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ABSTRACT. We study the simultaneous approximation properties of the Bézier variant of the
well known Phillips operators and estimate the rate of convergence of the Phillips-Bézier opera-
tors in simultaneous approximation, for functions of bounded variation.
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1. INTRODUCTION

Fora > 1, the Phillips-Bézier operator is defined by

(1.2) Paalfo2) =13 Q) (1) /0 T e (B F(Od + Q) (@) F(0).

k=1
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wheren € N, z € [0, 00),
Q') (@) = [Tk (@) = [Jogsr ()]*, Jup(2) =D pay(z)  and
j=k
k
—nx nx
P (2) = € (k—,)

Fora = 1, the operatot] (1]1) reduces to the Phillips operator [1]. Some approximation proper-
ties of the Phillips operators were recently studied by Finta and Gupta [2]. The rates of conver-
gence in ordinary and simultaneous approximations on functions of bounded variation for the
Phillips operators were estimated n [3]] [4] and [5]. In the present paper we extend the earlier
study and here we investigate and estimate the rate of convergence for the Bézier variant of the
Phillips operators in simultaneous approximations by means of the decomposition technique of
functions of bounded variation. We denote the clBsg by

B.js = {f L £ € €0, 00), 17 (z) exist everywhere and are bounded on every
finite subinterval of0, o) and £\ (z) = O(¢®) (t — oo), for somes > 0} :

r=1,2,.... By fio)(x) we meanf(x+). Our main theorem is stated as:

Theorem 1.1.Letf € B, r = 1,2,...and 3 > 0. Then for everyr € (0,00) andn >
max {r* + r, 43} , we have

r+o—
an

PrETa(f? ) — %ﬂ { fJ(:)(x) + ozf@(:c)}‘ < ‘f+ ~ @)

n ztz/Vk
1 a(l + 2z) \/2 1
*‘(” : x)z V' (90) VELL Sy

n r\/n

k=1 o/ \/R
whereyg,. . is the auxiliary function defined by
FO@) = f7(@), z<t<oo
gra(t) = 0, t=u :
O~ f), 0<t<a
\/? (g,(t)) is the total variation ofj,,.(t) on[a, b]. In particular g .(t) = g.(t), defined inf4].

2. AUXILIARY RESULTS
In this section we give certain lemmas, which are necessary for proving the main theorem.

Lemma 2.1. Forall z € (0,00),« > 1 andk € NU {0}, we have
(1) <
n X —
Pk V2enx

N

and

vV2enx ’

where the constarit//2¢ and the estimation order—'/2 (for n — oc) are the best possible.
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Lemma 2.2([3]). If f € L1[0,00), fY € A.C.joe, v € Nand ") € L0, 0), then

POf) =0y o (o) [ T D () £ (1)t
k=0 0

Lemma 2.3([3]). Form € NU {0}, r € N, if we define the m-th order moment by

rnm(@) =1 Pk (1) / Prra(8) (¢ — )™ dt
k=0 0

then i, o(x) = 1, prp1(z) = & and ., () = m++r+1)

Also there holds the following recurrence relation
n:ur,n,m-‘rl(x) = x[uﬁ,}%’m(x) + 2mﬂr7n,m—1(x)] + (m + T)H%n,m(x)‘
Consequently by the recurrence relation, foralE [0, o), we have
firam(z) = O (/%))

Remark 2.4. In particular, by Lemmé 2|3, for given any numbep> 72 + r and0 < = < oo,
we have

2¢ + 1
—

(2.1) Lorm2(z) <

Remark 2.5. We can observe from Lemna 2.2 and Lenjma 2.3 that fer0, the summation
overk starts froml. Forr = 0, Lemmd 2.B may be defined as [5, Lemma 2], with 0.

Lemma 2.6. Suppose: € (0,00), 7 € NU{0},a > 1and

o0

rna It - Z pnk-H" 1(t>

k=0

Then forn > 72 + r, there hold

2 1

2.2) /Krnaxtdtga(x+ ) o<y<u
n(z —y)?
2 1

(2.3) Krnaxtdt§a< T ), T <z < oo.
n(z —x)?

Proof. We first prove @]2) as follows:

v Y _£)\2
/ Kr,n,a (IL‘, t)dt S / (x t) 2 Kr,n,oc (ZL’, t)dt
0 o (T—y)

< mpn((t - x)

< a”r,n,Q(‘Z)
(z —y)

7'%.)

by using [2.1). The proof of (2.3) follows along similar lines. O
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3. PROOF
Proof of Theorer I]1Clearly

D [Pt - {0 +a )
<0320 [ prraaa) s o)
k=0

+1‘ (T) “ 2(sgn g t—x),q:)‘,

We first estimatd%ﬁf&(sgna(t — z), ) as follows:
Pn(’:(l(sgn t—x),r)=n Z Qn f (/ APy jpr—1(t)dt — (1 4+ ) / pn7k+r_1(t)dt)
0

o (1t a)n > Q) | bt

k=0 0

) k+r—1
=a—( 1—|—anZQa (1—2]77” )

k+r—1
=(1+ a)nZ@Ef,‘,i(x) 2 pasla) -
r—1
(1+a)n ZQM (an] \/_) —1

(1) |3 ) ZQ,S“,Z ¢—1] .

Lj=0 k=

(14 0) | (@) oy () + f_ll _ ji@iﬁ} (@),

Lj=0
By the mean value theorem, we find that

QT (@) = [Jng (@)™ = g (@)™ = (@ + Dpai(@) by (@)]°,
where

Injr(2) < Anj(@) < Jnj(2).
Hence by Lemm@l, we have

| ) (sgn o(t — ), :U)‘
<0+ 0 |3 posto) (1 <x>]“—m,j<x>]”‘>”+(Hfz)e%— :

<(1+a)

> . (a) r—1
jzop”d(x)Qn,k(‘r) + \/m]
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o r—1] (Q+a)(r+a—1)
(3.2) < (1+a) [\/Zenx * \/2en:c} B V2enx '

Next we estimate®.” (9-2,z). By the Lebesgue-Stieltjes integral representation, we have

Pr(:a (gm? Q?) = / gr,x(t)Kr,n,oz<x7 t)dt
0
I Ip) I3 Iy
(3:3) R4 Ryt Ryt Ry

say, wherel;, = [0,z — z/\/n], I = [v — z/v/n,x + z/\/n], I3y = [x + x/\/n,2z] and
Iy = [2x,00). Let us define

t
nr,n,a(l',t) = / Kr,n,a(w,U)dU.
0

We first estimater;. Writing y = x — x/+/n and using integration by parts, we have

Rl = /Oy gr,x(t)dt(nr,n,a(xat))

)
— G ()2, 9) — / s (22 ) (910 (1)).
0
By RemarK 2.4, it follows that

znrnaxy)+/oynrnamt ( \/gm>
Qx—i—l) Az (Y1 oy
T ) + n /(; _(37 _ t>2dt ( \t/(gr,x)> :

Integrating by parts the last term, we have after simple computation

Now replacing the variablg in the last integral by: — z//t, we get

(3.4) i< 2RSS )

k=1 z—2/VEk

|| <

IN

V(gea)
Yy

V(g:a)>
Yy

+2

Next we estimate?,. Fort € [x — x/+/n,z + 2/+/n], we have
eta/\n

|g7"7517(t)| - |g7',$(t) - gT’,I(x)l S v (g’f',fﬂ)'

z—z/\/n
Also by the fact thagfab di(nrn(z,t)) < 1for (a,b) C [0,00), therefore
ztz/\/n n z+z/Vk

z—x/\/n k=1 g—z/VE

3|H
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To estimateR;, we takez = = + x//n, thus
2x

Rg = KT,TL,Ol<x7 t)gT,ft(t>dt

z

_ _/ DAL = a2, 1))

= —Grz(22)(1 = Do, 22)) + gr2(2)(1 = a7, 2))

N / (1= D) (g ().

Thus arguing similarly as in the estimate®f, we obtain

n x-l—x/f

Finally we estimater, as follows

o

|Ry| =

Kool t)gr,m@)dt’
2x

<00 Y i (@) [ prsirs(t) i
k=0 2

no — e
= - Pk (T) / Prjetr—1(t) et |t — x| dt
z 0
k=0
1
a o 0o 2
<% (0> pale) [ purera(t) (0 - 2Pt
v k=0 0
1
o 0o 2
X (nzpmk ($)/ pn,k+r71(t> €2ﬁtdt> .
k=0 0

For the first expression above we use Remark 2.4. To evaluate the second expression, we pro-
ceed as follows:

0 00 o0 k+r—1 [ee}
n r—1 —(n—
n E Pk (:B)/O P er—1(t) €2ﬁtdt:n§ Pk (ﬂf)m/o ghtr=t em(n=2B)tqy,
k=0

k=0

o0 nk+r 1 F(k‘—i—?") B n’ > n k
Y ) i Gz 3 () P

00 k
1 N onap/(n-25) 18
—nx R nx n < 27’ X
(n—zﬁ ZO (n—zﬁ) KT tn—28)° ==
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for n > 4. Thus

X
7N
3
[
=
3
o
&
o\
3
=
3
B
Jr
=
L
=
D
[\~
@
QL
~
N~
NI

k=0
(3.7) < o2z + 127«/2 28
x\/n
Combining the estimates df (3.1)-(B.7), we get the required result. O
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