(2.2) tr(Xφ(Y )) = tr(φ∗(X)Y ), ∀X, Y ∈ Cp
whereφ∗ is an appropriate conjugate of the linear mapφ. We state some examples ofφ andφ∗

which satisfy the above condition (2.2).

(1) The elementary operator
∼
EA,B : I → I defined by

∼
EA,B(X) =

n∑
i=1

AiXBi,
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whereAi, Bi ∈ B(H) (1 ≤ i ≤ n) andI is a separable ideal of compact operators
in B(H) associated with some unitarily invariant norm. It is easy to show that the
conjugate operatorE∗A,B : I∗ → I∗ of EA,B has the form

∼
E
∗

A,B(X) =
n∑
i=1

BiXAi,

and that the operators
∼
EA,B and

∼
E
∗

A,B satisfy the condition (2.2).
(2) Using the previous example we can check that the conjugate operatorE∗A,B : I∗ → I∗

of the elementary operatorEA,B defined byEA,B(X) =
∑n

i=1AiXBi−X, has the form

E∗A,B(X) =
n∑
i=1

BiXAi −X,

and that the operatorsEA,B andE∗A,B satisfy the condition (2.2).

Now, we are in position to prove the following theorem.

Theorem 2.3. Let V ∈ Cp, and letψ(V ) have the polar decompositionψ(V ) = U |ψ(V )|.
ThenFψ has a global minimum onCp at V if and only if|ψ(V )|U∗ ∈ kerφ∗.

Proof. Assume thatFψ has a global minimum onCp atV . Then

(2.3) Dψ(V )(φ(Y )) ≥ 0,

for all Y ∈ Cp. That is,

pRe
{
tr(|ψ(V )|p−1U∗φ(Y ))

}
≥ 0, ∀Y ∈ Cp.

This implies that

(2.4) Re{tr(|ψ(V )|p−1U∗φ(Y ))} ≥ 0, ∀Y ∈ Cp.
Let f ⊗ g, be the rank one operator defined byx 7→ 〈x, f〉 g wheref, g are arbitrary vectors in
the Hilbert spaceH. TakeY = f ⊗ g, since the mapφ satisfies (2.2) one has

tr(|ψ(V )|p−1U∗φ(Y )) = tr(φ∗(|ψ(V )|p−1U∗)Y ).

Then (2.4) is equivalent toRe{tr(φ∗(|ψ(V )|p−1U∗)Y )} ≥ 0, for all Y ∈ Cp, or equivalently

Re
〈
φ∗(|ψ(V )|p−1U∗)g, f

〉
≥ 0, ∀f, g ∈ H.

If we choosef = g such that‖f‖ = 1, we get

(2.5) Re
〈
φ∗(|ψ(V )|p−1U∗)f, f

〉
≥ 0.

Note that the set
{
〈
φ∗(|ψ(V )|p−1U∗)f, f

〉
: ‖f‖ = 1}

is the numerical range ofφ∗(|ψ(V )|p−1U∗) onU which is a convex set and its closure is a closed
convex set. By (2.5) it must contain one value of positive real part, under all rotation around the
origin, it must contain the origin, and we get a vectorf ∈ H such that〈φ∗(|ψ(V )|p−1U∗)f, f〉 <
ε where ε is positive. Sinceε is arbitrary, we get〈φ∗(|ψ(V )|p−1U∗)f, f〉 = 0. Thus
φ∗(|ψ(V )|p−1U∗) = 0, i.e., |ψ(V )|p−1U∗ ∈ kerφ∗.

Conversely, ifψ(V )|p−1U∗ ∈ kerφ∗, then|ψ(V )|p−1U∗ ∈ kerφ∗. It is easily seen (using the
same arguments above) that

Re
{
tr(|ψ(V )|p−1U∗φ(Y ))

}
≥ 0, ∀Y ∈ Cp.

By this we get (2.3). �
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We state our first corollary of Theorem 2.3. Letφ = δA,B, whereδA,B : B(H) → B(H) is
the generalized derivation defined byδA,B(X) = AX −XB.

Corollary 2.4. Let V ∈ Cp, and letψ(V ) have the polar decompositionψ(V ) = U |ψ(V )|.
ThenFψ has a global minimum onCp at V , if and only if|ψ(V )|p−1U∗ ∈ ker δB,A.

Proof. It is a direct consequence of Theorem 2.3. �

This result may be reformulated in the following form where the global minimumV does not
appear. It characterizes the operatorsS in Cp which are orthogonal to the range of the derivation
δA,B.

Theorem 2.5.LetS ∈ Cp, and letψ(S) have the polar decompositionψ(S) = U |ψ(S)|. Then

‖ψ(X)‖Cp
≥ ‖ψ(S)‖Cp

,

for all X ∈ Cp if and only if|ψ(S)|p−1U∗ ∈ ker δB,A.

As a corollary of this theorem we have

Corollary 2.6. LetS ∈ Cp ∩ ker δA,B have the polar decompositionS = U |S|. Then the two
following assertions are equivalent:

(1)
‖S + (AX −XB)‖Cp

≥ ‖S‖Cp
, for all X ∈ Cp.

(2) |S|p−1U∗ ∈ ker δB,A.

Remark 2.7. We point out that, thanks to our general results given previously with more
general linear mapsφ, Theorem 2.5 and its Corollary 2.6 are true for the nuclear operator
∆A,B(X) = AXB − X and other more general classes of operators thanδA,B such as the

elementary operatorsEA,B(X) and
∼

EA,B(X).

The above corollary generalizes Theorem 1 in [6]and Lemma 2 in [3].
Now by using Theorem 2.5 , Corollary 2.6, Remark 2.7 and the following Lemma 2.8 and

Lemma 2.10 we obtain some interesting results see also ([3], [13]). LetS = U |S| be the polar
decomposition ofS.

Lemma 2.8. LetA,B ∈ B(H) andT ∈ Cp such thatker δA,B(T ) ⊆ ker δ∗A,B(T ).

If A |S|p−1 U∗ = |S|p−1 U∗B, wherep > 1 andS = U |S| is the polar decomposition ofS,
thenA |S|U∗ = |S|U∗B.

Proof. If T = |S|p−1, then

(2.6) ATU∗ = TU∗B.

We prove that

(2.7) AT nU∗ = T nU∗B,

for all n ≥ 1. If S = U |S|, then

kerU = ker |S| = ker |S|p−1 = kerT

and
(kerU)⊥ = (kerT )⊥ = R(T ).

This shows that the projectionU∗U onto(kerT )⊥ satifiesU∗UT = T andTU∗UT = T 2. By
taking the adjoints of (2.6) and sinceker δA,B(T ) ⊆ ker δ∗A,B(T ), we getBUT = UTA and

AT 2 = ATU∗UT = TU∗BUT = TU∗UTA = T 2A.
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SinceA commutes with the positive operatorT 2, A commutes with its square roots, that is,

(2.8) AT = TA

By (2.6) and (2.8) we obtain (2.7). Letf(t) be the map defined onσ(T ) ⊂ R+ by f(t) =

t
1

p−1 ; 1 < p < ∞. Sincef is the uniform limit of a sequence(Pi) of polynomials without
constant term (sincef(0) = 0), it follows from (2.8) thatAPi(T )U∗ = Pi(T )U∗B. Therefore
AT

1
p−1U∗ = U∗T

1
p−1B. �

Theorem 2.9. Let A, B be operators inB(H) such thatker δA,B ⊆ ker δA∗,B∗ . ThenT ∈
ker δA,B ∩ Cp, if and only if

‖T + δA,B(X)‖p ≥ ‖T‖p ,
for all X ∈ Cp.

Proof. If T ∈ ker ∆A,B then by applying Theorem 3.4 in [9] it follows that

‖T + δA,B(X)‖p ≥ ‖T‖p ,
for all X ∈ Cp. Conversely, if

‖T + δA,B(X)‖p ≥ ‖T‖p ,
for all X ∈ Cp, then from Corollary 2.6

A |T |U∗ = |S|U∗B.

Sinceker δA,B ⊆ ker δA∗,B∗,B∗ |T |p−1 U∗ = |T |p−1 U∗A∗.By taking adjoints we getAU |T |p−1

= U |T |p−1B. From Lemma 2.8 it follows thatAU |T | = U |T |B. i.e.,T ∈ ker δA,B. �

Note that the above theorem still holds if we consider∆A,B instead ofδA,B.
LetA = (A1, A2, . . . , An), B = (B1, B2, . . . , Bn) ben−tuples of operators inB(H). In the

following Theorem 2.12 we will characterizeT ∈ Cp for 1 < p < ∞, which are orthogonal
to R(EA,B | Cp) (the range ofEA,B | Cp) for a general pair of operatorsA,B. For this let
S = U |S| be the polar decomposition ofS. We start by the following lemma or the case where
EC =

∑
CiXCi −X which will be used in the proof of Theorem 2.12.

Let S = U |S| be the polar decomposition ofS.

Lemma 2.10. Let C = (C1, C2, . . . , Cn) be ann−tuple of operators inB(H) such that∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1 andkerEC ⊆ kerEC∗. If

n∑
i=1

CiU |S|p−1Ci = U |S|p−1 ,

wherep > 1, then
n∑
i=1

CiU |S|Ci = U |S| .

Proof. If T = |S|p−1, then

(2.9)
n∑
i=1

CiUTCi = UT.

We prove that

(2.10)
n∑
i=1

CiUT
nCi = UT n,
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It is known that if
∑n

i=1CiC
∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1 andkerEc ⊆ kerE∗c that the eigenspaces

corresponding to distinct non-zero eigenvalues of the compact positive operator|S|2 reduces
eachCi (see [4], Theorem 8), ([18], Lemma 2.3)). In particular,|S| commutes withCi for all
1 ≤ i ≤ n. This implies also that|S|p−1 = T commutes with eachCi for all 1 ≤ i ≤ n. Hence
Ci |T | = |T |Ci andCiT 2 = T 2Ci. �

SinceCi commutes with the positive operatorT 2, thenCi commutes with its square roots,
that is,

(2.11) CiT = TCi.

By the same arguments used in the proof of Lemma 2.8 the proof of this lemma can be com-
pleted.

Theorem 2.11. Let C = (C1, C2, . . . , Cn) be ann−tuple of operators inB(H) such that∑n
i=1CiC

∗
i ≤ 1,

∑n
i=1C

∗
i Ci ≤ 1 andkerEC ⊆ kerEC∗ thenS ∈ kerEC ∩ Cp (1 < p <∞),

if and only if,
‖S + EC(X)‖p ≥ ‖S‖p ,

for all X ∈ Cp.

Proof. If S ∈ kerEC then from ([18], Theorem 2.4) it follows that

‖S + EC(X)‖p ≥ ‖S‖p ,
for all X ∈ Cp. Conversely, if

‖S + EC(X)‖p ≥ ‖S‖p ,
for all X ∈ Cp. then from Corollary 2.6 applied for the elementary operatorE(X), we get

n∑
i=1

Ci |S|p−1 U∗Ci = |S|p−1 U∗.

SincekerEC ⊆ kerEC∗,
n∑
i=1

C∗i |S|
p−1 U∗C∗i = |S|p−1 U∗.

Taking the adjoint we get
∑n

i=1CiU |S|
p−1Ci = U |S|p−1 and from Lemma 2.10 it follows that

n∑
i=1

CiU |S|Ci = U |S| ,

i.e.,S ∈ kerEC . �

Theorem 2.12.LetA = (A1, A2, . . . , An), B = (B1, B2, . . . , Bn) ben−tuples of operators
in B(H) such that

∑n
i=1AiA

∗
i ≤ 1,

∑n
i=1A

∗
iAi ≤ 1,

∑n
i=1BiB

∗
i ≤ 1,

∑n
i=1B

∗
iBi ≤ 1 and

kerEA,B ⊆ kerEA∗,B∗ .
ThenS ∈ kerEA,B ∩ Cp, if and only if,

‖S + EA,B(X)‖p ≥ ‖S‖p
for all X ∈ Cp.

Proof. It suffices to take the Hilbert spaceH ⊕H, and operators

Ci =

[
Ai 0
0 Bi

]
, S =

[
0 T
0 0

]
, X =

[
0 X
0 0

]
and apply Theorem 2.12. �
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