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ABSTRACT. Let L denote the time-dependent Schrödinger operator inn space variables. We
consider a variety of Lebesgue norms for functionsu on Rn+1, and prove or disprove estimates
for such norms ofu in terms of theL2 norms ofu andLu. The results have implications for
self-adjointness of operators of the formL+V whereV is a multiplication operator. The proofs
are based mainly on Strichartz-type inequalities.
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1. I NTRODUCTION

Let (x, t) ∈ Rn+1 wheren ≥ 1. The Schrödinger equation∂u
∂t

= i4xu has been much
studied using spectral properties of the self-adjoint operator4x. When a multiplication operator
(potential)V is added, it becomes important to determine whether4x + V is a self-adjoint
operator, and there is a vast literature on this question (see e.g. [9]).

One can also, however, regard the operatorL = −i ∂
∂t
− 4x as a self-adjoint operator on

L2(Rn+1), and that is the point of view taken in this paper. We ask what can be said about the
domain ofL, more specifically, we ask whichLq spaces, and more generally mixedLq

t (L
r
x)

space, a functionu must belong to, given thatu is in the domain ofL (i.e. u andLu both belong
to L2(Rn+1)). We answer this question and, using the Kato-Rellich theorem, deduce sufficient
conditions onV for L + V to be self-adjoint.

Our approach is based on the fact that any sufficiently well-behaved functionu on Rn+1 can
be regarded as a solution of the initial value problem (IVP)

(1.1)

{
−iut −4xu = g(x, t),

u(x, α) = f(x)
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2 M. H. MORTAD

whereα ∈ R, f(x) = u(x, α) andg = Lu.
To apply this, we will use estimates foru based on given bounds forf andg. A number of

such estimates are known and generally called Strichartz inequalities, after [12] which obtained
such anLq bound foru. This has since been generalized to give inequalities for mixed norms
[13, 4]. The specific inequalities we use concern the caseg = 0 of (1.1) and give bounds for
u in terms of‖f‖L2(Rn) - see (3.2) below. The precise range of mixedLq

t (L
r
x) norms for which

the bound (3.2) holds is known as a result of [13, 4] and the counterexample in [6].
In Section 2 we prove a special case of our main theorem, namely a bound foru in L∞

t (L2
x),

which does not require Strichartz estimates, only elementary arguments using the Fourier trans-
form. The main theorem, givingLq

t (L
r
x) bounds for the largest possible set of(q, r) pairs, is

proved in Section 3. In fact, we prove a somewhat stronger bound, in a smaller spaceL2,q,r de-
fined below. The fact that the set of pairs(q, r) covered by Theorem 3.1 is the largest possible
is shown in Section 4.

Some results on a similar question for the wave operator can be found in [7]. For Strichartz-
type inequalities for the wave operator, see e.g. [11, 12, 2, 3, 4].

We assume notions and definitions about the Fourier Transform and unbounded operators
and for a reference one may consult [8], [5] or [10]. We also use on several occasions the well-
known Duhamel principle for the Schrödinger equation (see e.g. [1]).

Notation. The symbolû stands for the Fourier transform ofu in the space (x) variable while
the inverse Fourier transform will be denoted either byF−1u or ǔ.

We denote byC∞
0 (Rn+1) the space of infinitely differentiable functions with compact sup-

port.
We denote byR+ the set of all positive real numbers together with+∞.
For1 ≤ p ≤ ∞, ‖·‖p is the usualLp-norm whereas‖·‖Lp

t (Lq
x) stands for the mixed spacetime

Lebesgue norm defined as follows

‖u‖Lq
t (Lr

x) =

(∫
R
‖u(t)‖q

Lr
x
dt

) 1
q

.

We also define some modified mixed norms. First we define, for any integerk,

‖u‖Lq
t,k(Lr

x) =

(∫ k+1

k

‖u(t)‖q
Lr

x
dt

) 1
q

,

and then

‖u‖Lp,q,r =

(∑
k∈Z

‖u‖p
Lq

t,k(Lr
x)

) 1
p

.

We note that‖u‖Lp,q1,r ≥ ‖u‖Lp,q2,r if q1 ≥ q2, and that‖u‖Lq
t (Lr

x) ≤ ‖u‖Lp,q,r if q ≥ p.
Finally we define

Mn
L = {f ∈ L2(Rn+1) : Lf ∈ L2(Rn+1)},

whereL is defined as in the abstract and where the derivative is taken in the distributional sense.
We note thatMn

L = D(L), the domain ofL, and also thatC∞
0 (Rn+1) is dense inMn

L in the graph
norm‖u‖L2(Rn+1) + ‖Lu‖L2(Rn+1).
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Lp-ESTIMATES FOR THESCHRÖDINGEROPERATOR 3

2. L∞
t (L2

x) ESTIMATES .

Before stating the first result, we are going to prepare the ground for it. Take the Fourier
transform of the IVP (1.1) in the space variable to get{ −iût + η2û = ĝ(η, t),

û(η, α) = f̂(η)

which has the following solution (valid for allt ∈ R):

(2.1) û(η, t) = f̂(η)e−iη2t + i

∫ t

α

e−iη2(t−s)ĝ(η, s)ds,

whereη ∈ Rn.
Duhamel’s principle gives an alternative way of writing the part of the solution depending on

g. Taking the casef = 0, the solution of (1.1) can be written as

(2.2) u(x, t) = i

∫ t

α

us(x, t)ds,

whereus is the solution of {
Lus = 0, t > s,

us(x, s) = g(x, s).

Now we state a result which we can prove using (2.1). In the next section we prove a more
general result using Strichartz inequalities and Duhamel’s principle (2.2).

Proposition 2.1. For all a > 0, there existsb > 0 such that

‖u‖L2,∞,2 ≤ a‖Lu‖2
L2(Rn+1) + b‖u‖2

L2(Rn+1)

for all u ∈ Mn
L .

Proof. We prove the result foru ∈ C∞
0 (Rn+1) and a density argument allows us to deduce it

for u ∈ Mn
L .

We use the fact that any suchu is, for anyα ∈ R, the unique solution of (1.1), where
f(x) = u(x, α) andg = Lu, and therefore satisfies (2.1).

Let k ∈ Z and lett andα be such thatk ≤ t ≤ k + 1 andk ≤ α ≤ k + 1. Squaring (2.1),
integrating with respect toη in Rn, and using Cauchy-Schwarz (and the fact that|t − α| ≤ 1),
we obtain

(2.3) ‖û(·, t)‖2
L2(Rn) ≤ 2

∫
Rn

|û(η, α)|2dη + 2

∫
Rn

∫ t

α

|ĝ(η, s)|2dsdη.

Now integrating againstα in [k, k + 1] allows us to say that

‖u(·, t)‖2
L2(Rn) ≤ 2

∫ k+1

k

∫
Rn

|û(η, α)|2dηdα + 2

∫ k+1

k

∫
Rn

|ĝ(η, s)|2dηds.

Now take the essential supremum of both sides int over [k, k + 1], then sum ink overZ to get
(recalling thatg = Lu)

∞∑
k=−∞

ess sup
k≤t≤k+1

‖u(·, t)‖2
L2(Rn) ≤ 2‖Lu‖2

L2(Rn+1) + 2‖u‖2
L2(Rn+1).

Finally to get an arbitrarily small constant in theLu term we use a scaling argument: letm
be a positive integer and letv(x, t) = u(mx, m2t). Then we find

‖v‖L2(Rn+1) = m−1−n/2‖u‖L2(Rn+1)
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and
‖Lv‖L2(Rn+1) = m1−n/2‖Lu‖L2(Rn+1).

Also,
‖v(·, t)‖L2(Rn) = m−n/2‖u(·, m2t)‖L2(Rn)

and so

sup
k≤t≤k+1

‖v(·, t)‖2
L2(Rn) = m−n sup

m2k≤t≤m2(k+1)

‖u(·, t)‖2
L2(Rn)

≤ m−n

m2(k+1)−1∑
j=m2k

sup
j≤t≤j+1

‖u(·, t)‖2
L2(Rn).

Summing overk gives

‖v‖2
L2,∞,2

≤ m−n‖u‖2
L2,∞,2

≤ m−n
(
2‖Lu‖2

L2(Rn+1) + 2‖u‖2
L2(Rn+1)

)
≤ 2m−2‖Lv‖2

L2(Rn+1) + 2m2‖v‖2
L2(Rn+1)

and choosingm so that2m−2 < a completes the proof. �

Now we recall the Kato-Rellich theorem which states that ifL is a self-adjoint operator on a
Hilbert space andV is a symmetric operator defined onD(L), and if there are positive constants
a < 1 andb such that‖V u‖ ≤ a‖Lu‖ + b‖u‖ for all u ∈ D(L), thenL + V is self-adjoint on
D(L) (see [9]).

Corollary 2.2. Let V be a real-valued function inL∞,2,∞. ThenL + V is self-adjoint on
D(L) = Mn

L .

Proof. One can easily check that

‖V u‖L2(Rn+1) ≤ ‖V ‖L∞,2,∞‖u‖L2,∞,2 .

Choosea < ‖V ‖−1
L∞,2,∞

and then Proposition 2.1 shows thatL + V satisfies the hypothesis of
the Kato-Rellich theorem. �

In particular, it follows thatL + V is self-adjoint wheneverV ∈ L2
t (L

∞
x ).

3. Lq
t (L

r
x) ESTIMATES .

Now we come to the main theorem in this paper, which depends on the following Strichartz-
type inequality. Supposen ≥ 1 andq andr are positive real numbers (possibly infinite) such
thatq ≥ 2 and

(3.1)
2

q
+

n

r
=

n

2
.

Whenn = 2 we exclude the caseq = 2, r = ∞. Then there is a constantC such that if
f ∈ L2(Rn) andg = 0, the solutionu of (1.1) satisfies

(3.2) ‖u‖Lq
t (Lr

x) ≤ C‖f‖L2(Rn).

This result can be found in [13] forq > 2; the more difficult ‘end-point’ case whereq = 2,
n ≥ 3 is treated in [4]. That (3.2) fails in the exceptional casen = 2, q = 2, r = ∞ is shown in
[6].
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Forn ≥ 1 we define a regionΩn ∈ R+ × R+ as follows: forn 6= 2,

(3.3) Ωn =

{
(q, r) ∈ R+ × R+ :

2

q
+

n

r
≥ n

2
, q ≥ 2, r ≥ 2

}
and forn = 2, Ω2 is defined by the same expression, with the omission of the point(2,∞).

The setsΩn are probably most easily visualized in the(1
q
, 1

r
)-plane. ThenΩ1 is a quadri-

lateral with vertices(1
4
, 0), (1

2
, 0), (0, 1

2
), (1

2
, 1

2
) and forn ≥ 2, Ωn is a triangle with vertices

(1
2
, n−2

2n
), (0, 1

2
), (1

2
, 1

2
), the point(1

2
, 0) being excluded in the casen = 2.

Theorem 3.1.Letn ≥ 1, and let(q, r) ∈ Ωn. Then for alla > 0, there existsb > 0 such that

(3.4) ‖u‖L2,q,r ≤ a‖Lu‖L2(Rn+1) + b‖u‖L2(Rn+1)

for all u ∈ Mn
L .

Proof. By the inclusionL2,q1,r ⊆ L2,q2,r, when q1 ≥ q2 it suffices to treat the case where
2
q

+ n
r

= n
2
, for which (3.2) holds.

Let k ∈ Z and letα ∈ [k, k + 1]. As in the proof of Proposition 2.1 we use the fact thatu is
the solution of (1.1) withf = u(·, α) andg = Lu. Now we splitu into two partsu = u1 + u2,
whereu1, u2 are the solutions of{

Lu1 = g,

u1(x, α) = 0,

{
Lu2 = 0,

u2(x, α) = f.

The estimate foru2 is deduced from (3.2):

(3.5) ‖u2‖Lq
t (Lr

x) ≤ C‖f‖L2(Rn) ≤ C‖u(·, α)‖L2(Rn).

Foru1 we apply (2.2) to obtain

(3.6) u1(x, t) = i

∫ t

α

us(x, t)ds,

from which we deduce

‖u1(·, t)‖Lr(Rn) ≤
∫ k+1

k

‖us(·, t)‖Lr(Rn)ds

for t ∈ [k, k + 1], and hence

‖u1‖Lq
t,k(Lr

x) ≤
∫ k+1

k

‖us‖Lq
t (Lr

x)ds

≤ C

∫ k+1

k

‖g(·, s)‖L2(Rn)ds

≤ C‖g‖L2(Rn×[k,k+1]).

Combining this with (3.5) we have

‖u‖2
Lq

t,k(Lr
x) ≤ 2C2‖u(·, α)‖2

L2(Rn) + 2C2‖Lu‖2
L2(Rn×[k,k+1]).

Integrating w.r.t.α from k to k + 1 gives

‖u‖2
Lq

t,k(Lr
x) ≤ 2C2‖u‖2

L2(Rn×[k,k+1]) + 2C2‖Lu‖2
L2(Rn×[k,k+1]).

Summing overk, we obtain

‖u‖2
L2,q,r

≤ 2C2‖u‖L2(Rn+1) + 2C2‖Lu‖L2(Rn+1),

and the proof is completed by a similar scaling argument to that used in Proposition 2.1.�
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6 M. H. MORTAD

Using the inclusionL2,q,r ⊆ Lq
t (L

r
x) for q ≥ 2 we deduce

Corollary 3.2. Letn ≥ 1, and let(q, r) ∈ Ωn. Then for alla > 0, there existsb > 0 such that

(3.7) ‖u‖Lq
t (Lr

x) ≤ a‖Lu‖L2(Rn+1) + b‖u‖L2(Rn+1)

for all u ∈ Mn
L .

In particular, we get such a bound for‖u‖Lq(Rn+1) whenever2 ≤ q ≤ (2n + 4)/n.
By applying the Kato-Rellich theorem we can deduce a generalization of Corollary 2.2 from

Theorem 3.1. We first define

(3.8) Ω∗
n =

{
(p, s) ∈ R+ × R+ :

2

p
+

n

s
≤ 1, p ≥ 2, s ≥ 2

}
for n 6= 2, and forn = 2, Ω2 is defined by the same expression, with the omission of the point
(2,∞).

Corollary 3.3. Let n ≥ 1 and let(p, s) ∈ Ω∗
n. Let V be a real-valued function belonging to

L∞,p,s. ThenL + V is self-adjoint onMn
L .

Proof. Let q = 2p
p−2

andr = 2s
s−2

. Then(q, r) ∈ Ωn and the conclusion (3.4) of Theorem 3.1
applies. Now we have∫ k+1

k

‖V u(·, t)‖2
L2(Rn) ≤

∫ k+1

k

‖u(·, t)‖2
Lr(Rn)‖V (·, t)‖2

Ls(Rn)

≤ ‖u‖2
Lq

t,k(Lr
x)‖V ‖

2
Lp

t,k(Ls
x)

and summation overk gives

‖V u‖L2(Rn+1) ≤ ‖u‖L2,q,r‖V ‖L∞,p,s .

Then, using (3.4), the result follows in the same way as Corollary 2.2. �

It follows from Corollary 3.3 thatL+V is self-adjoint wheneverV ∈ Lp
t (L

s
x) for (p, s) ∈ Ω∗

n.
Taking the cases = p, we find thatL + V is self-adjoint ifV ∈ Lp(Rn+1) for somep ≥ n + 2.

4. COUNTEREXAMPLES

Now we show that Theorem 3.1 is sharp, as far as the allowed set ofq, r is concerned.

Proposition 4.1. Letn ≥ 1 and letq andr be positive real numbers, possibly infinite, such that
(q, r) /∈ Ωn. Then there are no constantsa andb such that (3.7) holds for allu ∈ Mn

L .

Proof. For (q, r) to fail to be inΩn one of the following three possibilities must occur: (i)q < 2
or r < 2; (ii) 2

q
+ n

r
< n

2
; (iii) n = 2, q = 2 andr = ∞. We consider these cases in turn.

(i) If q < 2, choose a sequence(βk)k∈Z which is in l2 but not in lq. Let φ(x, t) be a smooth
function of compact support onRn+1 which vanishes fort outside[0, 1], and letu(x, t) =∑

k∈Z βkφ(x, t− k). Thenu ∈ Mn
L , butu /∈ Lq

t (L
r
x) for anyr.

The caser < 2 can be treated similarly. We chose a sequenceβk which is in l2 but notlr,
and a smoothφ which vanishes forx1 outside[0, 1], then setu(x, t) =

∑
k∈Z βkφ(x − ke1, t),

wheree1 is the unit vector(1, 0, . . . , 0) in Rn. Thenu ∈ Mn
L , butu /∈ Lq

t (L
r
x) for anyq.

(ii) In this case we use the scaling argument which shows that the Strichartz estimates fail,
together with a cutoff to ensureu andLu are inL2.

We start with a non-zerof ∈ L2(Rn), and letu be the solution of (1.1) withα = 0 andg = 0.
(An explicit example would bef(x) = e−|x|

2
and thenu(x, t) = (1 + 4it)−n/2e−|x|

2/(1+4it)).

J. Inequal. Pure and Appl. Math., 8(3) (2007), Art. 80, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


Lp-ESTIMATES FOR THESCHRÖDINGEROPERATOR 7

Choose a smooth functionφ onR such thatφ(0) 6= 0 and such thatφ andφ′ are inL2. Then for
λ > 0 define

vλ(x, t) = λn/2u(λx, λ2t)φ(t).

Then (usingLu = 0) we findLv(x, t) = −iλn/2u(λx, λ2t)φ′(t). We calculate‖vλ‖L2(Rn+1) =
‖f‖L2(Rn)‖φ‖L2 and‖Lvλ‖L2(Rn+1) = ‖f‖L2(Rn)‖φ′‖L2. Also

‖vλ‖Lq
t (Lr

x) = λβ

{∫
R
‖u(·, t)‖q

Lr(Rn)|φ(λ−2t)|qdt

} 1
q

,

whereβ = n
2
− n

r
− 2

q
> 0. Soλ−β‖vλ‖Lq

t (Lr
x) → |φ(0)|‖u‖Lq

t (Lr
x) (note that the norm on the

right may be infinite) and hence‖vλ‖Lq
t (Lr

x) tends to∞ asλ →∞, completing the proof.

(iii) This exceptional case we treat in a similar fashion to (ii), but we need the result from [6],
that the Strichartz inequality fails in this case. We start by fixing a smooth functionφ onR such
thatφ = 1 on [−1, 1] andφ andφ′ are inL2.

Now letM > 0 be given and we use [6] to findf ∈ L2(R2) with ‖f‖L2(R2) = 1 such that the
solutionu of (1.1) withα = 0 andg = 0 satisfies‖u‖L2

t (L∞x ) > M . Then we can findR > 0 so

that
∫ R

−R
‖u(·, t)‖2

L∞(R2)dt > M2. Let λ = R1/2 and definev(x, t) = λn/2u(λx, λ2t)φ(t). Then
‖v‖L2(R3) = ‖φ‖L2, ‖Lv‖L2(R3) = ‖φ′‖L2 and

‖v‖2
L2

t (L∞x ) ≥
∫ 1

−1

‖v(·, t)‖2
L∞(R2)dt > M2,

which completes the proof, sinceM is arbitrary. �

We remark that [6] also gives an example off ∈ L2(R2) such thatu /∈ L2
t (BMOx) and the

argument of part (iii) can then be applied to show that no inequality

‖u‖L2
t (BMOx) ≤ a‖Lu‖L2(R3) + b‖u‖L2(R3)

can hold.

5. QUESTION

We saw as a result of Corollary 3.3 that if(p, s) ∈ Ω∗, thenL + V is self-adjoint onMn
L

wheneverV ∈ Lp
t (L

s
x). One can ask whether this can be extended to a larger range of(p, s)

with p, s ≥ 2. If one asks whetherL + V is defined onMn
L , then we would require a bound

‖V u‖L2(Rn+1) ≤ a‖Lu‖L2(Rn+1) + b‖u‖ to hold for allu ∈ Mn
L . If such a bound is to hold for

all V ∈ Lp
t (L

s
x), then, in fact, we require (3.7) to hold forq = 2p

p−2
andr = 2s

s−2
, which we know

cannot hold unless(p, s) ∈ Ω∗.
One can instead ask forL+V , defined on sayC∞

0 (Rn+1), to be essentially self-adjoint. This
is equivalent to saying that the only (distribution) solution inL2(Rn+1) of the PDE

−iut −4xu + V u = ±iu

is u = 0 (see e.g. [8]).
We do not know if there are any values of(p, s) not in Ω∗

n such that this holds for allV ∈
Lp

t (L
s
x). The analogous question for the Laplacian is extensively discussed in [9].
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