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Abstract

We give some further answers to the open problem posed in the article [Feng
Qi, Several integral inequalities, J. Inequal. Pure and Appl. Math., 1(2) (2000),
Art. 19. (http://jipam.vu.edu.au/article.php?sid=113]).] Being Qi's inequality of
moment type, we consider the moments of uniformly distributed random vari-
ables and construct certain suitable probability measures to solve the posed
problem. Moreover, reverse inequality to Qi's and other related results are de- Further Development of Qi-Type
duced as well. Integral Inequality

Yu Miao
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The following problem was posed by F. Qi in his articlefnder what condition
does the inequality

(L1) / @) de > ( / bf(x)dw)t_l

hold fort > 1?", [9].

There are numerous answers and extension results to this open problem :
X i . Further Development of Qi-Type

[1, 2,3 4,5,7,8, 10, 11, 17]. These results were obtained via different ap- Integral Inequality
proaches, such as, e.g. Jensen’s inequality, the convexity methpdync-

tional inequalities in abstract spaces]; probability measures techniqued;[ i
Holder inequality and its reversed variants{]; analytical methods/, 11] and
Cauchy’s mean value theorer [L(]. Title Page
Here and in what follows we writ& ~ /[a; b] for the random variable (r.v.) Contents
X which possesses uniform distribution on the support intdwal, i.e., the
probability density function ofX is equal to(b — a)™', z € [a,b] and zero A S
elsewhere. Accordingly, let us dendi&’ the mathematical expectation of r.v. < >
. . : L Go Back
In this paper we obtain generalizations @f1) and extend some results of
[1, 2, 4,5, 7,8,9, 11, 17] using moment properties of uniformly distributed Close
r.v.s and applying some moment inequalities of suitably constructed probability Quit
measures. To do this we introduce the extensioi dj by Pogany, §]: "Under
Page 3 of 17

what conditions does the inequality
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hold?

Indeed, specifyinge = 5+ 1 =1¢ > 0in (1.2 we arrive at {.1).

We will consider moment type inequalities for a function of the £X. ~
Ula, b]. In Section2 we obtain results concerning the direct inequality?) by
taking the probability distribution function for uniform distribution. In Section
3 we derive some inequalities reversed 1a relaxing the conditions upof
given in [3]. Finally, in Section4 bounded and semi-bounded integrands will
be treated by constructing suitable probability measures for arriving at answers

to (1.2). Further Development of Qi-Type
Integral Inequality
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In this section we delineate two important cases for considetflirid). (First, let
a > max{1, 5}, then we takex > 0,5 > 1.

Firstly we introduce the following auxiliary inequality which will be frequently
needed in the sequel:

(/ bf(x)dx)ﬂ_a < (b

Now, looking for the widest possible class of integrarfdsuch that {.2)
remains valid under the constraint > max{1, 5}, we obtain the following
result.

Theorem 2.1. Let f € Cla,b], f~ be integrable ora,b]. When one of the
following two conditions holds

(B1) ((2.1) & f =0, 8> 0);
(Re) (2.1) & B >0, a=2k/j>1, j,keN);

(2.1)

then the inequality(.2) also holds.
Proof. Let X ~ UJa, b]. Then it is obvious that

b b
(2.2)/ f(z)dz = (b— a)Ef(X) and/ [f(2)]"dz = (b — @)E[f(X)]".

Further Development of Qi-Type
Integral Inequality
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Thus it is sufficient to show

N s

(2.3) (b - oE[f(X)]" > [6-aEf(X)] "

Indeed, bearing in mindR; ), by Jensen’s inequality we conclude

@4 [o-aEfx)] = 0- o [Br0)] ErG0)
(b—a)E[£(X)]"[ES(X)]""

IAIA

(b—a)E[f(X)]".

The proof undefR;) is finished. To apply the conditiofi?,) it is enough to

notice thatc® is convex orR for all « = 2k/j > 1, j, k being positive integers.

These considerations complete the proof of the theorem. O
Remark 1.
(A) Yu and Qi [L7] proved the inequality {.1) for f € C|a,b] under (R;).

Then Mazouzi and Qi) proved (1.1) by a functional inequality, which
reads as follows,

|f(x)| > k(z), ae. z€lab] and (b— a)g%é < /b k(z)dx < oo.

(B) Condition(R2) ensures the validity of the first inequality in.4). Assum-
ing only 2.1) without the conditiorn = 2k/j > 1, j,k € N, the first

Further Development of Qi-Type
Integral Inequality
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inequality in €.4) could be false. Indeed, the r¢ ~ U[—c,0], ¢ > 0
presents a simple counterexample to the statement

[Ef(X)]" <E[f(X)]",
since
o1 c 2k—1 C2/~£—1
E —_ _ (_) > — E 2/{—17 )
Further Development of Qi-Type
Integral Inequality
In this case we will need the help of an auxiliary result, which we clearly deduce Yu Miao
by the Holder inequality.
Lemma 2.2. Let Z, Y be two random variables with > 0,Y >0, Z/Y >0 Title Page
€. P < = 1.
a.e. andE(Z/Y)"™® < K for some constank’, 1/p+ 1/¢ = 1. Then Contents
(2.5) EZ" < [B(2/Y)"?]"" [BY™]"/" < KMP[RY ™)', «“« b
wherer > 0. < >
Theorem 2.3. Supposef is a positive continuous function dém, b], f7 is inte- Go Back
grable on[a, b], wherey := max{1, a}, and fora > 0, § > 1, the following
condition is satisfied Close
b Quit
(B—a)/(B—1)
(2.6) / /()] dr < 1. Page 7 of 17
SpeCifica”y, forx > ﬁ, |ett|ng f(l') >m>0 and (b — a)/m%%? <1, then the J. Ineq. Pure and Appl. Math. 7(4) Art. 144, 2006
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Proof. Let the r.v. X ~ Ula,b]. Thus, €.2) holds. Therefore it is enough to
prove that

(b— a)E[f(X)]" > [b—aEf( )]ﬁ
(

Letq=0>1,p = ﬁ -, Z" = f(X)andY"? = [f(X)]", in the formula of
Lemma2.2. Then(Z/Y)" = [f (X)}l_ /% readily follows, and consequently
[b- aEF)] < [0- ) (EFOP™) " (B00)) ]

= - oy (BT ) 6 ) (B[1(0]°)

-1

— (b—a)t! (E [F(x)] (5*”) (b—a) <IE [ f(X)]O‘>
([ e ) o (s,

Now, by (2.6) we conclude the desired inequality.?). O

Remark 2. In fact, we do not need the conditien> [, since supposing the
conversen < fand(f — «)/(8 — 1) < 1, then the condition4.6) can be
replaced by the following condition (from using, 0 < v < 1, concave):

/abf(a:)dx < (b—a)Fe,

which is easier to check.

Further Development of Qi-Type
Integral Inequality
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In this section, we mainly discuss reverse inequalities of the Qi-type inequality

(1.2), and at the same time we improve the results of Pog&hy For this
purpose we list another auxiliary inequality derived by Neha}i \vhich is a
reverse of the celebrated Holder inequality.

Lemma 3.1 (Nehari Inequality). Let f, g be nonnegative concave functions

on[a, b]. Then, forp, ¢ > 0 such thatl /p + 1/¢q = 1, we have

(3.1) ( / b [f(rc)}pdx); ( / b [g<x>]qdac)é <N [  f@)g(a)de

where

6
Theorem 3.2.Let f(x) be nonnegative, concave and integrabldar|, 3 > 0

andmax{3, 1} < a. Assume

(3.3) / f(z)dz < (b—a) (60((24 +_ oi);gj (; i):;_ﬁ) =

Then the reverse inequality t@.¢), i.e.,

(3.4) / b [f(@)]"da < { / bf(x)dxr

holds true.

Further Development of Qi-Type
Integral Inequality
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Proof. Let X ~ UJa, b]. As (2.2) is valid, we are confronted with the proof of
(3.5) (- E[f(x))" < [ - 0Bf(x)] .

The Nehari inequality3.1) can be written in an equivalent form as

88 (- E[N) =) < N [ St
Takingg = 1, p = «, then (3.6) becomes
37) (Elreo)) " < v (a
Thus by 8.7) and 3.3), we deduce

0= B[CO]" < 0= N (a2 ) [EFX))°

a 1>Ef(X).

= (b—a)'PN° (a, -
= [ - aEf(x)]”
This ends the proof of3(4). O

Remark 3.
(A) Pogény ] derived 3.4) for all f such that

@9 0<r0< (Grs )

It is easy to see that our conditiof.() relaxes 8.9).

., x € [a,bl.

Further Development of Qi-Type
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(B) Csiszar and Mori {] improved the results of Pogany]and obtained the
inequality 3.4) under the following condition

(3.9) f) < (%) v e o)

The last constraint is obviously weaker thang), but does not cover our
integral condition 8.3).

Further Development of Qi-Type
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1.2

In this section we consider bounded and/or semi-bounded functions, and con-

struct convenient probability measures, differeniffe, b]. Then, considering

certain relations between its moments, we derive new Qi-type inequality results.

Theorem 4.1. Assume thatt < m < f < M < oo, and fora > § > 1,

ma—l

4.1 > 1
(4.1) MPB=1(h —a)s-1t =

/ab [f(z)]"dz > [/abf(:c)dacr.

Moreover, the reverse inequality tt.@) is valid when

Ma—l
4.2 <1
( ) m,@—l(b _ a)ﬁ—l -

then

Proof. Define

@,
,u(t)—/a f:f(x)dzd’ t € la,b].

It is easy to see thai(-) orders a probability measure @n b] and the following
implications follow

L @] de _r e f(a) 1
4.3 a4 L. = T dx
(4-3) [fabf(x)dx]ﬁ /a /@) fb f(x)dx [fff(:c)d:c}ﬁ_l

a

Further Development of Qi-Type
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L@ ) e
[f;f(@dat}ﬁ_l = MPL(b—q)f 1

The remaining part of the proof is straightforward. O

Remark 4.

(A) The direct use of the assumption< f(z) < M, m > 0in the sharpness
evaluation of {.1) results in

fab [f(m)}adx - me

Further Development of Qi-Type
Integral Inequality

(4.4) > — =: M. Yu Miao
[f;f(x)dx}ﬁ MF(b—a)P~! _
For our purposes we need the caBg > 1. However, it is easy to check Title Page
that a—1 Contents
m < — :
LS M — )T «“ 33
hence, 4.1) generalizes the simplest possibig > 1. < >
(B) By similar arguments, Go Back
M Close
= <
Me = B —ayp1 = Quit

implies ¢.2), so, when the considered integrand functions are bounded e Lo e

and positive, the settings of Theordm are optimal.
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Corollary 4.2. Assumethat <m < f < M < oo,andfor0 < g < a < 1,

Mafl
4.5 > 1
(4.5) mP=1(b—a)f-1t =
then the validity of the inequalityL.(2) is confirmed.
Moreover,for0 < g <a < 1,if0<m < f < M < oo and

ma—l
4. <1
(4.6) MPB=1(b—a)s~t = 7
there follows the inequality which is reversed 107). Further.ﬁ%ﬁgﬁ?ﬁ;&;&f e
Corollary 4.3. Assumethat < m < f < 00,0 < 8 <1 < a, let f* be Yu Miao
integrable ona, b] and
o Title P
(47) ‘ﬁl = m—ﬁ—l Z 1. e
(b—a) Contents
Then (.2) follows. Otherwise, wheti< f < a < 1,0 < f < M < o0 and « NS
Me—P
4.8 =<1 < 4
( ) mQ (b - a)ﬁ_l — )
the reverse inequality tal(2) is deduced. Go Back
Finally, let us construct an another probability measure Close
T QUit
Sy [f@®))°dt
(49) :uﬂ(x) = a—’ VS [CL, b]7 6 7é L. Page 14 of 17
IROIRE .

Taking into account the previous procedure for getting Qi-type inequalities and ;. ineq, Pure and Appl. Math. 7(a) Art. 144, 2006
their reversed variants, we arrive at the following results. AL RGN
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Theorem 4.4. Assumé) < m < f < oo, let f* be integrable orja, b] and for
a > (> 1, letus suppos@t; > 1. Then we have the inequality.@).

In addition, for0 < g < 1, a > 3,0 < f < M < o0 asz € [a,b] and
N, < 1, then the reverse inequality t@.¢) holds true.

Proof. Let us consider the probability measwgz), « € [a, b], 8 > 1:

fo @] de [} [f(2)]"de

[[2 f(x)da]”  [(b— a)EF(X)]”

Further Development of Qi-Type

b .
a— f T B Integral Inequality
S T S,
a (b—a)P=t [ [f(x)]Pdx Yu Miao
b
— (b — )18 a—p
=(b—a) /a [f(2)]" " p(dz) Title Page
> (b—a)Pmof =0y, Contents
This is equivalent to the assertion of Theorém pp >
The proof of the second case we leave to the interested reader. ] p >
By a similar proof procedure as the previous theorem, we obtain the follow-
ing interesting result. Co 2ES
Theorem 4.5. Assume that < f < M < oo, let f* be integrable ona, ] and Close
for 5 > max{1,a}, « > 0, we let)l, > 1. Then we have the inequality.p). Quit

Additionally, for0 < o < < 1,0 <m < f < 0 asxz € [a,b] and

: . Page 15 of 17
M, < 1, then the reverse inequality ta.¢) holds true. 298 220

Because of the similarity of the proofs of last two theorems the proof of the ; ireq pure and Appl. Math, 7% Art. 143, 2006
last one is omitted. http://jipam.vu.edu.au
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