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ABSTRACT. We define some classes of analytic functions related with the class of functions with
bounded boundary rotation and study these classes with reference to certain integral operators.
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1. INTRODUCTION

Let.A denote the class of functiorfsof the formf(z) = 2+ _, a,,2™ which are analytic
in the unit diskE = {z : |z| < 1}. Let C,S*, K and S be the subclasses of which are
respectively convex, starlike, close-to-convex and univale.itt is known thatC' Cc S* C
K C S.In[1], Kaplan showed thaf € K if,and only if, forz € £, 0 < 0, < 0y < 2w, 0 <

r<l,
02 6 1 0
/ Re{l + w}de >—m, z=rev’.
o, f'(re®)
Let Vi.(k > 2) be the class of locally univalent functiorisc A that mapFE conformally onto a
domain whose boundary rotation is at mést It is well known thatl; = C' andV), C K for

2<k<A4.

Definition 1.1. Let f € Aandf’(z) # 0. Thenf € Ty (\), k > 2, 0 < X < 1if there exists a
functiong € V,, such that, for € £
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The classl(0) = T} was considered in [2, 3] anf,(0) = K, the class of close-to-convex
functions.

Definition 1.2. Let f € A and%f’(‘z) #0, z€ E.Thenf € Ty(a,7,\),Rea >0, 0 <~ <
1 if, and only if, there exists a functiom € T (\) such that

(1.1) 2f(2) +af(z) = (a+ Dalg (), z€E.

We note that7}(0,1,\) = Tx(\) and73(0,1,\) = K(\) C K, and it follows thatf €
Tk (a,~, \) if, and only if, there existd” € T.(co,, A) such that

flz) = A1 /0 Rt

Za

2. PRELIMINARY RESULTS
Lemma 2.1([2]). Letf € A. Then,for0 < 6, < 6, <27, z=re", 0<r <1, feTif

and only if ,
o J () k
/61 Re{ ) }d& > —5m

Lemma 2.2. Letg(z) be analytic inE and of the formy(z) = 14+byz+--- for |z| = r € (0, 1).
Then, for(l, 01,91,92 witha > 1, Re(cl) >0, 0L 0, <0y < 27,

b2 azq'(2) .
/91 Re {q(z) + m} do > _ﬁlﬂ', (0 < ﬁl < 1)
implies

02
/ Req(z)d0 > — (i, z=re¥.
01

This result is a direct consequence of the one provdd]ifor 3; = 1.
From [1.]) and Lemma 2.1, we can easily have the following:

Lemma 2.3. A function f € Tj(oco,v,A) if and only if, it may be represented g%z) =
p(z) - 2G'(z), whereG € V;, andRep(z) > A\, z € E.

Proof. Sincef € T}.(c0,~, A), we have
f(2)==2(d'(2))", g €T(N)
= z[G(2)p1(2)]7, G1 € Vi, Repi(z) > A
= 2G'(2).p(2),

whereG'(z) = (G(2))” € Vi andp(z) = (p1(2))?, Rep(z) > A, since0 <~y < 1.
The converse case follows along similar lines. O

Using Lemma 2]1 and Lemma .3, we have:

Lemma 2.4.
(i) Letf € T(0,7, ). Then, withz = re?, 0 < 6, < 6 —2 < 27,

/92 Re { (Zf’(Z))/} do > _k:_;, see alsd3].
01

f'(2)
(i) Letf € Ti(oo,v, ). Then, forz = e and0 < 6, < 0, < 2,

[ulfle
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3. MAIN RESULTS

Theorem 3.1.For0 < o < m, 0<fB<y, 0<A<landf geTi(oo,v,A), 2z €
E, let
1 -1 z Lo 38 e
(3.1) Fz)=1{6+_ ]2 e (f(8) g(t)dt
0

ThenFy, with FF = zF] and0 < v < 1, k < %, is close-to-convex and hence univalenfin

Proof. We can write[(3.]1) as

(32) (F()"" = (ﬁ + é) / 7 (P gt

Let
2F'(z) _ (2F(2))

(3:3) ) R

= (1= N H(2) + \,

whereH (z) is analytic inEF andH (z) = 1 + ¢z + ¢cp2® + - - -
We differentiate[(3]2) logarithmically to obtain

() (1 = (1(2)%(2)
UG <1 a>+fét“(f(z))ﬂ(t)g(t)dt'

Using (3.2) and differentiating again, we have after some simplifications,

JEER(F(0)g(tdt

(1= Nzl + (1= N H(2)
2% (f(2))P9(2)
_ B 2f(?) 1 zg'(2)
145 fl) A+l o) A
Now
T (f@)gle) (1 2F'(2)
fﬁ“(f(t))ﬂg(t)dt_(a 1) P TFGy
Hence
B zf'(z) 1 z¢(z)
_”Hﬁ ) TB+1 9
1 - (1=XN)zH'(z)
=(1 MH(>+(1—A)(1+5)H(z)+(§—1)+A(1+5)
and we have

=)

1
(14+68)(1-3)

e s () s O
S o o ]

2H'(z2)
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Sincef, g € Ti(00,7,\), sowith z = re??, 0 < 0; < 0, < 2m,
—— Red —— (| —=—%— X\ ) ¢ db
1+ Je,  \T=A\F()

1 b2 1 24g'(2) —k~y
- - ) baes =0
175/, Re{l—)\(g(z) )} T

and, therefore,

_k
40 > T’YW.

0 ()
1 1-A
/ Re | H(2) + —— 00—
01 H(Z) + {((’— + m}

14+8)(1-X)

Now usipg Lemm2 with, = m >1, ¢ ={(2-1)+(1+B)A} >0, we obtain
the required result. 0

Theorem 3.2.Let f,g € Ti(c0,7,A), «,c,d andv be positively real,0 < a < %5, ¢ >
a(l = A), (v+ d) = a. Then the functiort” defined by

(3.5) Fo)]" = e / I (0) (90) de

belongs tal; (00,7, A) fork < 2, 0 <y < 1.

Proof. First we show that there exists an analytic functiosatisfying [3.5).
Let

G(z) = 2 (f(2))(9(2))"
:1+d12+d222+
and choose the branches which equalhenz = 0. For

K(z)==z

(c—v—=98)—1 8 v -1

(f(2)) (9(2)) == G(2),

we have

C
dyz 4o
C

L(z):§/0 K (t)dt =14 =

HencelL is well-defined and analytic ifv.
Now let

Q=
Q=

F(z) = [2"L(z)] = =[L(z)]",

where we choose the branch| z)]é which equals 1 when = 0. Thus F' is analytic inE

and satisfied (3]5).
Set
(3.6) Z;S) — (1= \h(2) £ A,
and let
G _ s
78 =1 =XNhi(z)+ A
29'(z) _ B
o) = (1= Nha(z) + A
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Now, from (3.5), we have

@D ST -0 n O = [T e ]
We differentiate[(3]7) logarithmically and use (3.6) to obtain

B B zh (z) b a

a(l =) {h( )+ (c—a)+oz{)\+(1—/\)h(z)}] TOtr—a)

_ge) e )

f(z) 9(2)
-

This gives us
zh (2) }
(c—a)+af{ A+ (1= Nh(2)}

0 zf'(2) } v [29’(2) }
- A —Al.
aa—m[fw o= 6
Sincef, g € Ti(0o,7, \), we have, fol0 < 6, < 0, < 27, z = re®,

A% [ )+ T aD h<nyw
[g GRehl d0+2/92Reh2 d@}

01
o ( v
A%
5(
a(1=-X)

)+ i ()
/y_ ot __ﬂ-
2 )
where we have used Lemmal2.4.
Now using Lemm.z with =
clzc—oz—l—a/\:c—a(l—)\) >0,
we obtain the required result. O

V@+

> 1, fora<—and
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