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ABSTRACT. In this paper, some generalized integral inequalities which originate from an open
problem posed in [F. Qi, Several integral inequalitiednequal. Pure Appl. Math1(2) (2000),
Art. [19] are established.
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In the paperi[3] Qi proved the following result:

Theorem 1([3, Proposition 1.1]) Let f(x) be continuous ofu, b, differentiable ona, b) and
f(a) =0.1f f'(x) > 1, then

@ [irwpa [ bf(fv)dxr |

If 0 < f(z) < 1, then inequality(l) is reversed.

Qi extended this result to a more general case (see [3]), and obtained the following inequality

(2).
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2 PING YAN AND MATS GYLLENBERG

Theorem 2 (|3, Proposition 1.3]) Letn be a positive integer. Suppogér) has continuous

derivative of the:-th order on the intervala, b] such thatf® (a) > 0fori = 0,1,2,...,n— 1.
If £(")(z) > n!, then

b b n+l
@ [r iz [ [ ]

Qi then proposed an open problem: Under what conditions is the ineqlidlity (2) still tsue if
is replaced by any positive numbg?

Some results on this open problem can be foundlin [1] @nd [2].

Recently, Chen and Kimball[1] claimed to have given an answer to Qi's open problem as
follows.

Claim 1 ([1, Theorem 3]) Let p be a positive number andl(x) be continuous offa, b] and
differentiable on(a, b) such thatf(a) = 0. If [f%] (x) > (p+ 1)%*1 for z € (a,b), then

3) Ll%f@ﬂpﬁdeiLLbf@ﬁ¢4p+{

If 0 < [f%]/ (x) < (p+ 1)%‘1 for z € (a,b), then inequality) is reversed.

As a matter of fact, Clairﬂl is not true. To see this, chopse = —2\/z,p = 3, a = 0,
b = 1. Itis easy to check that the conditions of Cldiin 1 are satisfied, but that ineq(idlity (3)
does not hold. The error in the proof 6f [1, Theorem 3] is the statement tb‘ié(z’tf) is a non-
decreasing function, thefiz) > 0 for all z € (a, b], which isnot true as our example above
shows . If one addg(x) > 0 for all = € (a, b] to the hypotheses, then Clalith 1 becomes a valid
theorem.

Pecaric and Pejkovic¢ [2, Theorem 2] proved the following result which gives an answer to
the above open problem.

Theorem 3([2, Theorem 2]) Let p be a positive number and I¢{z) be continuous ofu, b],
differentiable on(a,b), and satisfyf(a) > 0. If f'(x) > p(x — a)P~! for x € (a,b), then
inequality [3) holds.

In the present paper we give new answers to Qi’s problem and some new results concerning
the integral inequality] (3) and its reversed form, which extend related results in the references.
The following result is a generalization of Theorems 3, 4 and 5lin [1], Proposition 1.1 in [3],
and Theorem 2 ir [4].

Theorem 4. Let k be a non-negative integer and letbe a positive number such that> .
Suppose that(z) has a derivative of thék + 1)-th order on the intervala, b) such thatf ) (z)
is continuous offa, b, f(z) is non-negative ofu, b and f(a) = 0 fori = 0,1,2,..., k.

() If

LN/ kNP =
<(f(k))p*k) (1‘) > <$) , T E (a,b),
then [3) holds.
(i) If

1

0< ((19)7%) (2) < (%) L se(eb),

p+ 1)t
then inequality[(B) is reversed.
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Proof. First notice that iff = 0 on [a, b, then Theorem|4 is trivial. Suppose thats not
identically 0 on [a,b]. If [ f(s)ds = 0 for somez € (a,b] then f(s) = 0 forall s € [a,2],
becausef (x) is non-negative on{n b]. So we can assume that f(s)ds > 0 for all z € (a, b].
(Otherwise, we can find; € (a,b) such that[” f(s)ds = 0 for z € [a,a;] and [ f(s)ds > 0
for z € (a1, b) and hence we only need to consideon [a, b]).

(i) Suppose that

1N/ kN 7
<(f(k))p—k> (x) > (#) , x € (a,b).

(1) £ = 0 < p. By Cauchy’s mean value theorem (CMVT) (that is, the statement that
for h, g differentiable on(a,b) and continuous ofu, b] there exists & € (a,b) such
that /() (g(b) — g(a)) = ¢ (&)(h(b) — h(a)))), by using CMVT twice, there exist
a < by < by < bsuch that

LG @)y+de (fb)
(fab f(x)dx)pH (p+1)

/
since(f%) (z) > (p+1)r forz € (a,b).
So (i) is true fork = 0.
(2) k=1 < p. By using CMVT three times, there exist< b3 < b, < b; < b such that

L@y e (b))
(2 r@ar)”™ 0+ (4 Fa)de)

1 ((bm% ’
p+1 fjlf

p+1)p ! ( f( b2 =

)

p

v

since

((17) @) = (#) v € (a,h),

p+1
So (i) istrue fork =1 < p.
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(3) 1 < k < p. By using CMVT (k + 2) times and mathematical induction, there exist
a < bgio < --- < by <bsuchthat

Lf@)y2de 1 (fb >>p+1

ff )dz )Pt p+1f f(z)

IR i < >>

P )
_ (p+ 1y (S0 (b2)
Tl 1) kD B (TP yy))p R
>1

- )

1N/ kNP 7
((f(k))p—k> (gj‘) > (ﬁ) s T € (a,b).

So (i) is true for0 < k < p.

(i) The proof of the second part is similar so we omit the details. This completes the proof of
Theoreni 4. O

Remark 5. If p = 1 andk = 0, then Theoren]4 is reduced to Proposition 1.1[in [3]. If

p=k+1,then 1
RE)  \7" (k)
o) T

In [4] we proved the conjecture inl[1] (i.e., Theorem 2lin [4]). It is obvious that Thediem 4 is a
generalization of Proposition 1.1 in/[3], Theorems 3, 4 and 5lin [1], and Theorem 2 in [4].

since

The following result is a generalization of Theorem 2ih [2] and Proposition 13 in [3].

Theorem 6. Let k be a non-negative integer and letbe a positive number such that> k.
Suppose that(z) has a derivative of thék + 1)-th order on the intervala, b) such thatf*)(z)
is continuous ofja, b], f@(a) = 0fori =0,1,2,...,k — 1, and f*¥(a) > 0.

If

(k+ DY) —k+1)p !

(p+1)p-t

p—k—1

FED(2) >
for z € (a, b), then inequality[(B) holds.

(z —a)

Proof. As in the proof of Theorelﬂ4 we can assume thaf (s)ds > 0 for all z € (a, b].
(1) £ = 0. By using CMVT three times, there exist< b3 < by < b; < b such that

Sy (f@)r+ide (f(bl))p“
(f;f(x)dx>p " (p+1) <f [z )
(f(D2))P~1 f'(D2)
p (J Flayix)”

(f (b2))P~" (b2 — a_)p’1

(2 pae)™
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sincef’(x) > p(x — a)P~! for z € (a,b). Then

(f(b2))P~ (by — a)P* - (f(b2)(bz — a))pl
(ffz f <x)dx)“ 17 f(a)de

So Theorem6 is true fot = 0.
(2) k =1 < p. By using CMVT four times, there exist < by < b3 < by < by < bsuch

that
LG @)yde (fB))
(2 £an)™ @+ 1) (f ()
1 (e
p+1 f:lf(x)dx
_ 0 )y
(e
C D 1 (PP (b
= pp—l p— 1 ;5 f/(x)daj>p_2
> <f’(b3)(b3 - a))p2
N\ L f@yde )
since B
Pz -0 (E) @eart e,
Then
s (bs — )\ (fla) =)\ (b (b —a)\"
(ff?’f’(x)dx) (fof(a:)da:) (” f'(ba) ) =

So Theorem6 is true fdr = 1.
(3) 1 < k < p. By using CMVT (k + 3) times, there exist < by.3 < --- < by < bsuch
that

S (F@)2de (f(b)!
(2 f(x)dx)p+1 (p+1) (S fla)da)
et ()
pr (fabQ f’(x)d:c)p

—1

(p+ 1! (M (b))
plp—1)--(p—k+2)(p—k+1)p-r! (fbk+1 F®) (g:)dx)p_k
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- (p+ 1!
Tplp—=1)--(p—k+2)(p—k+1)r*(p—k)
y (fO) (bp2) )P D (B o)

(ffk+2 f(k) (m)dm)p_k_l
> (f(k)(bk+2)(bk+2 - a>>pkl ,

fabkw fk(fﬁ)d:lj
since
p—k—l
fED () > (k+1)! ( (p)ipl)p_k1+ 1) (- a1,z (a,b).
Then
f(k)<bk+2)(bk+2 —a) o - (1 + f(k+l)(bk+3)(bk+3 _ a))pkl .
f:k+2 fk(x)dx f(k)(bk+3) > 1.

This completes the proof of Theorérn 6.

Remark 7. If £ = 0, Theorenj b is reduced to Theorem 2[in [2]kIf= 0 andp = n, then

(k+1)! (k—H) (p—k+ 1) *!
(p+1)-
It follows that Proposition 1.3 in_[3] is a corollary of Theorém 6. In fact, fesatisfy the
conditions of Theorelﬂz Sincé™ (z) > n!, successively integrating — 1 times overa, z],

we havef'(x) > n(z—a)" ' forz (a b). Hence, Theorefn 6 is a generalization of Proposition
1.3in [3] and Theorem 2 in [2].

(x —a)P "' =n(z —a)" "
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