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1. Introduction

If f:[a,b] — R is aconvex function, then

a+b 1 b f(a)+ f(b)

1.1 < <4l L 7
1) () <t [ < 19
is known as the Hermite-Hadamard inequalit)[ Fejér Inequalities for

In [4], Fejér established the following weighted generalization of the inequality Wright-convex Functions
(1.1): Ming-In Ho
Theorem A. If f : [a,b] — R is a convex function, then the inequality 085S A8 20T

b b) [° .
(1.2) f(a—i- )/ d$</f Sw/p(ﬁ)dw Title Page
‘ . Content

holds, wherep : [a,b] — R is nonnegative, integrable, and symmetric about orens
atb <« »

In recent years there have been many extensions, generalizations, applications < >

and similar results of the inequaliti¢s. 1) and(1.2) see L] — [8], [10] — [16].

In [2], Dragomir established the following theorem which is a refinement of the Page 3 of 19
first inequality of(1.1). Go Back
Theorem B. If f : [a,b] — R is a convex function, and is defined ono, 1] by Full Screen

1 ’ a+b Close
H(t)—b_a/f<tx+(1—t) 5 )dm,
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then H is convex, increasing off, 1], and for allz € [0, 1], we have
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In [11], Yang and Hong established the following theorem which is a refinement
of the second inequality dfi . 1):

Theorem C. If f : [a,b] — R is a convex function, anfl' is defined ono, 1] by

s [ (3 (5))
()0 (5

thenF is convex, increasing o), 1], and for all¢ € [0, 1], we have

ay [ s@a-ro<rosro- 000

We recall the definition of a Wright-convex function:

Definition1.1([9, p. 223]). We say thaff : [a,b] — R is a Wright-convex function,
if, for all z, y + 0 € [a,b] with z < y andd > 0, we have

(1.5) fl+o)+fy) < fly+d)+f(z).

Let C ([a, b]) be the set of all convex functions ¢a b] andW ([a, b]) be the set
of all Wright-convex functions ota,b]. ThenC ([a,b]) & W ([a,0]). Thatis, a
convex function must be a Wright-convex function but the converse is not true. (see
[9, p. 224)).

In[10], Tseng, Yang and Dragomir established the following theorems for Wright-
convex functions related to the inequality 1), TheoremA and Theoren:

Theorem D. Let f € W ([a,b]) N Ly [a, b] . Then the inequality!.1) holds.
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Theorem E. Let f € W ([a,b]) N L [a,b] and let H be defined as in Theore
ThenH € W ([0,1]) is increasing on0, 1], and the inequality(1.3) holds for all
t € [0,1].

Theorem F. Let f € W ([a,b]) N Ly [a,b] and let F' be defined as in Theorem
ThenF € W ([0, 1]) is increasing on0, 1], and the inequality1.4) holds for all
t €0,1].

In [12], Yang and Tseng established the following theorem which refines the
inequality(1.2):
Theorem G ([12, Remark 6]). Let f andp be defined as in Theoref If P, Q are
defined orf0, 1] by

b
(1.6) P(t) = / f (t:v +(1—-1) ¢ ;— b) p(x)dx (t €(0,1))

and
b — X a
(1.7) Q(t):/ %{f(l—;ta—i—12tx>p< ; )

+f(ﬂb+%)p(x;b)]dx (te (0,1)),

then P, () are convex and increasing @@, 1] and, for allt € [0, 1],

(1.8) f(a;b)/ap(x)dx:P(O)<P /f

b b
@9 [ @rwa=eo <<= [0
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In this paper, we establish some results about Thecdkeamd Theorents for

Wright-convex functions which are weighted generalizations of Thearem and
F.
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2. Main Results

In order to prove our main theorems, we need the following lentfh [
Lemma 2.1.1If f : [a,b] — R, then the following statements are equivalent:
1. feW([a,b]);
2. forall s,t,u,v € [a,b] withs <t <wu <wvandt+ u = s+ v, we have
(2.1) f@)+ ) < fs)+fv).

Theorem 2.2.Let f € W ([a,b]) N Ly [a,b] and letp : [a,b] — R be nonnegative,
integrable, and symmetric about= “T“’ Then the inequality!.2) holds.

Proof. For the inequalityZ.1) and the assumptions thats nonnegative, integrable,
and symmetric about = “T*b we have

f (a;b> /abp(l’)dw

a+b a+b

:/QQf(a;—b)p(x)dx—i-/a2f(a;—b)p(a—i—b—x)dx

a+b

[ PR o5
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a+

:a2f daH—/f

-/ f(z)p(z)dz,
and
L@LI0) [0y
:éﬁbpx>;f<q (Mx+l%bvaw;f<q (0t b—2)de

:/v@+ﬂmmwm

> [T U@+ fatb-ol@d @<o<arb-o<y

/Hbf )dx+/;f(x)p(x)dx:/abf(:c)p(;c)dx

This completes the prooi

Remarkl. If we setp (z) = 1 (z € [a,b]) in Theorem?2.2, then Theoren?.2 gener-
alizes Theoren.

Remark2. FromC ([a,b]) & W ([a, b]), Theorem?.2 generalizes Theorer.
Theorem 2.3.Let f andp be defined as in Theorem2 and let P be defined as in

(1.6). ThenP € W ([0, 1]) is increasing or{0, 1], and the inequality1.8) holds for
allt € [0,1].
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Proof. If s,¢,u,v € [0,1] ands < ¢ < u < wv,t+u = s+ v, then forz € [a, “t2]
we have

bzsx+(1—s)a+b2m+(1—t)a;b
2u:t+(1—u)a+bva+(1—v)a+b2a
and ifz € [%52,b], then
agsx—l—(l—s)a bgtx+(1—t)a+b
§ux+(1—u)a+bva—l—(l—v)a;bgb,
where
[tm+(1—t)a;b] + [ux—i—(l— )a;b}

By the inequality(2.1), we have

a+b

2.2) f(tx+(1—t)T) +f<ux+(1_u>a;tb)

Sf(SfH(l—S)a;b)+f(m;+(1—v)“;b)

for all x € [a,b]. Now, using the inequality2.2) andp is nonnegative ofu, b], we
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have

a+b

2.3) [f(ter(l—t) ! >+f(ua:+(1—u)a—2|_b)}p(x)
§{f(sx#—(l—s)a;b)—i—f(vx—l—(l—v)a;b)}p(x)

for all z € [a, b]. Integrating the inequality2.3) overz on|a, b], we have

P(t)+P(u) < P(s)+ P(v).

HenceP € W ([0, 1]).
Next, if 0 < s < ¢ < 1andz € [a, %$?], then

tz+(1—t)aT+b§sx+(1—s)a;b
Ss(a+b—x)+(1—s)a;_b
St(a+b—x)+(1—t)a+b,
where
sat—i—(l—s)a—i_b} + {s(a—kb—x)—l—(l—s)a—i_b}

= [m+(1—t>a7+b] + [t(a—kb—x)—i—(l—t)a;rb _

By the inequality(2.1) and the assumptions thatis nonnegative, integrable, and
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symmetric about = “T“’ we have

o) = [1 (s -9 pwas

:/a2 f<sw+(1—s)a;_b>P($)d$

a+tb
2
+/

a+b

f(s(a+b—x)+(1—s) )p(a+b—x)dx

:/aa("b {f(sx+(1—s)a+b)+f(S(a+b—l‘)+(1—8)a;b)}P(fE)dﬂf
g/ [f(tx+(1—t)a;b)+f(t(a+b—$)+<1—t)a;b)]p(m)dx
:/a%bf<tx+(1—t)a;b)]?(x)dx

a+b

+/a2 f(t(a+b—x)+(1—t)
:/abf(m+(1_t)“7“’>p(x>dxzp(t).

Thus, P is increasing ono0, 1], and the inequality!.8) holds for allt € [0,1] .
This completes the prook

a+b

)p(a—l—b—x)dx

Remarl3. If we setp (z) =1 (z € [a,b]) in Theorem?2.3, then Theoren?.2 gener-
alizes Theorent.
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Theorem 2.4.Let f andp be defined as in Theorem?2 and let() be defined as in
(1.7). Then@ € W ([0, 1)) is increasing orj0, 1], and the inequality 1.9) holds for
all ¢t € [0, 1].

Proof. If s,¢,u,v € [0,1] ands <t <u < wv,t+u = s+ v, thenforallz € [a, b

we have
o< (1+U)a+(1_v)x§ (1+u)a+(1—u)x
2 2
< )<

[\

and
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By the inequality(2.1), we have

e r((57)e (50) )+ ((5) e+ (57) )
5 (5 A (e ()

@9 s((5)+ (57) ) 2 ((57)+ (57))
() (57) ) (57 (5))

for all z € [a, b]. Now, using the inequality2.4), (
nonnegative offu, b|, we have

n {(5)e (7)) ()

2.5) and the assumptions thats
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(3 ()95
(390 (5 )
B3 (7))

Integrating the inequality2.6) overz on|a, b], we have

Q) +Q(u) <Q(s) +Q(v).

Hence@ € W ([0, 1]).
Next, if0 < s <t < 1andzx € [a,b], then

() ()

and

Fejér Inequalities for
Wright-convex Functions

Ming-In Ho
vol. 8, iss. 1, art. 9, 2007

Title Page
Contents
44 44
< >
Page 14 of 19
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: L443-575k

© 2007 Victoria University. All ights reserved.


http://jipam.vu.edu.au
mailto:mingin@cc.chit.edu.tw
http://jipam.vu.edu.au

1+ s 1—s 14+t 1—t¢
< < [ —= -
where

()« (7)) [(57) e+ (57 v
N (5w (5] [(57) e+ (57 o).

(5) e () tero o]+ | (55 (557)
() () e [(5)o ()

By the inequality(2.1) and the assumptions thatis nonnegative and symmetric
aboutz = 2, we have

e s((57) e (7)) (75)
() () o (F5)
(7)o (e (57
() (7)) (5

[\
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Integrating the inequality2.7) overz on|[a, b], we have

4Q (s) < 4Q (1)

HenceQ is increasing or0, 1], and the inequality1.9) holds for allt € [0, 1].
This completes the proog

Remark4. If we setp (z) = 1 (z € [a,b]) in Theorem?.4, then Theoren?.2 gener-
alizes Theorent.

Remark5. FromC' ([a,b]) & W ([a, b]), Theorem2.3 and Theoren?.4 generalize
TheoremC.
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