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Abstract

In this paper, some generalized integral inequalities which originate from an
open problem posed in [F. Qi, Several integral inequalities, J. Inequal. Pure Appl.
Math, 1(2) (2000), Art. 19] are established.
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In the paper§] Qi proved the following result:
Theorem 1 ([3, Proposition 1.1]). Let f(z) be continuous offu, b], differen- b dd
tiable on(a, b) and f(a) = 0. If f'(x) > 1, then < >
b ; b 2 Go Back
>
@ [ @par= | [ s —
If 0 < f'(x) < 1, then inequality(1) is reversed. Quit
Page 2 of 13

Qi extended this result to a more general case (Spe dnd obtained the
following inequality @).
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Theorem 2 ([3, Proposition 1.3]). Letn be a positive integer. Suppogér) has
continuous derivative of the-th order on the intervala, b] such thatf® (a) >
0fori=0,1,2,...,n — 1.If f™(z) > nl, then

) / e > [ / b f(az)d:c} "

Qi then proposed an open problem: Under what conditions is the inequality

(2) still true if n is replaced by any positive numbe?

Some results on this open problem can be foundjiapd [7].

Recently, Chen and Kimballl] claimed to have given an answer to Qi’s
open problem as follows.
Claim 1 ([1, Theorem 3]). Letp be a positive number anfiz) be continuous
on [a, b] and differentiable or{a, b) such thatf(a) = 0. If [fﬂ () > (p+

1)»~"for z € (a,b), then
©) / P2 > { / b f(m)da:} "

If 0 < [f%] (z) < (p+ 1)» ' for z € (a,b), then inequality §) is reversed.

As a matter of fact, Claini is not true. To see this, choogér) = —2./z,
p = % a = 0,b = 1. Itis easy to check that the conditions of Clainare
satisfied, but that inequality3 does not hold. The error in the proof of, [
Theorem 3] is the statement thatﬁ‘vl?(a:) is a non-decreasing function, then
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f(z) > 0forall z € (a,b], which isnottrue as our example above shows . If
one addsf(x) > 0 for all z € (a, b] to the hypotheses, then Claibecomes a
valid theorem.

Pecaric and Pejkovic’[ Theorem 2] proved the following result which gives
an answer to the above open problem.

Theorem 3 ([2, Theorem 2]). Letp be a positive number and I¢{z) be con-
tinuous onla, b], differentiable on(a,b), and satisfyf(a) > 0. If f'(z) >
p(x — a)P~! for z € (a,b), then inequality §) holds.

On an Open Problem of Integral

In the present paper we give new answers to Qi’'s problem and some new Inequalities
results concerning the integral inequaliy &énd its reversed form, which extend
related results in the references. The following result is a generalization of
Theorems 3, 4 and 5 in], Proposition 1.1 in§], and Theorem 2 in].

Theorem 4. Letk be a non-negative integer and jebe a positive number such
thatp > k. Suppose thaf(z) has a derivative of thék + 1)-th order on the Contents
interval (a, b) such thatf®)(z) is continuous ofia, b], f(x) is non-negative on
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[a,b] and f)(a) = 0fori =0,1,2,... k. A D
(i) If 4 >
RN k(P p—k Go Back
((f(k))pik) (z) 2 (ﬁ) T €(ab), Close
then @) holds. Quit
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then inequality 8) is reversed.

Proof. First notice that iff = 0 on [a, b], then Theorem is trivial. Suppose
that f is not identically0 on [a,b]. If [” f(s)ds = 0 for somexz € (a,b] then
f(s) = 0forall s € [a,z], becausef(z) is non-negative oifu, b]. So we can
assumethaf” f(s)ds > Oforallz € (a,b]. (Otherwise, we can find, € (a,b)

such that[” f(s)ds = 0 for z € [a,a;] and [ f(s)ds > 0 for z € (as,b) and
hence we only need to considéon [a,, b)).

(i) Suppose that

((ﬂk))ﬂ)’(x)z (%)p .z € (ab).

1. £ = 0 < p. By Cauchy’'s mean value theorem (CMVT) (that is, the state-
ment that forh, g differentiable on(a,b) and continuous offu, b] there

exists & € (a, b) such that'()(g(b) — g(a)) = ¢'(§)(h(b) — h(a)))), by
using CMVT twice, there exist < by < b; < b such that
L f@yde
(fab f(:z:)dx)p+1 (p+1)
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since(f%),(x) > (p+ 1)%_1 for z € (a,b).
So (i) is true fork = 0.

2. k=1 < p. By using CMVT three times, there exist< b3 < by < by < b

such that
L @)r2de ()
(2 @)™ o+ (7 f@)da)

BRI EO)EAY
p+1 fablf(x)dx

since

((77) @) (ﬁ) v € (a,)

So (i) istrue fork =1 < p.
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3.1 < k < p. By using CMVT (k + 2) times and mathematical induction,
there existy < by,o < --- < by < bsuch that

L (f@)r2de 1 (f(b >>p+1
(2 f@)dmytt P+ L (2 (o
(p+ 17" (f < >>

P (f(b2))Pm
- ' On an Open Problem of Integral
(p + 1)17—1 (f(k+1)(bk+2))p—k? Inequalities
N p(p — 1) cee (p —k+ 1)(]) — k‘)p_k (f(k)(bk+2))p_k_1 Ping Yan and Mats Gyllenberg
> 1,
; Title Page
since N 9
(( (k)) ! (@) k! (zlz) p—k () Contents
Uy ) x) > | —— , x € (a,b).
(p+ 1Pt « >
So (i) is true ford < k < p. < >
(i) The proof of the second part is similar so we omit the details. This completes Go Back
the proof of Theorem. ] Close
Remark 1. If p = 1 andk = 0, then Theorem is reduced to Proposition 1.1 Quit
in[3]. If p=Fk+1, then
Page 7 of 13
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In [4] we proved the conjecture in] (i.e., Theorem 2 in{]). Itis obvious that
Theoremd is a generalization of Proposition 1.1 i], Theorems 3, 4 and 5 in
[1], and Theorem 2 in4].

The following result is a generalization of Theorem 2%hdnd Proposition
1.3in [3].

Theorem 5. Let £ be a non-negative integer and lgtbe a positive number
such thatp > k. Suppose thaf(x) has a derivative of thék + 1)-th order
on the interval(a, b) such thatf®(z) is continuous oria, b], f@(a) = 0 for
i=0,1,2,....,k—1,and f®(a) > 0.

If

k41 (k+1)! <k+1) (p—k+ 1P
0@ 2 (p+ 1)1

for z € (a,b), then inequality §) holds.

(x — a)p*kfl

Proof. As in the proof of Theoremt we can assume thdt’ f(s)ds > 0 for all
€ (a,b)].

1. k£ = 0. By using CMVT three times, there exigt< b3 < by < by < b

such that
Lf@)yde (fb)!
(! fayae)™ @+ 1) (f) fla)de)”
(F) " f'(bs) o (FB)P (b — a)

C
T (@) (@)
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sincef’(x) > p(x — a)?P~! for z € (a,b). Then

(o) ba =) (
(f;n f(x)dx) "

So Theorenb is true fork = 0.

2. k =1 < p. By using CMVT four times, there exist < by < b3 < by <
b; < b such that

L@y de - (fo)p
(2 1) o+ (7 Fladde)
! <f<b1>>”f)’°

(f'(b2))?

% (ff? f’(x)dx)p_l
LT 1 () ()
P (e paan)

> (f’<,?_3><bg - >>
Jo f(x)de
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since

@) > (- 1) (L

Then

(f’(bs)(bs—a)>p_2 ( (b, ><bz—a>>”‘1
2 pr(w)de I f

(1 N J"(b4)(bs — )

p+1

So Theorenb is true fork = 1.

b; < b such that

)p_l (x —a)"%, € (a,b).

f'(bs)

Lo @)2de (f(b)
(J2 fa)de)"™ D (2 Fde)
P+t (f(b))
pp <f;2 f’(q})dm)pl

p—2
) -1

3.1 < k < p. By using CMVT (k + 3) times, there exist < by 3 < --- <
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(p+1)rt
plp=1)-(p=k+2)(p—k+ 1)k
(f ¥ (bpyr))PFH
(f o wyar) ™
> (p+ 1)1
“plp=1)--(p—k+2)(p—k+1)PF(p—k)
" (F® (brg2) )P H L D (b )
(ffk+2 £ (x)dx>p_k_l

o (SO0 b =)\
- f:’““ I (x)dz 7

X

since

FOD () > (k+1)1(7,) (p — k + 1)rht

> (p+ D (x —a)P™", z € (a,b).

Then

(f(k)(bk“)(bkﬂ — a)>pk1 — <1 + S (bg5) (b — a)>pk1 -

fabk“ [ (x)dx F®) (bss)

This completes the proof of Theorém
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Remark 2. If £k = 0, Theoren®b is reduced to Theorem 2 ir’]. If £ = 0 and
p = n, then

(k+ 1>!(k£1)(p —k+ 1P+t

— )Pl =z —a)" L.
e (e a) (v —a)

It follows that Proposition 1.3 ind] is a corollary of Theoren®. In fact, let f
satisfy the conditions of Theoren Sincef ™ (z) > n!, successively integrat-
ing n — 1 times ovefa, x|, we havef’(z) > n(z —a)" ! for x € (a,b). Hence,
Theorent is a generalization of Proposition 1.3 ik]and Theorem 2 in%].
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