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ABSTRACT. We show that the functional equation

g

(
x + y

2

)
= 4

√
g(x)g(y)

is stable in the classical sense on arbitraryQ-algebraically open convex sets, but the Hyers
method does not work.

For the convenience of the reader, we have included an extensive list of references where
stability theorems for functional equations were obtained using the direct method of Hyers.
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1. I NTRODUCTION

The basic problem of the stability of functional equations asks whether an ’approximate
solution’ of the Cauchy functional equationg(x + y) = g(x) + g(y) ‘can be approximated’
by a solution of this equation. This problem was formulated (and also solved) in Gy. Pólya
and G. Szeg̋o’s book [60] (Teil I, Aufgabe 99) for functions defined on the set of positive
integers, it was reformulated in a more general form by S. Ulam in 1940 (see [86], [87]). In
1941, D. H. Hyers [40] gave the following solution to this problem:If X andY are Banach
spaces,ε is a nonnegative real number and a functionf : X → Y fulfills the inequality
||f(x+y)−f(x)−f(y)|| ≤ ε (x, y ∈ X), then there exists a unique solutiong : X → Y of the
Cauchy equation for which||f(x) − g(x)|| ≤ ε (x ∈ X). Stability problems of this type were
investigated by several authors during the last decades, most of them used the idea of Hyers,
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2 ZOLTÁN KAISER AND ZSOLT PÁLES

which will be described below. For surveys on these developments see, e.g., the papers by Forti
[16], Ger [30], Székelyhidi [85] and the book [43].

Let X andY be non-empty sets and let∗, � be binary operations onX andY , respectively.
The Cauchy equation concerning these general structures is the functional equation

(1.1) g(x ∗ y) = g(x) � g(y) (x, y ∈ X),

whereg : X → Y is considered as an unknown function.
Assuming, in addition, thatY is a metric space with metricd, we can speak about approxi-

mate solutions of (1.1): A functionf : X → Y is called anε-approximate solution of(1.1) if it
satisfies the following so-called stability inequality

(1.2) d
(
f(x ∗ y), f(x) � f(y)

)
≤ ε (x, y ∈ X)

for someε ≥ 0.
The Cauchy equation (1.1) is said to bestable in the sense of Hyers and Ulamif, for all

positive δ, there existsε > 0 such that, for an arbitrary solutionf of (1.2), there exists a
solutiong of (1.1) satisfyingd(f(x), g(x)) ≤ δ for all x ∈ X.

The most general results concerning this stability problem were obtained in the context of
square-symmetric groupoids, i.e., when the operations∗ and� satisfy the algebraic identities

(x ∗ y) ∗ (x ∗ y) = (x ∗ x) ∗ (y ∗ y) and (u � v) � (u � v) = (u � u) � (v � v)

for all x, y in X andu, v in Y . (Cf. [78], [15], [59], [58], [2].)
Let us denotex ∗ x by σ∗(x) (x ∈ X), andu � u by σ�(u) (u ∈ Y ) (i.e.,σ∗ andσ� stand for

the squaring in the corresponding structures). The square-symmetry of the operations∗ and�
simply means thatσ∗ andσ� are endomorphisms. Substitutingx = y into (1.1) and (1.2), we
get the following single-variable functional equation and functional inequality:

(1.3) g ◦ σ∗(x) = σ� ◦ g(x) (x ∈ X),

and

(1.4) d
(
f ◦ σ∗(x), σ� ◦ f(x)

)
≤ ε (x ∈ X).

Assuming that a functionf : X → Y satisfies (1.2), we see that it also satisfies (1.4). In
order to construct the solutiong of (1.1) which is close tof , the idea of the Hyers method is to
consider one of the following two iterations:

(1.5) g1 := f, gn+1 = σ� ◦ gn ◦ σ−1
∗ (n ∈ N),

(1.6) g1 := f, gn+1 = σ−1
� ◦ gn ◦ σ∗ (n ∈ N).

(assuming thatσ∗ andσ� is invertible, respectively) and then to show that for all solutionsf of
(1.4), one of these sequences of functions converges to a limit functiong, which is a solution of
(1.3) and of (1.1), moreover,d(f(x), g(x)) ≤ cε for somec ∈ R.

Results concerning stability of various functional equations in several variables using these
kinds of iterations can be found in a huge number of recent works (see the extensive list of
references at the end of the paper).

In this note we present an example of a stable Cauchy-type functional equation with square-
symmetric operations, where for all solutionsf of (1.4), the limit function of the corresponding
Hyers-sequences either does not exist or is a solution of the single variable functional equation
(1.3) but it does not solve (1.1) and it is not close to the original functionf .
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AN EXAMPLE 3

2. RESULTS

Let X denote a vector space over the field of rational numbers throughout this paper. In what
follows, we deal with the stability of the two-variable functional equation

(2.1) g
(x + y

2

)
= 4

√
g(x)g(y) (x, y ∈ H),

whereH is a midpoint-convex set ofX, i.e., x+y
2
∈ H for all x, y ∈ H. A functionf : H →

[0,∞[ is called anε-approximate solution of (2.1) if it satisfies the functional inequality

(2.2)
∣∣∣f(x + y

2

)
− 4

√
f(x)f(y)

∣∣∣ ≤ ε (x, y ∈ H).

Observe that, with the notations

x ∗ y :=
x + y

2
and x � y := 4

√
xy,

the operations∗ and� are square-symmetric (overH and[0,∞[), furthermore, (2.1) and (2.2)
are particular cases of (1.1) and (1.2), respectively.

With the substitutiony = x one obtains the following single variable functional equation and
functional inequality from (2.1) and (2.2):

(2.3) g(x) =
√

g(x) (x ∈ H),

and

(2.4)
∣∣f(x)−

√
f(x)

∣∣ ≤ ε (x ∈ H),

respectively.
In this setting, for the iteration (1.6), we get

gn(x) = (f(x))2n−1

(x ∈ X, n ∈ N),

which is not convergent for those elementsx ∈ X wheref(x) > 1, otherwise

g(x) = lim
n→∞

gn(x) =

{
0 if f(x) < 1,

1 if f(x) = 1.

Clearly,g is a solution of (2.3). Assume thatH has at least two elements and0 < ε ≤ 1. Let
x0 ∈ H be fixed. Definef1 : H → [0,∞[ by

f1(x) =

{
1 if x = x0,

1 + ε if x 6= x0,

andf2 : H → [0,∞[ by

(2.5) f2(x) =

{
1 if x = x0,

1− ε if x 6= x0.

It is not so difficult to prove, thatf1 andf2 satisfy inequality (2.2). It is clear, that the cor-
responding iteration (1.6) referring tof1 is not convergent whenx 6= x0. The iteration (1.6)
referring tof2 converges to

g(x) =

{
1 if x = x0,

0 if x 6= x0,

which is a solution of (2.3), but as we see later, does not necessarily solve (2.1). It is obvious
that there does not exist ac ∈ R, for whichd(f2(x), g(x)) ≤ cε for an arbitraryε. Moreover, if
ε ≈ 0, thend(f2(x), g(x)) ≈ 1, whenx 6= x0.
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4 ZOLTÁN KAISER AND ZSOLT PÁLES

Similarly, for the iteration (1.5), we get

gn(x) = (f(x))
1

2n−1 (x ∈ X, n ∈ N),

so we have

g(x) := lim
n→∞

gn(x) =

{
0 if f(x) = 0,

1 if f(x) 6= 0,

which is a solution of (2.3). Assume thatH has at least two elements,0 < ε ≤ 1 and define
f3 : H → [0,∞[ by

(2.6) f3(x) =

{
0 if x = x0,

ε2 if x 6= x0,

wherex0 ∈ H is fixed. It is obvious, that (2.2) holds for the functionf3, but the Hyers iteration
now converges to

g(x) =

{
0 if x = x0,

1 if x 6= x0,

which solves (2.3) but does not necessarily solve (2.1). Again as before, there does not exist a
c ∈ R, for whichd(f3(x), g(x)) ≤ cε for an arbitraryε, because ifε is approximately zero, then
d(f3(x), g(x)) is approximately1 whenx 6= x0.

In what follows, we prove the stability of the functional equations (2.3) and (2.1). It can be
immediately seen that the solutions of (2.3) are functions with values 0 and 1, that is, charac-
teristic functions of a certain subset ofH. The next result shows that iff is a solution of (2.4)
then it is close to a certain characteristic function as well. Thus, the functional equation (2.3) is
stable in the Hyers-Ulam sense.

Theorem 2.1. LetH be a nonempty set and letf : H → [0,∞[ be a solution of the functional
inequality(2.4)with 0 ≤ ε ≤ ε0 := 4/25. Then, for allx ∈ H,

either f(x) ≤ 25ε2

16
or − 9ε

4
≤ f(x)− 1 ≤ 2ε.

Proof. Define the subsetsA andB of H by

A :=
{

x ∈ H : −9ε

4
≤ f(x)− 1 ≤ 2ε

}
, B :=

{
x ∈ H : f(x) ≤ 25ε2

16

}
.

The proof of the theorem is equivalent to showing thatA andB form a partition ofH.
Let x ∈ H be arbitrary. Inequality (2.4) is equivalent to the quadratic inequalities

(2.7) −ε ≤
(√

f(x)
)2

−
√

f(x) ≤ ε.

Sinceε ≤ ε0 = 4/25, we have the estimate

(2.8)
1−

√
1− 4ε

2
=

4ε

2
(
1 +

√
1− 4ε

) ≤ 2ε

1 +
√

1− 4ε0

=
2ε

1 +
√

9/25
≤ 5

4
ε.

From (2.7), using (2.8), we obtain that either

0 ≤ f(x) =
(√

f(x)
)2 ≤

(
1−

√
1− 4ε

2

)2

≤ 25ε2

16
,

i.e.,x ∈ B, or
1 +

√
1− 4ε

2
≤

√
f(x) ≤ 1 +

√
1 + 4ε

2
,
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consequently, in view of the estimate (2.8) and

(2.9)

√
1 + 4ε− 1

2
=

4ε

2
(√

1 + 4ε + 1
) ≤ ε,

we have

1− 9ε

4
≤ 1− 1−

√
1− 4ε

2
− ε =

(
1 +

√
1− 4ε

2

)2

≤ f(x)

≤
(

1 +
√

1 + 4ε

2

)2

= 1 +

√
1 + 4ε− 1

2
+ ε ≤ 1 + 2ε,

which means thatx ∈ A.
Thus we have showed thatA ∪ B = H. On the other hand, sinceε ≤ ε0 = 4/25, it easily

follows thatA ∩B = ∅. �

In order to investigate the stability of the two-variable functional equation (2.1), we need
the notion of an ideal of midpoint-convex sets. We say that a setI ⊂ H is an ideal in the
midpoint-convex setH with respect to the midpoint operationif

(2.10) x ∈ H andy ∈ I =⇒ x + y

2
∈ I.

Trivially, ∅ andH are always ideals inH. However, in general, there could exist further ideals
in H. For instance, ifH is the closed unit intervalH = [0, 1] ⊂ R then the sets]0, 1[, [0, 1[, and
]0, 1] are also ideals forH. As we shall see below, ifH enjoys a certain openness property then
it can have only trivial ideals.

We say that a setH is Q-algebraically openif, for each pointp ∈ H and vectorv ∈ X, there
exists a positive numberτ such thatp + tv ∈ H for all t ∈ [0, τ ] ∩ Q. It is obvious, that every
open set (of a topological linear space) isQ-algebraically open, but the reversed statement is
not true in general.

Lemma 2.2. Let H ⊂ X be aQ-algebraically open midpoint-convex set. ThenH has only
trivial ideals, i.e., the only ideals inH are the sets∅ andH.

Proof. Assume thatI ⊂ H is a nonempty ideal with respect to the midpoint operation, and let
y ∈ I be fixed. It easily follows by induction that2

n−1
2n x + 1

2n y ∈ I for all x ∈ H.
Now letx ∈ H be arbitrary. SinceH is Q-algebraically open, for largen ∈ N, we have that

xn = x +
1

2n − 1
(x− y) ∈ H.

Then
2n − 1

2n
xn +

1

2n
y = x,

which, in view of the ideal property ofI, yields thatx ∈ I. Therefore,H ⊂ I follows. �

Our next result concerns the stability of the functional equation (2.1).

Theorem 2.3. Let H ⊂ X be aQ-algebraically open midpoint-convex set and letf : H →
[0,∞[ be a solution of the functional inequality(2.2)with 0 ≤ ε ≤ ε0 := 4/25. Then, either

f(x) ≤ 25ε2

16
(x ∈ H)

or

−9ε

4
≤ f(x)− 1 ≤ 2ε (x ∈ H).
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6 ZOLTÁN KAISER AND ZSOLT PÁLES

Proof. Define the setsA andB as in the proof of Theorem 2.1. Then, by Theorem 2.1, these
sets form a partition ofH. In order to complete the proof, we have to show that one of the sets
A or B is empty. To do that, we prove thatB is an ideal inH with respect to the midpoint
operation.

Let x ∈ H andy ∈ B. It suffices to prove thatx+y
2

6∈ A, because then we havex+y
2

∈
H \ A = B. From inequality (2.2) it follows that

f
(x + y

2

)
≤ ε +

√√
f(x)

√
|f(y)|

≤ ε +

√
√

1 + 2ε

√
25ε2

16

≤ ε0 +

√
√

1 + 2ε0
5ε0

4

=
4

25
+

4
√

33

5
<

16

25
= 1− 9ε0

4
≤ 1− 9ε

4
.

In view of Lemma 2.2, we have thatB is a trivial ideal, i.e., eitherB = H or B = ∅ which
means thatA = H, and the statement of the theorem follows from this. �

The functionsg ≡ 0 andg ≡ 1 are trivially the solutions of the functional equation (2.1).
Choosingε = 0 in Theorem 2.3, we immediately get that the reversed statement is also true,
i.e., we have the following result:

Corollary 2.4. Let X be a real linear space,H ⊂ X be aQ-algebraically open midpoint-
convex set. Then a functiong : H → [0,∞[ is a solution of the functional equation(2.1) if and
only if eitherg ≡ 0 or g ≡ 1.

Now Theorem 2.3 can be interpreted as the stability theorem of (2.1) since it states that if
f solves the stability inequality (2.2), then it is close to one of the solutions of the functional
equation (2.1). Thus, (2.1) is stable in the Hyers-Ulam sense.

On the other hand, Corollary 2.4 shows that if we consider equation (2.1) over aQ-alge-
braically open midpoint-convex set, then the limits of the corresponding Hyers-sequences re-
ferring to the functionsf2 andf3 defined in (2.5) and (2.6) are not solutions of (2.1), so the
stability of this functional equation cannot be proved via the Hyers-method.
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[20] P. GĂVRUŢĂ, A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings,J. Math. Anal. Appl., 184(3) (1994), 431–436. MR95e:47089
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answer to a problem of Th. M. Rassias,Ann. Math. Blaise Pascal,2(2) (1995), 55–60. MR97f:39035

[29] R. GER, On functional inequalities stemming from stability questions,General Inequalities, 6
(Oberwolfach, 1990) (W. Walter, ed.),International Series of Numerical Mathematics, Birkhäuser,
Basel–Boston, 1992, pp. 227–240. MR94b:39042

[30] R. GER, A survey of recent results on stability of functional equations,Proc. of the 4th Inter-
national Conference on Functional Equations and Inequalities(Cracow), Pedagogical University of
Cracow, 1994, pp. 5–36.

[31] A. GILÁNYI, Charakterisierung von monomialen Funktionen und Lösung von Funktionalgle-
ichungen mit Computern, Diss., Universität Karlsruhe, Karlsruhe, Germany, 1995.

[32] A. GILÁNYI, A characterization of monomial functions,Aequationes Math., 54(3) (1997), 289–
307. MR99g:39027

[33] A. GILÁNYI, On Hyers-Ulam stability of monomial functional equations,Abh. Math. Sem. Univ.
Hamburg, 68 (1998), 321–328. MR99k:39063

[34] A. GILÁNYI, On the stability of the square-norm equation,Publ. Math. Debrecen, 52(3-4) (1998),
419–427. MR99e:39082

[35] A. GILÁNYI, Hyers-Ulam stability of monomial functional equations on a general domain,Proc.
Natl. Acad. Sci. USA, 96(19) (1999), 10588–10590.

[36] A. GILÁNYI, On the stability of monomial functional equations,Publ. Math. Debrecen, 56(1-2)
(2000), 201–212. MR2001b:39025

[37] A. GILÁNYI, Über die Stabilität monomialer Funktionalgleichungen, Kumulative Habilitationss-
chrift, Universität Karlsruhe, Karlsruhe, Germany, 2000.

[38] A. GILÁNYI, On approximately monomial functions,Functional Equations – Results and Ad-
vances(Z. Daróczy and Zs. Páles, eds.),Advances in Mathematics, vol. 3, Kluwer Acad. Publ., Dor-
drecht, 2002, pp. 99–111. MR2003e:39062

[39] A. GILÁNYI, Z. KAISER AND Zs. PÁLES, Estimates to the stability of the Cauchy equation,
manuscript.

[40] D.H. HYERS, On the stability of the linear functional equation,Proc. Natl. Acad. Sci. U.S.A., 27
(1941), 222–224. MR 2,315a

[41] D.H. HYERS, The stability of homomorphisms and related topics,Global Analysis – Analysis on
Manifolds, Teubner-Texte Math., vol. 57, Teubner, Leipzig, 1983, pp. 140–153. MR86a:39004

[42] D.H. HYERS, G. ISACAND Th.M. RASSIAS, On the asymptoticity aspect of Hyers-Ulam stability
of mappings,Proc. Amer. Math. Soc., 126(2) (1998), 425–430. MR98d:39004

[43] D.H. HYERS, G. ISACAND Th.M. RASSIAS, Stability of Functional Equations in Several Vari-
ables,Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser Boston
Inc., Boston, MA, 1998. MR99i:39035

[44] K.-W. JUNAND H.-M. KIM, Remarks on the stability of additive functional equation,Bull. Korean
Math. Soc., 38(4) (2001), 679–687. MR2003a:39034

J. Inequal. Pure and Appl. Math., 6(1) Art. 14, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


AN EXAMPLE 9

[45] K.-W. JUN AND H.-M. KIM, The generalized Hyers-Ulam-Rassias stability of a cubic functional
equation,J. Math. Anal. Appl., 274(2) (2002), 267–278. MR2003j:39077

[46] K.-W. JUN AND H.-M. KIM, On the Hyers-Ulam-Rassias stability of a general cubic functional
equation,Math. Inequal. Appl., 6(2) (2003), 289–302. MR2004c:39061

[47] S.-M. JUNGAND P.K. SAHOO, On the Hyers-Ulam stability of a functional equation of Davison,
Kyungpook Math. J., 40(1) (2000), 87–92. MR2001d:39027

[48] S.-M. JUNGAND P.K. SAHOO, A functional equation characterizing cubic polynomials and its
stability, Int. J. Math. Math. Sci., 27(5) (2001), 301–307. MR2002m:39023

[49] S.-M. JUNGAND P.K. SAHOO, Hyers-Ulam stability of the quadratic equation of Pexider type,J.
Korean Math. Soc., 38(3) (2001), 645–656. MR2003d:39047

[50] S.-M. JUNGAND P.K. SAHOO, Hyers-Ulam stability of a generalized Hosszú functional equation,
Glas. Mat. Ser. III,37(57)(2) (2002), 283–292. MR2003k:39038

[51] Z. KAISER, On stability of the Cauchy equation in normed spaces over fields with valuation,Publ.
Math. Debrecen, 64(1-2) (2004), 189–200.

[52] G.H. KIM, A generalization of the Hyers-Ulam-Rassias stability of the beta functional equation,
Publ. Math. Debrecen, 59(1-2) (2001), 111–119. MR2002i:39016

[53] G.H. KIM, On the stability of functional equations with square-symmetric operation,Math. In-
equal. Appl., 4(2) (2001), 257–266. MR2003d:39044

[54] G.H. KIM, On the stability of the quadratic mapping in normed spaces,Int. J. Math. Math. Sci.,
25(4) (2001), 217–229. MR2002b:39020

[55] G.H. KIM, Y.W. LEE AND K.S. JI, Modified Hyers-Ulam-Rassias stability of functional equa-
tions with square-symmetric operation,Commun. Korean Math. Soc.,16(2) (2001), 211–223. MR
2002h:39036

[56] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Prace
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