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ABSTRACT. We define some classes of analytic functions related with the class of functions with
bounded boundary rotation and study these classes with reference to certain integral operators.

Key words and phrases:Close-to-convex functions, Univalent functions, Bounded boundary rotation, Integral operator.

2000Mathematics Subject Classification.30C45, 30C50.

1. I NTRODUCTION

LetA denote the class of functionsf of the formf(z) = z +
∑∞

m=2 amzm which are analytic
in the unit diskE = {z : |z| < 1}. Let C, S?, K andS be the subclasses ofA which are
respectively convex, starlike, close-to-convex and univalent inE. It is known thatC ⊂ S? ⊂
K ⊂ S. In [1], Kaplan showed thatf ∈ K if, and only if, for z ∈ E, 0 ≤ θ1 < θ2 ≤ 2π, 0 <
r < 1, ∫ θ2

θ1

Re

{
1 +

reiθf ′′(reiθ)

f ′(reiθ)

}
dθ > −π, z = reiθ.

Let Vk(k ≥ 2) be the class of locally univalent functionsf ∈ A that mapE conformally onto a
domain whose boundary rotation is at mostkπ. It is well known thatV2 ≡ C andVk ⊂ K for
2 ≤ k ≤ 4.

Definition 1.1. Let f ∈ A andf ′(z) 6= 0. Thenf ∈ Tk(λ), k ≥ 2, 0 ≤ λ < 1 if there exists a
functiong ∈ Vk such that, forz ∈ E

Re

{
f ′(z)

g′(z)

}
> λ.
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The classTk(0) = Tk was considered in [2, 3] andT2(0) = K, the class of close-to-convex
functions.

Definition 1.2. Let f ∈ A and f(z)f ′(z)
z

6= 0, z ∈ E. Thenf ∈ Tk(a, γ, λ), Re a ≥ 0, 0 ≤ γ ≤
1 if, and only if, there exists a functiong ∈ Tk(λ) such that

(1.1) zf ′(z) + af(z) = (a + 1)z(g′(z))γ, z ∈ E.

We note thatTk(0, 1, λ) = Tk(λ) and T2(0, 1, λ) = K(λ) ⊂ K, and it follows thatf ∈
Tk(a, γ, λ) if, and only if, there existsF ∈ Tk(∞, γ, λ) such that

f(z) =
a + 1

za

∫ z

0

ta−1F (t)dt.

2. PRELIMINARY RESULTS

Lemma 2.1([2]). Let f ∈ A. Then, for0 ≤ θ1 < θ2 ≤ 2π, z = reiθ, 0 < r < 1, f ∈ Tk if
and only if ∫ θ2

θ1

Re

{
zf ′(z))′

f ′(z)

}
dθ > −k

2
π.

Lemma 2.2. Letq(z) be analytic inE and of the formq(z) = 1+b1z+ · · · for |z| = r ∈ (0, 1).
Then, fora, c1, θ1, θ2 with a ≥ 1, Re(c1) ≥ 0, 0 ≤ θ1 < θ2 ≤ 2π,∫ θ2

θ1

Re

{
q(z) +

azq′(z)

c1a + q(z)

}
dθ > −β1π; (0 < β1 ≤ 1)

implies ∫ θ2

θ1

Re q(z)dθ > −β1π, z = reiθ.

This result is a direct consequence of the one proved in[4] for β1 = 1.

From (1.1) and Lemma 2.1, we can easily have the following:

Lemma 2.3. A functionf ∈ Tk(∞, γ, λ) if and only if, it may be represented asf(z) =
p(z) · zG′(z), whereG ∈ Vk andRe p(z) > λ, z ∈ E.

Proof. Sincef ∈ Tk(∞, γ, λ), we have

f(z) = z(g′(z))γ, g ∈ Tk(λ)

= z [G′
1(z)p1(z)]

γ
, G1 ∈ Vk, Re p1(z) > λ

= zG′(z).p(z),

whereG′(z) = (G′
1(z))γ ∈ Vk andp(z) = (p1(z))γ, Re p(z) > λ, since0 ≤ γ ≤ 1.

The converse case follows along similar lines. �

Using Lemma 2.1 and Lemma 2.3, we have:

Lemma 2.4.

(i) Letf ∈ Tk(0, γ, λ). Then, withz = reiθ, 0 ≤ θ1 < θ − 2 ≤ 2π,∫ θ2

θ1

Re

{
(zf ′(z))′

f ′(z)

}
dθ > −kγ

2
, see also[3].

(ii) Letf ∈ Tk(∞, γ, λ). Then, forz = reiθ and0 ≤ θ1 < θ2 ≤ 2π,∫ θ2

θ1

Re

{
zf ′(z)

f(z)

}
dθ > −kγ

2
.
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3. M AIN RESULTS

Theorem 3.1. For 0 < α < 1
1−λ+λβ

, 0 < β < λ
1−λ

, 0 ≤ λ < 1
2

andf, g ∈ Tk(∞, γ, λ), z ∈
E, let

(3.1) F (z) =

[(
β +

1

α

)
z

1− 1
α

∫ z

0

t
1
α−2

(f(t))βg(t)dt

] 1
1+β

.

ThenF1, with F = zF ′
1 and0 < γ < 1, k ≤ 2

γ
, is close-to-convex and hence univalent inE.

Proof. We can write (3.1) as

(3.2) (F (z))β+1 =

(
β +

1

α

)
z

1− 1
α

∫ z

0

t
1
α−2

(f(t))βg(t)dt.

Let

(3.3)
zF ′(z)

F (z)
=

(zF ′
1(z))′

F ′
1(z)

= (1− λ)H(z) + λ,

whereH(z) is analytic inE andH(z) = 1 + c1z + c2z
2 + · · · .

We differentiate (3.2) logarithmically to obtain

(β + 1)
zF ′(z)

F (z)
=

(
1− 1

α

)
+

z
1
α−1

(f(z))βg(z)∫ z

0
t

1
α−2

(f(z))β(t)g(t)dt
.

Using (3.2) and differentiating again, we have after some simplifications,

(1− λ)zH ′
∫ z

0
t

1
α−2

(f(t))βg(t)dt

z
1
α−1

(f(z))βg(z)
+ (1− λ)H(z)

=
β

1 + β
· zf ′(z)

f(z)
+

1

β + 1
· zg′(z)

g(z)
− λ.

Now

z
1
α−1

(f(z))βg(z)∫ z

0
t

1
α−2

(f(t))βg(t)dt
=

(
1

α
− 1

)
+ (1 + β)

zF ′(z)

F (z)
.

Hence

− λ +
β

1 + β
· zf ′(z)

f(z)
+

1

β + 1
· zg′(z)

g(z)

= (1− λ)H(z) +
(1− λ)zH ′(z)

(1− λ)(1 + β)H(z) + ( 1
α
− 1) + λ(1 + β)

and we have

(3.4)
1

1− λ

[
β

1 + β

(
zf ′(z)

f(z)
− λ

)
+

1

1 + β

(
zg′(z)

g(z)
− λ

)]
= H(z) +

1
(1+β)(1−λ)

zH ′(z)

H(z) +
[

( 1
α
−1)

(1+β)(1−λ)
+ λ

1−λ

] .
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Sincef, g ∈ Tk(∞, γ, λ), so with z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π,

β

1 + β

∫ θ2

θ1

Re

{
1

1− λ

(
zf ′(z)

f(z)
− λ

)}
dθ

+
1

1 + β

∫ θ2

θ1

Re

{
1

1− λ

(
zg′(z)

g(z)
− λ

)}
dθ >

−kγ

2
π,

and, therefore,∫ θ2

θ1

Re

H(z) +

1
(1+β)(1−λ)

zH ′(z)

H(z) +
{

( 1
α
−1)

(1+β)(1−λ)
+ λ

1−λ

}
 dθ >

−kγ

2
π.

Now using Lemma 2.2 witha = 1
(1+β)(1−λ)

≥ 1, c1 =
{(

1
α
− 1

)
+ (1 + β)λ

}
≥ 0, we obtain

the required result. �

Theorem 3.2. Let f, g ∈ Tk(∞, γ, λ), α, c, δ and ν be positively real, 0 < α ≤ 1
1−λ

, c >
α(1− λ), (ν + δ) = α. Then the functionF defined by

(3.5) [F (z)]
α

= cz
α−c

∫ z

0

t
(c−δ−ν)−1

(f(t))
δ

(g(t))
ν

dt

belongs toTk(∞, γ, λ) for k ≤ 2
γ
, 0 < γ < 1.

Proof. First we show that there exists an analytic functionF satisfying (3.5).
Let

G(z) = z−(ν+δ)(f(z))δ(g(z))ν

= 1 + d1z + d2z
2 + · · ·

and choose the branches which equal1 whenz = 0. For

K(z) = z
(c−ν−δ)−1

(f(z))
δ

(g(z))
ν

= z
c−1

G(z),

we have

L(z) =
c

zc

∫ z

0

K(t)dt = 1 +
c

1 + c
d1z + · · · .

HenceL is well-defined and analytic inE.
Now let

F (z) =
[
z

α

L(z)
] 1

α

= z [L(z)]
1
α

,

where we choose the branch of[L(z)]
1
α which equals 1 whenz = 0. ThusF is analytic inE

and satisfies (3.5).
Set

(3.6)
zF ′(z)

F (z)
= (1− λ)h(z) + λ,

and let

zf ′(z)

f(z)
= (1− λ)h1(z) + λ

zg′(z)

g(z)
= (1− λ)h2(z) + λ.
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Now, from (3.5), we have

(3.7) z
(c−α)

[F (z)]α
[
(c− α) + α

zF ′(z)

F (z)

]
= c

[
z

(c−δ−ν)−1

(f(z))δ(g(z))ν
]
.

We differentiate (3.7) logarithmically and use (3.6) to obtain

α(1− λ)

[
h(z) +

zh′(z)

(c− α) + α{λ + (1− λ)h(z)}

]
+ (δ + ν − α)

= δ
zf ′(z)

f(z)
+ ν

zg′(z)

g(z)
− αλ

= δ

[
zf ′(z)

f(z)
− λ

]
+ ν

[
zg′(z)

g(z)
− λ

]
.

This gives us[
h(z) +

zh′(z)

(c− α) + α{λ + (1− λ)h(z)}

]
=

δ

α(1− λ)

[
zf ′(z)

f(z)
− λ

]
+

ν

α(1− λ)

[
zg′(z)

g(z)
− λ

]
.

Sincef, g ∈ Tk(∞, γ, λ), we have, for0 ≤ θ1 < θ2 ≤ 2π, z = reiθ,∫ θ2

θ1

Re

[
h(z) +

zh′(z)

(c− α) + α{λ + (1− λ)h(z)}

]
dθ

=

[
δ

α

∫ θ2

θ1

Re h1(z)dθ +
ν

α

∫ θ2

θ1

Re h2(z)dθ

]
>

δ

α

(
−γk

2
π

)
+

ν

α

(
−γk

2
π

)
=

δ + ν

α

(
−γk

2
π

)
= −γk

2
π,

where we have used Lemma 2.4.
Now using Lemma 2.2 witha = 1

α(1−λ)
> 1, for α < 1

1−λ
and

c1 = c− α + αλ = c− α(1− λ) ≥ 0,

we obtain the required result. �
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