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ABSTRACT. In this paper we prove some results which imply two conjectures proposed by
Janous on an extension to theh power-mean of the Erdés—Debrunner inequality relating the
areas of the four sub-triangles formed by connecting three arbitrary points on the sides of a given
triangle.
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1. MOTIVATION

Given a triangleABC' and three arbitrary points on the sidd83, AC, BC, the Erdos-
Debrunner inequality |1] states that

(11) FOZHliH(Fl,FQ,F:}),

where Fy is the area of the middle formed triangleFE ' and F, F5, F; are the areas of the
surrounding triangles (see Figyre]1.1).
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Figure 1.1: TriangleAABC

Thep-th power-mean is defined fpron the extended real line by

(min(zq,...,x,), fp=—o0,
n » 1
(B5)7, et
M,y (21, 29,...,2,) =
MO = \n/ H?:l Zi, if P = 0,
| max(zy,...,x,), Iifp=oc.

It is known (seel[2, Chapter 3]) that/, is a nondecreasing function pf Thus, it is natural
to ask whethef (I]1) can be improved to:

(1.2) Fy > M,(Fy, Fy, F3).

The author ofi[4] investigated the maximum valugpélenoted here by,,,,., for which (1.2)
is true, showing that-1 < p,,4, < —({ﬁ—g’ — 1) (and disproving a previously published claim).
Sincep,.. < 0, by settinge = Z24¢ ', — ECAB ", _ AFBC gndg = —p, it is shown in

) g AE BC? FBAC® DC AB'
[4] that (1.2) is equivalent to

(1.3) f(x,y,2) = g(x, )"+ g9(y,2)" + g(z,7)! > 3,

whereg(z,y) = % +y — 1, ¢min, the analogue of, ..., satisfie#ﬁ—g — 1 < gpmin < 1, and the
variables are such thatz,y) > 0, g(y,2) > 0, g(z,2) > 0 andzx,y, z > 0.

Let us introduce the natural domain ffsayD, to be the set of all tripleér, y, 2) € R? with
x,y,z > 0andg(z,y) > 0, g(y,z) > 0andg(z,x) > 0. Sincef(z,y,z) > 0, the functionf
has an infimum orD. Let us denote this infimum by:.

To complete the analysis begun lin [4], the author proposed the following two conjectures.

Conjecture 1.1. For anyq > ¢y = }E—g —1,if f(x,y,z) = m, thenzyz = 1.

Conjecture 1.2. If ¢ > qo, thenm = 3.
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In this paper we prove (Theorgm P.1) that for every 0, the functionf has a minimum
m, and if this infimum is attained fofx,y,z) € D, thenxzyz = 1. Moreover, we show
(Theore) that for every > 0 we havern = min{3,2¢"'}. Our results are more general
than Conjectures 1.1 and [L.2 above, and imply them. After the initial submission of our paper,
we learned that the initial conjectures of Janous were also proved by Mascioni [5]. However,
our methods are different and Mascioni’s Theorem can be obtained from our THeorém 3.12 for
q = qo- In other words, we extend the Erdds-Debrunner inequality to the ranged, and

pP=—q = —h}fjéf) is just a particular value gf for which C, = 1 in Theorem 3.12. This

range can be extended fpr> 0 only in the trivial way, i.e..F, > 0 - M,(F}, F>, F3), since

Fy = 0andM,(F, F», F3) # 0 if, for instance, the poinf’ coincides with the poinB and the
point £ coincides with the poin€'. As shown next, because the minimum fofs attained at

the same point for every > —q,, we cannot have an inequality of the typg > C/F FoF3

with C' > 0 either. So, our Theorem 3]12 is, in a sense, just as far as one can go along these
lines in generalizing the Erdés-Debrunner inequality. Of course, one may try to show that there
is a constant, > 0 such that

FOSCpMp(F17F27F3)7 pz[)?
however, that is beyond the scope of this paper.

2. PROOF OF CONJECTURE

We are going to prove the following more general theorem from which Conjéctyre 1.1 fol-
lows.

Theorem 2.1. For everyq > 0, the functionf defined by[(1]3) has a minimum and if
f(z,y,z) = m for some(x,y, z) € Dthenzyz = 1.
Proof. Sincef(1,1,1) =3 andf(2,1/2,1) = 2¢*! we see that

0 < m < min{3, 2q+1}.
Sinceg(x,y) > y—1, we see that if) > 1437 = athenf(x,y, z) > 3. Similarly, f(x,y, z) >
3if « or z is greater tham. On the other hand, if < 1 theng(z,y) > 1/z—1>a—1= 34

which implies thatf(z,y,z) > 3, again. Clearly, ify or z are less thari/a we also have
f(z,y,z) > 3. Hence, we can introduce the compact domain

1
¢~ {e 2|3 < 05 < gl00) 20, 9(09) 2 D andy(z.0) 2 01,
which has the property that

(2.1) m = inf{f(z,y, 2)|(z,y,2) € C}.

Since any continuous function defined on a compact set attains its infimum, we infer that
is a minimum forf. Moreover, every point at whicli takes the value: must be inC.

Let us assume now that we have such a pginy, z) as in the statement of Theor¢m|2.1:
f(z,y, z) = m. We will consider first the case in which, y, z) is in the interior ofC.

By the first derivative test (sometimes called Fermat’s principle) for local extrema, this point
must be a critical point. S@% = 0, which is equivalent to

o gla,y) !
r = —]-.
g(z, x)r !
Hence the system

(2.2) Vf(z,y,2)=(0,0,0)
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is equivalent to

(2.3) IER (3 ) S S {250 S S |0
g(z,z)t g(a,y)r=t’ gly, z)a~!

Multiplying the equalities in[(2]3) givesyz = 1, and this proves the theorem when the
infimum occurs at an interior point @f.

Now let us assume that the minimum pfs attained at a pointz, y, z) on the boundary of
C. Clearly the boundary df is

{(@,y,2) € C{z,y,2} N{a,1/a} #0 or g(z,y)g(y,2)g(z,z) = 0}.

We distinguish several cases.
Casel: First, if x = a, sincel/z > 0, we have

flz,y,2) > <§+x—1)q>(a—1)q:32m.

Thus, we cannot havg(z, y, z) = m in this situation. Similarly, we exclude the possibility that
y or z is equal taa.
Case2: If = 1/a, because > 0, it follows that

flz,y,2) > (§+y—1)q>(a—1)q:32m.

Again, this implies thaff (z,y, z) = m is not possible. Likewise, we can exclude the cases in
whichy, orzis 1/a.

Case3: Let us consider now the case in whigfw,y) = 0, that isy = “”T‘l (observe that
we needr > 1). Therefore,f(x,y,z) = f(z, IT‘l,z) becomes the following function of two

variables
q 1 q
k(x,z):( ‘ —i—z—l) —|—(——{—x—1>
z—1 z

1 1 1 1
:<z+ ) —i—(——i—x—l) :
r—1 z

Hence, using the arithmetic-geometric inequality, we obtain
1 1 1 e 1 171 1
(2.4) 2+ ——=) +(-+r—-1) =2 +z - +x—1
z—1 z r—1 z
1 q
=2/12 1)+ —
[ + z(x )+z(x—1)}

1
> 201

where we have used + 1/X > 2 (for X > 0). We observe that ifn = 27! (this is
equivalent to < qp), sincef(z, y, z) = m, we must have equality ifi (2.4), which, in particular,
implies thatz = ﬁ that is,zyz = 1. If m < 29t1 then ) shows that we cannot have
f(z,y,2z) = m. Either way, the conjecture is also true in this situation. The other cases are
treated in a similar way. O
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3. RESULTS IMPLYING CONJECTURE[1.2
We are going to prove a result slightly more general than Conjeciure 1.2:

Theorem 3.1. Assume the notations of Sectioh 2. Then, for every 0 we havem =
min{3, 277}

In [4], Theore was shown to be true f8 — 1 < ¢ < 1. So we are going to assume
without loss of generality that < 1 throughout. Based on what we have shown in Se¢tjon 2,
we can letz: = xly and study the minimum of the functigr(x, y) = f(z, v, xiy) on the trace of
the domairC in the space of the first two variables:

= {ley e tfod ang 2y 2 UL

Before we continue with the analysis of the critical points inside the dofitaime want to
expedite the boundary analysis. We defihe= 1/ +y — 1, B :== 1/y + 1/(xy) — 1 and
C :=zy+ x — 1. Itis a simple matter to show

(3.1) ABC + AB + AC + BC = 4.
If (x,y) is on the boundary of{, then eithery = 2*1, ory = E-1 The first possibility is

equivalent toB = 0, and the second is equivalentto= 0 (if = > 1), orC = 0 (if z < 1).
Now, if C' = 0 thenAB = 4. Hence
f(z,y,2) > AT+ B4+ C?7= A + B > 2,/(AB)? = 24,

Similar arguments can be used for the cades 0 or B = 0. Hence, sincé(1,2) = 27! we
obtain the following result.

Lemma 3.2. The minimum ok on the boundary of{, sayoH, is
(3.2) min{h(z,y)|(z,y) € OH} = 211,

Next, we analyze critical points insid€. By Fermat's principle, these critical points will
satisfy 2 = 0, g—Z = 0, that is,

1 1
——54AT = =BT 4 (y + 1)gC" T =0,

x2y
and
1
qATl — %qu’l +2qCT ! = 0.
Ty
We remove the common factgiin both of these equations to obtain
1 1
(33) __2Aq71 — Tqul + (y + 1)0‘171 = O,
T Ty
1
(3.4) e ]
Ty
Solving for A9~ in (3.4) and substituting in (3.3) we get
1 1 1
I gt et Bl (y 4 1) = 0
232 T 2y
or
xy—i—x—l—lcq_l _ :zr—l—l—{—xqu_l'
x 232
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Sincexy +z + 1 > 0, x > 0, by simplifying the previous equation we obtain

Bl
3.5 =
(3.5) 0t = 5
Moreover, replacing (3]5) in (3.4), say, we get
art S g BT

zy? z%y
which implies

Al pat
(3.6) 2 2292
Therefore, if we put{(3]5) and (3.6) together, we obtain

At pat 3

(3.7) = = 2 =C,

AT — -1 s equivalent to

1
2T (——1—3/—1) =ay+x—1.
x

If we introduce the new variable= % > 1, the last equality can be written gs(1 — z°) =
(z* 4+ 1)(1 — x).

Similarly, the equallty“—1 pel - can be manipulated in the same way to obtain
1 1 1
_+y_1—y13q(—+——1), or
Z y oy

Y-y = -0y

So, the two equations ifi (3.7) give the critical points (inside the dori@irwhich can be
classified in the the following way:

e (C1): (L,1);

o (C9): {(z,1): z # 1 satisfiese(1 — z°) = (x* + 1)(1 — z)};
o (C3): {(1,y) : y # 1 satisfies(1 — y*) = (1 —y)(1 +y°) };
o (C): {(my) iy =SPeD ande = oAk o A Ly A1)
et (@ +1)(t—1)
DD i1 £t >0
t(t*—1) ’
o(t) =
2 ift =1,
which is continuous for alt > 0. Since it is going to be useful later, we note thetatisfies
(3.8) o) (%) =top(t), forallt > 0.

Thus(Cy) isthe setof allz, 1) (x # 1) with ¢p(x) = 1; (Cs) is the set of al(1, y) (y # 1) with
o(1/y) = 1; and(C,) is the set of allz, y) (x # 1,y # 1) with

y = ¢(x)
(3.9)
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Remark 3.3. Due to [3.8), the clas&’;) is in fact the set of all point$l, y), wherey = 1/z
and(z, 1) isin (Cy).

To determine the nature of the critical points, we compute the second partial derivatives, and
analyze the Hessian éfat these critical points. Using relatiofs (3.7) we obtain:

9%h 1 1
- _ — A9—2 q—2 2, vq—2
pye qlg—1) ($4A +_x4y2B + (y+1)°C )
x 3y
 2g(1 4 y)C! w1 1 1L (y+1)7
(3.10) B x a1 = )¢ 1?/4<+'le3 * C
_qCr! (A+ B)C +a2*(y+1)?AB
q(g +1) 4
=———— | AB 1) — =
122 ABC?~4 ( cle+1) s) ’

using the fact that(y + 1) = C' + 1.
Similarly, we get

d*h (z+1) 2(z +1)

B =q(g—1) (qu + o B2 + x20q2> +4q e B!
_2gz(1+a)C 41— gt (ZE_Q GRS l’_2>
(3.11) Y A yB O
_ (2:1:(1 +a)—(1- q)nyQ(A tCB+ e+ 1)2AC)
yABC
q(q + 1)a?

4

usingzy(B + 1) =z + 1.
Further, the mixed second derivative is
0%h
0xdy

1 r+1
= Q<q - 1) <_ﬁAq_2 + l‘3—3/?’Bq_2 + x(y + 1)0(1—2)

1
+q ( 55 BT+ C“)
2%y

3 3 1 z+1 =zy+1)

12 = =1 _ _ -1 _—
(3.12) 2qC q(1 —q)C <A+xyB+ c )
AC(B+1)+ AB — BC)

ABC

=qC! <1+q—(1—Q)

_gqlg+1) 2
= B (ABC 3(2 BC’)) :

using the identitiesy(B + 1) = x + 1,andz(y + 1) = C' + 1.
The discriminant (determinant of the Hessian)

_Ph 0Ph ( 0*h )2

D : .
ox? 0Oy? 0x0y
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can be calculated using (3]1Q), (3.11) gnd (B.12) to obtain

2 2
¢°(g+1)
D= (422 ((B+1)(C +1) - 1)
4 4
—EABC(B+C+2—(2—BC))+S—2(4—(2—30)2)>
2 2
¢“(¢+1)
= A pein (APBCY(BC + B+ C)

— %ABC(BC +B+C)+ ;12(43(7 - 3202)).
Now, by (3.1) we have
4BC — B*C? = BC(4 — BO)
= BC(ABC + AB+ AC)
= ABC(BC + B+ ()
and so we have the factetBC(BC + B + C) in all the terms above. This implies that the
discriminant ofh (at the critical points, that is, assuming relatidns](3.7)) can be simplified to

2 2
g+ 1)
(3.13) D= rhria

Our next lemma classifies the critical poitt 1).

4 4
(BC + B+ C) (ABO+S—2—E).

Lemma 3.4. For ¢ > 1/3, the point(1,1) is a local minimum. Fog < 1/3 the critical point
(1,1) is not a point of local minimum.

Proof. If ¢ = 1/3, h(1,1) = 3, so, sinceh(z,y) = f(x,y,xiy) > 3 by inequality [1.B), we

establish thaf1, 1) is a local minimum point of.. Assumey # 1/3. Forz = 1 andy = 1 the
formulae established above become

9%h &?h
o) = == (1,1) = 2¢(3g — 1
amg(,) ayQ(,) q(3¢ —1) >0,
0%h

and
D =3¢*(3¢ — 1)
Hence, the Hessian is positive definite and so we have a local minimum at this pointl (cf. [3,

Theorem 2.9.7, p. 74]). For the second part, observefitfat1) > 0, butg%’;(l, 1) <0if
q < 1/3,and sq(1, 1) is not a local minimum i < 1/3. O

Theorem 3.5.1f ¢ # 1/3, there exists only one solutian of p(x) = 1,0 < x # 1, such that
(@) zp € <%, ﬁ) if g >1/3 (s> 2);

I I .
(b) zo € [2571 o Toe 9w ﬁ) ifg<1/3(1<s<2).
Furthermore, there is only one solutigy = 1/zot0 ¢(1/y) = 1,0 <y # 1. If ¢ = 1/3

(s = 2), there are no positive solutions fefx) = 1,0 < x # 1,0ro(1/y) = 1,0 <y # 1.

Proof. First, assume = 1/3. Thens = 2. Itis straightforward to show that, 1) is in (Cy)
impliesz = 1. However,z = 1 is not allowed. Similarly,(1,y) is in (C3) impliesy = 0,
or 1, which are not allowed. Thus, if = 1/3, there are no positive solutions fo(z) = 1,
O<z#loro(l/y) =1,0<y#1.
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Figure 3.1: The graph of

Now we shall assume throughout thiat 1/3. Let us observe that the equatigfiz) = 1
can be written equivalently as(z) = 0 (x # 1), where

(t) =1 =241, t>0.

We first assume that > 1/3, which is equivalent ta > 2. The derivative ofy is ¢! — 2

which has only one critical poirtt) = (2/5)5. Sinces > 2, we obtain that, < 1. We have
¥(0) = 1,(1) = 0 and then automatically

W(te) = (2/s)5T —2(2/s)=T +1=1— (s —1)(2/s)=1 < 0.
The second derivative af is: ¢/"*~2. This shows that) is a convex function and so its graph
lies above any of its tangent lines and below any secant line passing through its graph, as in
Figure[3.1.
We conclude that, is between the intersection of the tangent lin¢tatl) with the z-axis
and the intersection between the secant line conneirig and (¢, ¢'(to)) with the z-axis.

Sincev’(0) = —2, the equation of the tangent linegs— 1 = —2x and so its intersection
with the z-axis is(1/2,0). The equation of the secant line throu@@h 1) and (¢, (o)) is
y—1= %j{f‘”m ory = 1 — “=2; This gives the intersection with theaxis: (5555 0)-

Therefore the first part of our theorem is proved. The last claim is shown similarly. O

Remark 3.6. As ¢ approaches from below,s becomes large and the interval aroundpart
(a) in Theorenj 3.5) is very small.

Theorem 3.7. The critical points in(C5) and(C) are not points of local minimum far.

Proof. We show that the Hessian bfis not positive semi-definite by showing that the discrim-
inantD is less than zero.
We will treat only the critical points of typéC,), since the caseCs) is similar. We get
A= A(ZE(), 1) = 1/ZEO, B= B(I(), 1) = 1/ZEO andC = C(ZE(), 1) = 2z — 1.
The conditionD < 0 is the same as
200 —1 4 4
x3 T3
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DNe

0 2 4 6 8 10
t

Figure 3.2: The graphs ofy, 12

which is equivalent to
§*(2w9 — 1) —4a3(s — 1) = (s — 220)(2(5s — )0 — 5) < 0
or

xg € (—oo,%)U(ﬁ,oo), if¢g<1/3(1<s<2) and
(3.14)

xo € (—oo,ﬁ) U($,00) ifg>1/3(s>2).

By Theore parts (a) and (b), and the inequal«'ﬁ:V — S;i;)s > 2(;4) that can be easily
checked, we see thal < 0, which completes the proof. O

Next, we definghetwo functions

B s s+1 _ 4s %
-1+t and  .(t) == (u>, t>0,t#1.

3.15 t) ==
( ) Y1 (t) 51 ¢

These functions are extended by continuity at 0 and¢ = 1. We sketch the graphs of these
two functions fors = 6 in Figure[3.2.
The following two lemmas will be crucial for our final argument.

Lemma 3.8. For everys > 1, the functiony; is convex and the functiop is concave.

Proof. For v, one can readily check that

" 251572

() = 551 (1)

(t*—1)
where
Gi(t) = (s =)t = 1) = (s +1)(t* —1).
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Next we observe that
Bi(t) = (s +1)3(1),
where
Ba(t) = (s — 1)t5 — st5 1 + 1
and observe that
sl = s(s — 1)t - 1).
The sign of3, is then easily determined, showing thathas a point of global minimum at
t = 1. Hencefy(t) > (2(1) = 0. This implies that3, is strictly increasing. Sincg;(1) = 0
we see that the sign ¢f; is the same as the sign @f — 1)3. This means that{(¢) > 0 for all
t>0.Att = 1the limitis -1 > 0 also.
In order to deal withy,, we rewrite it as

lt) = (M) — o),

tr—1

wherer := s —1 > 0. Since

1 r
vy (t) = o <0 £)0"(t) — —0’2> :
0 = g 070 —
we have to show that .
5(t) :=0)0"(t) — ——0% <0

forall ¢ > 0.
The first and second derivativeséére given by

2 — (r+ 1t rt7!

and
y rlr =D =+ D (r+ D = (= D
0"(t) = :
(=1
These two expressions substituted ifito) yield
,r,t2'r’—2
o(t) = —m(Sl(t)»

where the sign of is determined by
Si(t) =t — (P2t (r 1) (2 4r) + 1
However,d; (1) = 0 ands} *8,(t), where
Ga(t) = 262 — ((r +2)8 +7r)(r 4+ 1) + (2r° + 4r)t.

Again, observe thaf,(1) = 0 andd)(t) = 2(r + 2)d5(t), wheredz(t) =t — (r + 1)t + 7.
Finally, 5(1) = 0 andédy — 1). Now d3 has only a single critical point at= 1 which is a global
minimum. Thusds(t) > d5(1) = 0. This shows tha#, is strictly increasing or0, oo) and is
zero att = 1. Therefore,(¢) has a minimum at = 1 implying thatd, (¢) > 0 with its only

zero att = 1. Hence)(t) < 0 for all ¢ # 1. This, andim, ., 6(¢) = —% show thaty; is

a concave function and completes the proof. O

We shall need the following well-known result which may be formulated with weaker hy-
potheses. For convenience, we include it here.

Lemma 3.9. The graphs of two functionsand g twice differentiable ora, b], f convex (" >
0) andg concave {’ < 0) cannot have more than two points of intersection.
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Proof. Suppose by way of contradiction that they have at least three points of intersection. We
thus assumezy, f(z1)) = (z1,9(21)), (@2, f(22)) = (22,9(22)), (w3, f(x3) = (23, 9(x3)),
with a < 27 < x5 < x3 < b are such points. Next, we look at the expression

E— f(z2) — f(z1) _ fz3) — f(z2) _ g(@2) — g(x1) _ g(z3) — g(mz).

By the Mean Value Theorem applied twice f@and f’ the expressioit’ is equal to

E = f'(c1) — f'(c2) = f"(c)(c1 — 2) < 0,¢1 € (w1,12), 0 € (w2, 23),¢ € (c1,02)
and applied tgy andg’ gives

E=g'(&)—3d(&) =9"()(6 — &) > 0,& € (21,72), 6 € (72, 73), € € (&1, 62)

which is a contradiction. O

Let us observe that if, is a solution of the equatiop(xy) = 1 then(1/x¢, ) is a solution
of the system[(3]9).

Theorem 3.10.1f ¢ # 1/3, then the only critical points df are (1, 1), (o, 1), (1, ;-), (5, o),
wherexz is as in Theorern 3|5. If = 1/3, (1, 1) is the only critical point.

Proof. Start withg = 1/3. Then Lemma 3]4 and Theorém[3.5 imply the claim that ) is the
only critical point.
Next, forq # 1/3, we consider the following system in the variableandy:

I (y—1(A+y°)

T ys —1
1
1 B (ys+1 _ ys) s
x Y-y
In what follows next we show that every solution @f.{ is a solution of[(3.16). Indeed, if
(z,y) isin (Cy), then it satisfies

(3.16)

:(x5+1)(x—1) . y* —1
y(zs —1) (y—D(+y*)
This implies that
(:ES+1)(33—1): yt—1
y(zs — 1) (v =D +y)’

or
(@ + Da(y — (1 +y°) — (@ + Dy - DA +y°) =y(@* - 1)(y° - 1).

Now, usez(y — 1)(y* + 1) = y* — 1 to simplify the first term of the previous equality and

derive
@+ -1 - @+ Dy -1 +y°) —yla®-1)" - 1)=0.
Finally, we solve forr® to obtain
Py —1—y g+t T ) =y 11—y T -y
which is equivalent to
xs(zys . 2y5+1) — 2y . st
s+1 ys 1/S

So, ify # 1 this impliesz® = s+1— which implies that: = (—yys_y

We observe thatl, 1/x), (1/x0, zo) are solutions of-6) By Lemm. 8 dnd| 3.9, these
two points are the only solutions of this system, which proves our theorem. O

Using Lemma 38 and Theorgm 310 we infer the next result.
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Theorem 3.11.The pointin(1/zq, ) in (Cy4) is not a minimum point.

Proof. Since at this pointd = 2z — 1, B = 1/, C' = 1/z, we see thatl BC' = 221 and
the discriminantD takes the same form as in Theorem 3.7. Hence the proof here follows in the
same way as in Theorgm B.7. O

Putting together Lemmas 3]2, B.4, and Theoremp[3.7] 3.10, and 3.11, we infer the truth of
Theoren 3.
In terms of our original problem, we have obtained the following theorem.

Theorem 3.12. Given the pointsD, E, F' on the sides of a trianglél BC, and Fy, F}, F3, F3
the areas as in Figure 1].1, then

Fo > CyMy(Fy, Fy, Fy),
whereC, = min (1, 2 (%)1/”), forall p < 0.

Proof. We know from [4] that

FO 1 FO 1

FooTe 9(zx),  H=oty 9(z,y),
Fy 1

—=—-+z—-1= ,2).

Ry 9(y, 2)

We showed thaf (z, y, z) = g(x,y)?+9(y, 2)?+g(z, 2)?) has the minimumn = min(3, 27™1).
Hence
FY(F7%+ Fy 7+ Fy7) > min(3,27T).
This is equivalent to
max(3~ 5,27 (Fy 9+ Fy T+ Fy ) > Fy 2
Raising this to powef < 0 (p = —q¢), we get

min(37/7 2112 (FP 4+ FP + FP)v < R,
This givesC), = min (1 2 (2 )1/p). O
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