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Abstract: In this paper we prove some results which imply two conjectures proposed by Janous
on an extension to thg-th power-mean of the Erdés—Debrunner inequality relating the Close
areas of the four sub-triangles formed by connecting three arbitrary points on the sides of
agiven triangle. journal of inequalities
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1. Motivation

Given a triangleABC' and three arbitrary points on the sidd®3, AC, BC, the
Erdods-Debrunner inequalityl] states that

(11) FO Zmin(Fl7F27F3)7

wherery is the area of the middle formed triangle” F’ and F}, F», F3 are the areas
of the surrounding triangles (see Figtine

A

F) Fs

B D

Figure 1: TriangleA ABC
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Thep-th power-mean is defined fpron the extended real line by

(min(zq,...,z,), Iif p=—o0,
n » 1
(B==)", it o,
My(z1,29,...,2,) =
M[] = Y/ H?:l i, if p = 0,
| max(zy,...,x,), Iifp=oc.

It is known (see 2, Chapter 3]) thatl/, is a nondecreasing function pf Thus,
it is natural to ask whetheri (1) can be improved to:

(1.2) Fo > M,(Fy, Fy, F3).

The author of 4] investigated the maximum value pf denoted here by,,....,
for which (1.2) is true, showing that-1 < py.. < —(E2 — 1) (and disproving a
previously published claim).

Sincepma. < 0, by settingy = 824¢ ) — ECAB -, — ALBC
is shown in §] that (1.2) is equivalent to

(1.3) [y, 2) = g, y) + gy, 2)? + g(2,2) > 3,

whereg(z,y) :== L +y—1, ¢uin, the analogue gf,.,, satisfieg™s —1 < g < 1,
and the variables are such thgt, y) > 0, g(y, 2) > 0, g(z,x) > 0 andz, y, z > 0.
Let us introduce the natural domain ¢f say D, to be the set of all triples
(z,y,2) € R®with z,y,z > 0 andg(z,y) > 0, g(y, 2) > 0 andg(z,z) > 0. Since
f(z,y,2) > 0, the functionf has an infimum orD. Let us denote this infimum by
m

AB AF BC

andg = —p, it
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To complete the analysis begun i],[the author proposed the following two
conjectures.

Conjecture 1.1. For anyq > qo = 23 — 1, if f(z,y,2) = m, thenazyz = 1.

Conjecture 1.2. If ¢ > qo, thenm = 3.

In this paper we prove (Theorefinl) that for everyq > 0, the functionf has
a minimumm, and if this infimum is attained fofz,y,z) € D, thenzyz = 1.
Moreover, we show (Theoref 1) that for everyy > 0 we havem = min{3, 297!},
Our results are more general than Conjecturésand1.2 above, and imply them.
After the initial submission of our paper, we learned that the initial conjectures of
Janous were also proved by Masciobj. [However, our methods are different and
Mascioni’s Theorem can be obtained from our TheofefD for ¢ = ¢q. In other
words, we extend the Erdds-Debrunner inequality to the rang®, andp = —qy =
— 582 is just a particular value gf for which C;, = 1in Theorem3.1Q This range
can be extended fgr > 0 only in the trivial way, i.e..Fy > 0 - M,(Fy, Fy, F3),
sinceF, = 0 and M, (Fy, Fy, F3) # 0 if, for instance, the poinf' coincides with
the pointB and the point coincides with the poinf’. As shown next, because the
minimum of f is attained at the same point for every- —q,, we cannot have an
inequality of the typeFy, > C+/F1F»F3 with C' > 0 either. So, our Theorer®.10

i, In a sense, just as far as one can go along these lines in generalizing the Erdds-

Debrunner inequality. Of course, one may try to show that there is a constan
such that
FOSCpMp(FlaF27F3)7 pZOa

however, that is beyond the scope of this paper.
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2. Proof of Conjecture 1.1

We are going to prove the following more general theorem from which Conjecture
1.1follows.

Theorem 2.1. For everyq > 0, the functionf defined by 1.3) has a minimumn
and if f(x,y, z) = m for some(z,y, z) € D thenzyz = 1.

Proof. Sincef(1,1,1) = 3andf(2,1/2,1) = 27" we see that

0 < m < min{3, 2q+1}.

Sinceg(z,y) >y — 1, we see thatify > 1 +37=1q thenf(z,y, z) > 3. Similarly,
f(z,y,2) > 3if x or z is greater tham. On the other hand, if < % theng(z,y) >
1/x — 1> a— 1= 3" which implies thatf(x,y, z) > 3, again. Clearly, ify or z
are less than/a we also havef (z, y, z) > 3. Hence, we can introduce the compact
domain

1
¢~ {2t oz S0, o) 2 0. 6002) 2 0andy(e.n) 2 0}

which has the property that
(2.1) m = inf{f(z,y, 2)|(z,y,2) € C}.

Since any continuous function defined on a compact set attains its infimum, we
infer thatm is a minimum forf. Moreover, every point at whiclfi takes the value
m must be inC.

Let us assume now that we have such a p¢int, z) as in the statement of
Theorem2.1: f(x,y, z) = m. We will consider first the case in which, y, z) is in
the interior ofC.
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By the first derivative test (sometimes called Fermat’s principle) for local ex-

trema, this point must be a critical point. S&Z%2 = 0, which is equivalent
to

2 g(x7y)q_1
xt = —g(z T
Hence the system
(2.2) Vf(z,y,2) = (0,0,0)
is equivalent to
2.3) RO () (150 L S | CIY.) i
g(z,x) g(z,y)rt gy, 2)7!

Multiplying the equalities in Z.3) givesxyz = 1, and this proves the theorem
when the infimum occurs at an interior pointf

Now let us assume that the minimum pfis attained at a pointr, y, z) on the
boundary ofC. Clearly the boundary df is

{(@,y,2) € C{z,y,2} N{a,1/a} #0 or g(x,y)9(y, 2)g(z, ) = 0}.

We distinguish several cases.
Casel: First, if z = a, sincel/z > 0, we have

flz,y,2) > (%+x—1>q>(a—1)q:32m.

Thus, we cannot havé(z,y, z) = m in this situation. Similarly, we exclude the
possibility thaty or z is equal taa.
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Case2: If z = 1/a, because > 0, it follows that

flz,y,2) > <é+y—1)q>(a—1)q:32m.

Again, this implies thaff (z,y, z) = m is not possible. Likewise, we can exclude
the cases in which, or z is 1/a.
Case3: Let us consider now the case in whighr, y) = 0, thatisy = mw;l (observe

that we needr > 1). Therefore,f(z,y,z) = f(x, =, 2) becomes the following
function of two variables

q 1 q
k(x,z):(xil—i—z—l) +<Z—i—x—1)
1 \? 1 ¢
:(z—i— > +<—+x—1) .
r—1 z

Hence, using the arithmetic-geometric inequality, we obtain

o (or i) (Cret) e n (G e) (Bre)’
:2\/{2+z(x—1)+ﬁr

+1
> 2777,

where we have usell +1/X > 2 (for X > 0). We observe that ifn = 297! (this is
equivalent tag < qo), sincef(z,y, z) = m, we must have equality ir?(4), which,
in particular, implies that = ﬁ that is,zyz = 1. If m < 297!, then @.4) shows
that we cannot havé¢(z,y, z) = m. Either way, the conjecture is also true in this
situation. The other cases are treated in a similar way. O
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3. Results Implying Conjecture 1.2

We are going to prove a result slightly more general than Conjeétadre

Theorem 3.1. Assume the notations of Sectian Then, for every; > 0 we have
m = min{3, 27"},

In [4], Theorem3.1 was shown to be true fo%nLg —1 < q¢qg < 1. So we are
going to assume without loss of generality that. 1 throughout. Based on what
we have shown in Sectiop, we can letz = ﬁ and study the minimum of the

functionh(z,y) = f(x,y, I—ly) on the trace of the domait in the space of the first
two variables:

T T

H— {<x,y>|x,ye a,a] and 251 >y > "”‘1'}.

Before we continue with the analysis of the critical points inside the dofain
we want to expedite the boundary analysis. We define= 1/x +y — 1, B :=
1/y+1/(zy) — 1andC := xy + = — 1. Itis a simple matter to show

(3.1) ABC + AB + AC + BC = 4.

If (x,y) is on the boundary ot{, then eithery = 2tL, ory = E-Y. The first
possibility is equivalent t&3 = 0, and the second is equivalentto= 0 (if z > 1),
orC' =0 (if z < 1). Now, if C' = 0thenAB = 4. Hence

f(z,y,2) > A7+ B+ C9 = A"+ B? > 2,/(AB)1 = 2'*4,

Similar arguments can be used for the cases 0 or B = 0. Hence, sincé(1,2) =
2¢+1 we obtain the following result.
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Lemma 3.2. The minimum of on the boundary of{, sayoH, is

(3.2) min{h(z,y)|(z,y) € OH} = 2011,

Next, we analyze critical points insidé. By Fermat’s principle, these critical

points will satisfy3" = 0, g—’; = 0, that is,

1 1
—Fqu_l - xquBq_l +(y+1)gC"™ =0,

and

1
gAT — l;; ~qBT! 4 zqCi = 0.

We remove the common factgiin both of these equations to obtain

1 1
(3:3) — AT B g (y 4 1)07 T =0,
xXr ey
1
(3.4) At T pe ot g,

xy?

Solving for A9~ in (3.4) and substituting ing.3) we get

1 1 1
SISl Bl (y 4 1) = 0
232 T z2y
or
:17y+:13+10q_1 _ x+1+xqu_1'
T 232

Sincexy + = + 1 > 0, x > 0, by simplifying the previous equation we obtain
Bt

(3.5 crl = R
7y
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Moreover, replacingd.5) in (3.4), say, we get

+1 Bl
Aqfl — ZL'ny qul +x x2y2 = 0,
which implies
At pa-l
(3.6) = PR

Therefore, if we put.5) and (3.6) together, we obtain

At gl

22 7292

(3.7)

= (7! is equivalent to

The equality2’,-

1
xl%z (——i—y—l) =zy+a—1.
x

If we introduce the new variable = 32 > 1, the last equality can be written as

1—

s}

yr(l—a°) = (z* +1)(1 — ).

Similarly, the equality’’=~ = Z;— can be manipulated in the same way to obtain

1 2 (1 1
_+y_1:y1q(_+——1), or
T

y oy
-y = (-1 +y).

So, the two equations ir3(7) give the critical points (inside the domakt), which

can be classified in the the following way:
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e (Ch): (LD
o (Cy): {(x,1): x # 1 satisfiest(1 — 2°) = (z° + 1)(1 — 2)};
o (C3): {(1,y) : y # 1 satisfie1 —y*) = (1 —y)(1 +y*)};

o (@) {(wy)ry="0D andy = Sl w A1y £1)

et (E+1E=1)
o(t) =
2 if t =1,

s

which is continuous for alt > 0. Since it is going to be useful later, we note that
satisfies

1

(3.8) 1) (;) =to(t), forallt> 0.

Thus(C,) is the set of allz, 1) (z # 1) with ¢(x) = 1; (Cs) is the set of all 1, y)
(y # 1) with ¢(1/y) = 1; and(Cy) is the set of allz, y) (z # 1,y # 1) with

y = ¢(z)
(3.9) 1

Remarkl. Due to (3.9), the clasqCs) is in fact the set of all pointél, y), where
y=1/zand(z,1)isin (Cy).
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To determine the nature of the critical points, we compute the second partial
derivatives, and analyze the Hessianho#t these critical points. Using relations
(3.7) we obtain:

0h 1 1 _ _
@ZQ((I—D (gAq 2_’_:134_y2Bq 2+<y+1)20q 2)
2 2
+ _Aq_l + _Bq_l) rdos-Debrunner Inequali
1 (1’3 a:3y Ec;j.L. Iger?zen, E. IJ Ignalstgu
2q(1 + Cq—l B 1 1 +1 2 and P. Stanica
(3.10) = % —q(1—q)Cr ! <x2A + B + y e ) ) vol. 8, iss. 3, art. 68, 2007
qCat (A+ B)C +2*(y + 1)*AB
= (2(1 +y)—(1—9q) “ABC Title Page
. q(q+1) 4 Contents
= AR (ABC’(C +1) — e « N
using the fact that(y + 1) = C' + 1.
Similarly, we get < >
2p 1)2 2 1 Page 13 of 26
8_ =q(g—1) A2 MBCI*Q L2202 + QMBG*1
y* z?y? zy? Go Back
q—1 2 2 2
_ 2955(1 + ZE)C . q(l B q)qul - + (x + 1)_ + L Full Screen
(3.11) y A y>B C
| _ 9 (Qx(l fa) (1 gt A+ OB (4 1)2AO> Close
, yABC journal of inequalities
qlg+ 1)z 4 in pure and applied
~ ABC? (ABC(B +1) - s)’ mathematics
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Further, the mixed second derivative is

0%*h 1 x+1
= —1)(——=AT2 4 —B1? 1)C2
920y q(g—1) ( o + T +x(y+1)
1
+4q ( — BT+ Oq‘l)
Yy
_ — 1 T+ 1 Ji(y + 1) rdos-Debrunner Inequali
(312) = 2ch t— Q(l - Q)Cq ! (_Z + ili'yB + C EC?.L. Iger?zen, E.IJ. Ignalstgu
and P. Stanica
_ AC(B+1)+ AB - BC .
= q(C1 1 1 — (1= vol. 8, iss. 3, art. 68, 2007
q ( +q¢—(1-9q) BC >
1 2
= jl(g—;?—?l (ABC — g(2 — BC)) , Title Page
using the identitiesy(B + 1) = x + 1, andz(y + 1) = C' + 1. Contents
The discriminant (determinant of the Hessian) <« 44
p._Oh 8%_(8% )2 < >
dz*  Jy? dxdy Page 14 of 26
can be calculated using.(L0), (3.11) and 3.12) to obtain Go Back
2 1 2
D = %(AQB2CQ (B+1)(C+1)—-1) Full Screen
4 4
—;ABC(B+C+2—(2—BC))+;(4—(2—BC)2)) Close
) 2 . : ”
Plg+1 journal of inequalities
= #04_)2(1 (AQBZCQ(BC +B+0O) in pure and applied
mathematics

4 4
~ “ABC(BC + B +C) + 5 (4BC - 3202)).
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Now, by (3.1) we have
4BC — B*C? = BO(4 — BC)
= BC(ABC + AB + AC)
= ABC(BC+ B+ ()

and so we have the factefBC(BC + B + C) in all the terms above. This implies
that the discriminant ok (at the critical points, that is, assuming relatiofis’)) can
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2 2
q*(q+1) 4 4 vol. 8, iss. 3, art. 68, 2007
3.13 D=-—_—(BC+B+C)|(ABC+ = — - |. e '
( ) ABC324 ( +B5+0) + s2 s
Our next lemma classifies the critical pofit 1). Title Page
Lemma 3.3. For ¢ > 1/3, the point(1,1) is a local minimum. Foiy < 1/3 the
" . . . . Contents
critical point (1, 1) is not a point of local minimum.
Proof. If ¢ = 1/3, h(1,1) = 3, so, sinceh(z,y) = f(z,y, =) > 3 by inequality b 4
(1.39), we establish thatl, 1) is a local minimum point ofi. Assumey # 1/3. For < 3
x = 1 andy = 1 the formulae established above become
52h 52h Page 15 of 26
@(17 1) = 8_y2(1’ 1) =2¢(3¢ — 1) >0, Go Back
9%h Full Screen

1.1) = —1
axay<’ )=4q(3¢—1)>0

Close
and

D = 3¢*(3¢ — 1)*. journal of inequalities
Hence, the Hessian is positive definite and so we have a local minimum at this point ~ N Pure and applied
(cf. [3, Theorem 2.9.7, p. 74]). For the second part, observeliiat1) > 0, but rnat.hemcn‘lcs
&h(1,1) < 0if ¢ < 1/3, and so(1, 1) is not a local minimum if; < 1/3. O 1ssni MHESSTER
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Theorem 3.4.1f ¢ # 1/3, there exists only one solutiag of ¢(z) = 1,0 < = # 1,
such that

@) xo € (272(3 l)Ifq>1/3(s>2)

(mxoepﬁi—iiizif

5T 2(Sl)lfq<1/3(1<s<2)
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Furthermore, there is only one solutiogg = 1/zoto ¢p(1/y) = 1,0 < y # 1.
qg = 1/3 (s = 2), there are no positive solutions fonz) = 1,0 < « # 1, or
o(1/y) =1,0 <y # 1.

Proof. First, assume = 1/3. Thens = 2. It is straightforward to show thdt:, 1)
isin (Cy) impliesz = 1. However,z = 1 is not allowed. Similarly(1,y) isin (Cs)
impliesy = 0, or 1, which are not allowed. Thus, if = 1/3, there are no positive Contents
solutions forg(x) = 1,0 < x # 1,0r¢(1/y) = 1,0 < y # 1.
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Title Page

Now we shall assume throughout thia$ 1/3. Let us observe that the equation « >
¢(x) = 1 can be written equivalently as(z) = 0 (z # 1), where < >
) =t"=2t+1, t>0. Page 16 of 26

Go Back

We first assume that > 1/3, which is equivalent ta > 2. The derivative ofy is

¢'*~1 — 2 which has only one critical poirt = (2/3)5. Sinces > 2, we obtain Full Screen
thatt, < 1. We havey(0) = 1, (1) = 0 and then automatically

Y(to) = (2/3)ﬁ - 2(2/5)ﬁ Fl=1- (s~ 1)(2/S)ﬁ <0. journal of inequalities

The second derivative af is: ¢/"*~2. This shows that) is a convex function and in pure and applied
so its graph lies above any of its tangent lines and below any secant line passing ~Mathematics
through its graph, as in Figute pssni AHA3=STS6

Close
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Figure 2: The graph ap

We conclude that, is between the intersection of the tangent line((@tl)
with the z-axis and the intersection between the secant line conne(iirig and
(to, ¥ (to)) with the z-axis.

Sincev’(0) = —2, the equation of the tangent linegs— 1 = —2z and so its
intersection with the:-axis is(1/2, 0). The equation of the secant line through1)
and (to, v (to)) isy — 1 = =41z, ory = 1 — =125 This gives the intersection
with the z-axis: (2(5_1), 0). Therefore the first part of our theorem is proved. The
last claim is shown similarly. O

Remark2. As g approaches from below,s becomes large and the interval around
xo (part(a) in Theorem3.4) is very small.
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Theorem 3.5. The critical points in(C3) and (C3) are not points of local minimum
for h.

Proof. We show that the Hessian afis not positive semi-definite by showing that
the discriminantD is less than zero.

We will treat only the critical points of typé&C,), since the cas&C) is similar.
We getA = A(xg,1) = 1/x¢, B = B(xg,1) = 1/x¢o andC = C(xg, 1) = 2x¢ — 1.

The conditionD < 0 is the same as Erdos-Debrunner Inequality
C.L. Frenzen, E. J. lonascu

2x0 — 1 4 4 and P. Stinici
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xj S S ' ; ;

which is equivalent to

Title Page
s*(2w9 — 1) —4ad(s — 1) = (s — 220)(2(5s — 1)z9 — 5) < 0 Contents
or « >
xoé(—oo,g)u<ﬁ,oo>, if¢g<1/3(1<s<2) and < >
(3.14) Page 18 of 26
To € (—oo,ﬁ)u(g,oo) if ¢g>1/3(s>2). Go Back
By Theorem3.4 parts (a) and (b), and the inequality T — s;i:)s > sy that AU e
can be easily checked, we see thak 0, which completes the proof. O Close

Next, we definghetwo functions journal of inequalities
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) , t>0,t#1. mathematics
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Figure 3: The graphs of;, 72 < 4
Page 19 of 26
These functions are extended by continuity at 0 andt = 1. We sketch the graphs Go Back

of these two functions fas = 6 in Figure3.

The following two lemmas will be crucial for our final argument. Full Screen
Lemma 3.6. For everys > 1, the functiony; is convex and the function, is con- Close
cave. journal of inequalities
Proof. For~y, one can readily check that in pure and applied
9gt5—2 mathematics
") = ——= G4 (¢ issn: 1443-575k
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where
Bi(t) = (s =) —1) — (s + 1)(t° —1).
Next we observe that
Bi(t) = (s +1)5(1),
where
Bo(t) = (s — 1)t5 — st* 1 +1
and observe that
sl 52 = s(s — )T (t - 1).
The sign of is then easily determined, showing thathas a point of global mini-
mum att = 1. Hencefy(t) > (»(1) = 0. This implies that?, is strictly increasing.
Since; (1) = 0 we see that the sign ¢f; is the same as the sign @f — 1)3. This

means that/ (t) > 0 for all t > 0. At ¢ = 1 the limitis -1 > 0 also.
In order to deal withy,, we rewrite it as

(t) = (M) — o),

tr—1

wherer := s —1 > 0. Since

1 T
7// t — a— (0 t 0// t o _9/2) ,
) = o 00—
we have to show that
L ney T a2
i(t) == 0(t)0"(t) ——] 19 <0

forall ¢ > 0.
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The first and second derivatives@ére given by

2 — (r4+ Dt 4t

0=
and
. rlr =D =+ D (r+ D = (= D
0"(t) = , :
(tr —1)°
These two expressions substituted ifito) yield
T’tQT*Q
I(t) = ——=(t
( ) (7’ + 1) 1( )7

where the sign of is determined by
S1(t) =122 — ("2 ") (r 4+ 1) T2 4 4r) + 1.
However,d; (1) = 0 ands} ' 5,(t), where
Oa(t) = 26" — ((r+2)82 +7)(r + 1) + (2r* + 4r)t.

Again, observe that,(1) = 0 anddy(t) = 2(r + 2)d3(t), whereds(t) = t" 1 — (r +
1)t + r. Finally, 5(1) = 0 andéy — 1). Now 5 has only a single critical point at
t = 1 which is a global minimum. Thu&;(t) > d5(1) = 0. This shows thab, is
strictly increasing or{0, cc) and is zero at = 1. Therefore;(¢) has a minimum
att = 1 implying thato, (¢) > 0 with its only zero at = 1. Henced(t) < 0 for all

t # 1. This, andlim,_; 6(t) = —F202) show thaty, is a concave function and

1272
completes the proof. O

We shall need the following well-known result which may be formulated with
weaker hypotheses. For convenience, we include it here.
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Lemma 3.7. The graphs of two functiong and g twice differentiable orja, ], f
convex {” > 0) and g concave ¢’ < 0) cannot have more than two points of
intersection.

Proof. Suppose by way of contradiction that they have at least three points of in-

tersection. We thus assuntey, f(z1)) = (x1,g9(z1)), (22, f(x2)) = (22, 9(x2)),
(x3, f(xs) = (x3,9(x3)), With a < z; < 29 < x3 < b are such points. Next, we

|00k at the eXpreSSion Erdds-Debrunner Inequality
C.L. Frenzen, E. J. lonascu
and P. Stanica
E = f(x2> _ f<x1) — f(ng) _ f(xz) = g(l'2> _ g(ml) — g(l'g) _ g(x2> . vol. 8, iss. 3, art. 68, 2007
To — X1 T3 — X2 To — Iq T3 — T2
By the Mean Value Theorem applied twice f@and f’ the expressioi’ is equal to Title Page
E = f'(c1) = f'(c2) = f'(c)(c1 — c2) < 0,1 € (w1, 22),¢2 € (22,23), ¢ € (1, ¢2) Contents
and applied tgy andg’ gives <« »
E=g(&)—9(%)=3g"(§)(& — &) > 0,8 € (21,72),8 € (12,73),§ € (&1,82) < >
which is a contradiction. O FEge 22 Ol
Let us observe that if, is a solution of the equation(z,) = 1 then(1/xzg, x) Go Back
is a solution of the systen3(9). Full Screen
Theorem 3.8.1f ¢ # 1/3, then the only critical points df are (1, 1), (zo, 1), (1, x—lo), Close

(&, z0), Wherez, is as in Theoren3.4. If ¢ = 1/3, (1,1) is the only critical point.

0 journal of inequalities
Proof. Start withg = 1/3. Then Lemma3.3 and Theoren®.4 imply the claim that in pure and applied
(1,1) is the only critical point. mathematics
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Next, forq # 1/3, we consider the following system in the variableandy:
1 w—1)0+y)
T ys—1
1 B (ys—H _ ys)i
x -y )
In what follows next we show that every solution ¢4 is a solution of £.16).
Indeed, if(x, y) is in (Cy), then it satisfies

:(xs—i-l)(x—l) B Yy —1

(3.16)

ylas—1) =D +y)
This implies that
(x5+1)(m—1): ys —1
y(e® —1) (y =D +y°)

or

(+Dry—-1)1+y°) - @+ 1)y - DA +y") =y(x® - 1)(y" - 1).

Now, usez(y — 1)(y* + 1) = y* — 1 to simplify the first term of the previous
equality and derive

@+ -1 - @+ -1 +y") -yl —1)(y°-1)=0.
Finally, we solve forz® to obtain
2y =1y gyt Ity -y ) =gty Ly -y T

which is equivalent to
5(2y° — 25t = 2y — 2y°.
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R S\ 1/s
So, ify # 1 this impliesz® = %= which implies that, = (%

We observe thatl, 1/x), (1/:1:0,330) are solutions of §.16. By Lemmas3.6

and 3.7, these two points are the only solutions of this system, which proves our

theorem. ]
Using Lemma3.6 and Theoren®.8we infer the next result.

Theorem 3.9. The point in(1/zg, zo) in (Cy) is not a minimum point.

Proof. Since at this pointd = 2zq — 1, B = 1/x¢, C = 1/x, we see thal BC' =
2‘””0 L and the discriminanD takes the same form as in Theoréns. Hence the
proof here follows in the same way as in Theorém ]

Putting together Lemmas 2, 3.3, and Theorems.5, 3.8, and3.9, we infer the
truth of Theorens.1.
In terms of our original problem, we have obtained the following theorem.

Theorem 3.10. Given the pointsD, E, F' on the sides of a triangledBC, and
Fy, F1, Fy, F3 the areas as in Figuré, then

Fy > C, My (Fy, Fy, Fy),
whereC,, = min (1, 2 (%)l/”>, forall p < 0.

Proof. We know from H] that
F 1 F 1

Fr 1
— =—-+z—-1=g(y,2).
By 9(y, z)
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We showed thaf (z,y, z) = g(z,y)? + g(y, 2)? + g(z, 2)?) has the minimumn =
min(3,2¢%1). Hence

FJ(F7 7+ Fy 7+ F;9) > min(3,27M1).
This is equivalent to

max (3127 (F 9+ Fy T+ Fy %) > Fy 2
Raising this to powef < 0 (p = —q¢), we get

3 =

min(3~Y? 217V (FP + FP + FP)r < F.

This givesC, = min (1, 2 (%)1/;;)_
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