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1. INTRODUCTION

Let (H; (-, -)) be an inner product space over the real or complex numberie@ne of the
most important inequalities in inner product spaces with numerous applications is the Schwarz
inequality, that may be written in two forms:

(1.1) (@, )* < |lz|* |y, «,y € H (quadratic form)
or, equivalently,
1.2) [z, )| < [z llyll, =,y€H (simpleform).

The case of equality holds ifi (1.1) or in ([L.2) if and only if the vecto@ndy are linearly
dependent.

In the previous paper [6], several results related to Schwarz inequalities have been estab-
lished. We recall few of them below:
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2 S.S. RAGOMIR

L It 2,y € H\{0} and|lz]| > ||y, then

r—1
2 (D) eyl i >
(1.3) 2] lyl] — Re (z,y) < N
LB e-wr i<t

2. If (H;(-,-)) is complex,a € C with Rea, Ima > 0 andz,y € H are such that

Ima
14 — cull <
(1.4) - yH_T
then
1 Rea«a
. < = 2
(15) el 1yl = Re (2,9) < 5 - foor

3. If « € K\ {0}, then foranyz,y € H

@8 el e | 25 (o | < 5 (el el el

4. If p > 1, then for anyz,y € H one has

[l + ol = 1z + v]™]?

(1.7) 2]l lyll = Re (z,y) <

N | —

[l =yl —= [l = llyll[*]
5. If a,y > 0 andf € K with |3]* > o~y then forz, a € H with a # 0 and

(-8 vt Qﬂ———Lwn
one has
a.9) ol o < R s
_ 1811tz )
SCY
and
2
(1.10) L

The aim of this paper is to provide other results related to the Schwarz inequality. Applica-
tions for reversing the generalised triangle inequality are also given.

2. QUADRATIC SCHWARZ RELATED |INEQUALITIES
The following result holds.
Theorem 2.1.Let(H; (-, -)) be a complex inner product space and; € H, « € [0,1]. Then
21 [alty ==+ (1 = a) [lity —|*] Iyl
> [lz]* [lyll” = [(1 = @) Im (2, ) + aRe {z,)]* > 0
foranyt € R.
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Proof. Firstly, recall that for a quadratic polynomi&l: R — R, P (t) = at* + 2bt + ¢, a > 0,
we have that

, b ac — b?
(2.2) %gﬂgP(t) =P (—a) ==
Now, consider the polynomidP : R — R given by
(2.3) P(t):=alty—z|*+ (1 —a) ||ity — |*.
Since
2 2 2
Ity — «)” = £ ly]|” — 2t Re (z, y) + |||
and
. 2 2 2
lity — || = ¢* |lylI” — 2t Tm (2, y) + |||,
hence

P (t) = |ly||* — 2t [aRe (z,y) + (1 — @) Im (2, y)] + ||2||*.
By the definition ofP (see[(2.B)), we observe that(t) > 0 for everyt € R, therefore; A < 0,
ie.,
(1 — @) Im (z,y) + aRe (z,y)]* = ||«|* ly[|* <0,
proving the second inequality ip (2.1).
The first inequality follows by[(2]2) and the theorem is proved. O
The following particular cases are of interest.

Corollary 2.2. Foranyx,y € H one has the inequalities:

(2.4) Ity — 2| * lylI* = [le? [lyl]” — [Re (z, y)]* > 0;
(2.5) ity — z)* [y)|* = llal® lyl|* — [Im (2, y)]* > 0;
and

1 : Im (,y) + Re (z,9)\*
(26) 5 [lity - ol* + llity — 2|I*] lyll* > [l=1* lyll* ( 5 >0,
for anyt € R.
The following corollary may be stated as well:

Corollary 2.3. Letz,y € H and M;, m; € R, i € {1,2} such thatM; > m; > 0,i € {1,2}.
If either

(2.7) Re(Myy —x,z —mqy) >0 and Re(Myiy —x,z — imoy) > 0,
or, equivalently,

M, + 1
@ o= M5 < S 0n - m vl and
Ms + . 1
o= 25 < 5 0t - )
hold, then
2.9 (0 <) 1P ol ~ [(1 — ) Im (. ) + @ Re )]

1
< ol [ (= m)® 4 (1 = 0) (Mz = mo)?]
foranya € [0,1].
Proof. It is easy to see that, if, z, Z € H, then the following statements are equivalent:
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() Re(Z —z,z—z) >0,
(i) || — 22| < 12 — |
Utilising this property one may simply realize that the statemént$ (2.7)] arjd (2.8) are equivalent.
Now, on making use of (28) and (2.1), one may deduce the desired inequaljty (2.9).]

Remark 2.4. If one assumes thatl/; = My = M, m; = my = m in either [2.T) or[(2.8), then
(2.10) (0 <) l=l* flyll* = [(1 — @) Im (z, y) + a Re (z, y)]*
1
< £ lyll* (v = m)?
for eacha € [0,1].

Remark 2.5. Corollary[2.3 may be seen as a potential source of some reverse results for the
Schwarz inequality. For instanceify € H andM > m > 0 are such that either

@11)  Re(My—zz—my) >0 or |lr— "yl < 20— m) o]
hold, then
(2.12) mSNMWMF—BM%WFéiwf—mVMW-

If z,y € HandN > n > 0 are such that either
(2.13) Re (Niy —xz,x —niy) >0 or ||z — N;nz’y < %(N—n) Iyl
hold, then
(2.14) (OSMMWWW—Hm@uMQSEUV—MHWW-

We notice that[(2.12) is an improvement of the inequality
1
0 <) l*lyll* = [z )* < 5 (M = m)* [lyll*
that has been established|in [4] under the same condition (2.11) given above.

The following result may be stated as well.

Theorem 2.6.Let(H; (-, -)) be areal or complex inner product space and, € H, o € [0, 1].
Then

(2.15) [aflty —z|* + (1 = a)lly — tz]*] [allyl* + (1 = @) [|=]*]
> (1= a)llz]” +allyl’] [ llal® + (1 = a) ly°] — Rez,5)]* > 0

for anyt € R.
Proof. Consider the polynomiaP : R — R given by
(2.16) Pt)=alty—z|°+1—a)lly —tz?.
Since

Ity — x| = ¢ [lyll* — 2t Re (z,y) + ||=]”
and

ly = ta|* = £ [|z]|* — 2t Re (z,y) + [|y]*,
hence

P (t) = [allyl® + (1 = a) [lI"] £* — 2t Re (@, y) + [aal* + (1 = a) [ly]’]
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foranyt € R.

By the definition of P (see |(2.16)), we observe th&t(t) > 0 for everyt € R, therefore
1A <0, i.e., the second inequality ih (2]15) holds true.

The first inequality follows by[(2]2) and the theorem is proved. O

Remark 2.7. We observe that if eithett = 0 or o« = 1, then [2.15) will generate the same
reverse of the Schwarz inequality &s {2.4) does.

Corollary 2.8. If z,y € H, then

2 2 2 2 2 2
[ty — =" + lly =t N=l” + llyll” o (Hxll + llyll

2.17 .
( ) 2 2 - 2

2
) — [Re (z,9)]" > 0
foranyt € R and
(2.18) o £y|* [allyl” + (1 =) [|z]]

> [ =a)llz]” +allyll’] [ lal® + (1 = a) ly*] — Rez,5)]” > 0

foranya € [0,1].
In particular, we have

218 oty (nxu * ol ) . (uxu * ol ) Releg) > 0.

In[7, p. 210], C.S. Lin has proved the following reverse of the Schwarz inequality in real or
complex inner product spacé¥’; (-, -)) :

1
(0 <) lll* lyll* = [, 9)]* < = = | = ry|*
foranyr € R, r # 0 andz,y € H.
The following slightly more general result may be stated:

Theorem 2.9.Let(H; (-,-)) be a real or complex inner product space. Then for any € H
anda € K (C,R) with a # 0 we have

1

(2.20) (0 <) [l lyll® = [, p)]* < o l])* [l — eyl
The case of equality holds in (2]20) if and only if
(2.21) Re (z, ay) = |l=|*.

Proof. Observe that
(o) = |z|* o = ayll® = laf* [Ill* lyl* = [, 9)[]
= |l|* [ll]|* = 2Re (@ (z, )] + o [ly]*]
= la* [lz* 1yl* + af* [, y)|”
= [ = 2 [l«|* Re [@ (z, )] + |a* [{z, y)|* .

Since

(2.22) Re [a (z,y)] < |af [(z,y)|,

hence

(2.23) I(a) > |lz]|* = 21|z]1* |o] [z, v)| + |af* |{z, 9) [

= (l]* = la |{z, 5)])" > 0.
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Conversely, if[(2.2l1) holds true, théi{a) = 0, showing that the equality case holds[in (2.20).
Now, if the equality case holds if (2]20), then we must have equalify in|(2.22) and in (2.23)
implying that
Re[(z,ay)] = |of [(z,y)| and |af|{z,y)| = [|=]
which imply (2.21). O
The following result may be stated.

Corollary 2.10. Let (H; (-,-)) be as above and,y € H, o € K\ {0} andr > 0 such that
la| > . If

(2.24) |z —ayll <rllyll,
then
112 2
[e1 [ lyll

Proof. From [2.24) and (2.20) we have

2
2 2 2 r 2 2
[P 1[yl1” = [z, 9" < =5 [l«l" llylI”
a
that is,
jaf —r?)
(—2 2l ol < K 91
|
which is clearly equivalent t¢ (2.25). O

Remark 2.11. Since forl', v € K the following statements are equivalent
(i) Re(l'y — 2,2 —yy) >0,
(i) ||z — 25y < 2T =]yl

hence by Corollary 2.10 we deduce

2[Re(Ty)]2 _ [{z,y)|
T+ 7 2l vl
providedRe (I'y) > 0, an inequality that has been obtained in a different way/in [3].

SIS

(2.26)

Corollary 2.12. If z,y € H, « € K\ {0} andp > 0 such thatl|z — ay|| < p, then

p
(2.27) O )l * lyll® = Kz, m)]” < e [Ed

2
|

3. OTHER INEQUALITIES
The following result holds.

Proposition 3.1. Letz,y € H \ {0} ande € (0, 1]. If

(3.1) (Og)l—s—\/l—%g%§1—5+\/1—25,
then
(3.2) (0 <) ||zl Iyl — Re (z,y) < ellz —y]*.
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Proof. If z =y, then [3.2) is trivial.
Supposer # y. Utilising the inequality (2.5) from [6], we can state that

=l [lyll = Re {z,9) _ 2|« 1yl
2 — 2
[ =y (]l + 1yl

foranyz,y € H\ {0}, # y.
Now, if we assume that

2|l llyll

—2 < 87
(=l + 11yl
then, after some manipulation, we get that

2 2
ellzll” +2(e =)l lyll + e llyll” = 0,

which, fore € (0, 3] andy # 0, is clearly equivalent td (3]1).
The proof is complete. O

The following result may be stated:

Proposition 3.2.Let(H; (-, -)) be areal or complex inner product space. Then foranye H
andy € R one has:

2] lyll = [cos 2 - Re (2, y) + sin2¢ - Im (2, y)]

1 .
< 5 lleos | [l =yl + [sin o] [l + yl)”.

Proof. For ¢ € R, consider the complex number = cos ¢ — isin . Thena? = cos2p —
isin2¢p, |o| = 1 and by the inequality (1}6) we deduce the desired result. O
From a different perspective, we may consider the following results as well:

Theorem 3.3.Let(H; (-, -)) be areal or complex inner product spacec K with |a — 1| = 1.
Then for any € H with ||e|| = 1 andx,y € H, we have

(3.3) [(z,y) —alz,e) (e, <z Iyl
The equality holds irf (3]3) if and only if there exista & K such that
(3.4) alxr,e)e=1x+ \y.
Proof. It is known that foru, v € H, we have equality in the Schwarz inequality
(3.5) [(u, 0)| < [lu| o]
if and only if there exists a € K such that: = \v.
If we apply [3.5) foru = o (z,¢e) e — z, v = y, we get
(3.6) [{a(z,e)e —z,y)| <[z, e)e —z| ||y
with equality iff there exists a € K such that
alx,e)e=x+ \y.
Since
l(z,e) e — z]|* = [af* [(z, e)|" — 2Re[a] [(z, e) " + |||
= (laf* = 2Re[o]) [z, e)[* + [|z]”
= (la =1 = 1) |z, )" + |||

2
= [l
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and

(afz.e)e—z,y) =alze)ley) —(z,y)
hence by|[(3]6) we deduce the desired inequdlity (3.3). O
Remark 3.4. If a = 0in (3.3), then it reduces to the Schwarz inequality.

Remark 3.5. If o # 0, then [3.B) is equivalent to

1
< — .
< oy el o

(3.7)

(2,6) (e.) =~ (2.9)

Utilising the continuity property of modulus for complex numbers, {25 w| > ||z]| — |w]|
we then obtain

ove) el - r<x,y>\\ < rllellul,

which implies that

(3.8) (2, €) (e, y)| < \ai| [z, )]+l yll]-
Fore = =, 2 # 0, we get from @) that
(3.9) (2, 2) (z,9)| < ﬁ [, o)+ [l yll] 1I=1°

foranya € K\ {0} with | — 1| = 1 andz,y, z € H.
Fora = 2, we get from|(3.P) th&uzano inequalityl]

1
(3.10) [z, 2) (=, 9] < 5 [z, )] + Iz lyl] [Ells
foranyz,y,z € H.

Remark 3.6. In the case of real spaces the conditjon- 1| = 1 is equivalent to eithest = 0
or a = 2. Fora = 2 we deduce froni (3]7) that

1 1
(3.11) 5 L@ y) = Nzl liyll] < (2 e e, y) < 5 [, y) + 2] lyll]
foranyz,y € H ande € H with ||e|| = 1, which implies Richard’s inequality [8]:
1 1
312) 5[z y) — llellyll] 1201 < (x,2) (z,9) < 5 [z y) + =]yl 1211,

foranyzx,y,z € H.

The following result concerning a generalisation for orthornormal families of the inequality
(3.3) may be stated.

Theorem 3.7. Let (H;(-,-)) be a real or complex inner product spacg;;},., a finite or-
thonormal family, i.e.{e;,e;) = &;; for i,j € F', whered,; is Kronecker’s delta and; € K,
i € F suchthato; — 1| = 1 for eachi € F. Then

(3.13) (@) = > aifz,e) (e )| < ll=] 1yl
i€eF
The equality holds i (3.13) if and only if there exists a conshaatK such that
(3.14) Z a; (x,e;) e; =+ \y.
ieF
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Proof. As above, by Schwarz’s inequality, we have

<Zai (,€:) € — x,y> < Zai (v, e;) € —
icF

el
with equality if and only if there exists a € K such thad) _,_,. o; (z, ;) e; = v + Ay.
Since

Zai (x,e;)e; —

(3.15) [yl

2

EOéll'eli

2
= ||z —2Re<m Zaz T, €;) >

ieF ieF S
2 — TN 2
= |l = 2> @ (we) (we) + > lail* [, e)
el el
= [l + > [z, e)|” (lul” = 2Rea)
i€l
= [zl + ) Kz e (low — 12 = 1)
i€l
2
= ll=lI”,
hence the inequality (3.1.3) is obtained. O

Remark 3.8. If the space is real, then the nontrivial case one can get from|(3.13) is for all
a; = 2, obtaining the inequality

5 6m.) — el Il < S i) (i) < 5 L) + Dl ol

2 ;
el

(3.16)

that has been obtained in [5].

Corollary 3.9. With the above assumptions, we have

Z a; (x,e;) (e, y)

S

(3.17) < [{z,y)| + [{

Y= ) o (xe) (eny)

1€EF
< Kz, p)| + [zl lyll,  =,y€H,

where|a; — 1| = 1 for each; € I and{e;},, is an orthonormal family inf.

4. APPLICATIONS FOR THE TRIANGLE INEQUALITY

In 1966, Diaz and Metcalf [2] proved the following reverse of the triangle inequality:

n n
Dozl 2r )l
=1 =1

provided the vectors; in the inner product spade”; (-, -)) over the real or complex number
field K are nonzero and

(4.2)

Re (z;, a)

]

4.2) 0<r< foreachi e {1,...,n},

wherea € H, ||la|| = 1. The equality holds i (4]2) if and only if

(4.3) sz =r (Z ||$z||> a

The following result may be stated:
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Proposition 4.1. Lete € H with |le]| = 1, € (0,4] andz; € H, i € {1,...,n} with the
property that

(4.4) 01 —e=VI-2e <ol <1 —e+V1—-2
for eachi € {1,...,n}. Then
(4.5) D olll <> wil[+e > lwi—el.

1=1 =1 =1

Proof. Utilising Proposition) 3.1 for: = z; andy = e, we can state that
2] = Re {wi,¢) < ez — e

for eachi € {1,...,n}. Summing ovet from 1 to n, we deduce that

(4.6) > il < Re<Z$i,e> el —el?.
=1 =1 =1

< E Z;, €>‘
=1

4.7) Re <i xi,e> < |Re <i xi,e>
i=1 i=1
i=1 i=1

Therefore, by[(4]6) andl (4.7) we dedufe [4.5). O

In the same spirit, we can prove the following result as well:

<

< lell =

Proposition 4.2. Let (H;(-,-)) be a real or complex inner product space and= H with
|le]| = 1. Then for anyy € R one has the inequality:

n
>
i=1

Proof. Applying Proposition 32 for = z; andy = e, we have:

1 — .
+t3 Z [lcos | ||lz; — el + |sin ]| ||z + €[]
=1

(4.8) Z [z | <

(4.9) |z;]| < cos2p - Re(z;,e) +sin2p - Im (x;, e)
1 .
+ 5 llcos o i — el| + [sin o i + el

foranyi € {1,...,n}.
Summing in[(4.5) over from 1 to n, we have:

(4.10) Z ||zi]] < cos2¢-Re <Z z;, e> +sin2¢ - Im <Z T, e>
i=1 i=1 i=1

1 n
+3 Z_} [lcos | [l — el + Isin o [lz; + ]

Now, by the elementary inequality for the real number, M and P,

mM + pP < (m? +p?)* (M? + P?)?
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we have

(4.11) cos2p-Re <Z Xy, e> +sin2p - Im <Z Xi, e>

=1 =1
. . 2\ 2
< (cos® 2 + sin® 24,0)% Re <in,e> Im <Z$i,e>]
i=1 i=1
= ‘<ix“e> iajz iﬂf@
i=1 i=1 i=1

where for the last inequality we used Schwarz’s inequalityAn (-, -)) .
Finally, by (4.10) and (4.11) we deduce the desired resulk (4.8). O
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