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ABSTRACT. The setting is a finite s&P of points on the circumference of a circle, where all
points are assigned non-negative real weighs). Let P; be all subsets of with i points
and no two distinct points within a fixed distanée We prove thatW,f > Wi41Wy—1 where

Wi = > acp, HpeAw(p). This is done by first extending a theorem by Chudnovsky and
Seymour on roots of stable set polynomials of claw-free graphs.
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1. INTRODUCTION

In this note a weighted type extension of a theorem by Chudnovsky and Seymour is proved,
and then used to derive some inequalities about well-distributed points on the circumference of
circles. Some basic graph theory will be usedstAble sein a graph, is a subset of its vertex
set with no adjacent vertices. For a graghits stable set polynomias

pa(x) = po + prx + pox?® 4 - + ppa™,

wherep; counts the stable sets @i with ¢ vertices, and there arevertices in the largest stable

sets. It was conjectured by Stanley [8] and Hamidoune [5] that the roots of stable set polyno-
mials of claw-free graphs are real. Itkaw-freegraph there are no four distinct vertices, c,

andd, with a adjacent td, ¢, andd, but none ofb, ¢, andd are adjacent. The conjecture was
proved by Chudnovsky and Seymolr [2]. For some subclasses of claw-free graphs, weighted
versions of the theorem exist, and they are used in mathematical physics [6]is & real
valued function on the vertex set of a gra@hthen theweighted stable set polynomial

Peaw(T) = po+ prr + pax® + -+ + pua”,
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where
pi = > [[ww)
S stable inG and#S=i wveS
fori > 0 andp, = 1. Theorenj 2.p states thatifis non-negative, and' is claw-free themg,.,
is real rooted. The proof is in three steps, first for integer weights, then rational, and finally for
real weights.
In the last section, points on circles are described by claw-free graphs, and Newton'’s inequal-
ities are used to derive information on well-distributed point sets of them.

2. AWEIGHTED VERSION OF CHUDNOVSKY AND SEYMOUR'’S THEOREM

Some graph notation is needed. The neighborhood of a veite%, denotedVs(v), is the
set of vertices adjacent tg and N [v] = Ng(v) U {v}. The vertex set of a grapfi is V(G)
and the edge set i5(G). The induced subgraph 6 on S C V(G), denoted byG[5], is the
maximal subgraph of with vertex setS.

Lemma 2.1. Let G be a claw-free graph with non-negative integer vertex weiglts. Then
there is an unweighted claw-free graghwith p¢ ., () = pu(z).

Proof. If there are any vertices it with weight zero they can be discarded and we assume
further on that the weights are positive.
Let H be the graph with vertex set

U o} x{1.2,...,w(v)}

veV(Q)
and edge set
{{(w, 1), (v,)} S V(H) [{u,v} € E(G), oru =vandi # j}.

We will later use that iy € V(G) andl < i,j < w(v) thenNg[(v,7)] = Ng|(v, j)].

First we check that{ is claw-free. Let(vq,iy),..., (v4,14) be four distinct vertices o
and assume that the subgraph they induce is a claw. If all ,ak, vs, v, are distinct, then
their induced subgraph @f is a claw, which contradicts thé&t is claw-free. The other case is
that not all ofvy, vs, v3, v4 are distinct; we can assume without loss of generaliy that v,.
BUt Nuj(vir),....(0a,i)] (V15 %1)] = NH[(vs,i0),....(00,i)) [(v1,71)] @nd this is never the case for the
neighborhoods of two distinct vertices in a claw. THiiss claw-free.

The surjective map¢ : {SisstableinH} — {SisstableinG} defined by
{(v1,41), (v2,82), ..., (v, 3) } = {v1, 09, ..., v} satisfy#¢1(S) = [[,q w(v), which shows
thatpe () = pu(x). O

Theorem 2.2([2]). The roots of the stable set polynomial of a claw free graph are real.

Lemma 2.3. Let G be a claw-free finite graph with non-negative real vertex weights), and

e > 0 areal number. Then there is a polynomjglr) = fo + fiz + -+ + f42? of the same
degree a9, (r) = po + p1x + - - - + pax? satisfyingd < p; — f; < e for all 4, and all of its

roots are real and negative. In additiory = 1.

Proof. We can assume that< 1. Letw be the largest weight of a vertex @ and letw = 1 if

no weight is larger than 1. Set= (4@)#"(@e~1. Note that, @ > 1. Letw'(v) = |nw(v)] be
non-negative integer weights 6f. By Lemmd 2.11, there is a graghi with py () = pe.w (),

and by Theorem 2|2 all roots @f;(z) are real. They are negative since all coefficients are
non-negative. The roots of

(@) = pow (x/n) = fo+ fia' + fox? 4+ -+ far®
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are then also real and negative.

0<pi—fi
S stable inG and#S ) UES vES
< H an >
S stable inG and#S i \vES vES

IN

1
< (w(v) — —))
S stable inG and#S i \veS vES n

- _ #S #UTT wiw)

S stable inG and#S ) UgS vel

< % Z Z I HU—#8 s HU

S stable inG' and#S=i UGS
1

< Z9#V(G)9#V(G) 1 ;#V(G)
n
= €.
We have thatf, = 1 sincepg ., hence it is a stable set polynomial. 0

This is a nice way to state the old fact that the roots and coefficients of complex polynomials
move continuously with each other.

Theorem 2.4([3]). The spaceéP,, of all monic complex polynomials of degreeawith the dis-
tance functiondp, (f,g9) = max{|fo — gols---,|fa-1 — gn-1|} fOr f(2) = fo+ fiz+--- +
frno12" P+ 2zvandg(z) = go + g1z + - - + go_12"" 1 + 2" is @ metric space.
The set’,, of all multisets of complex numbers wittelements with distance function
de, (U, V) = min max |u; — ve)|
forU = {uy,...,u,} andV = {vy,...,v,} is a metric space.
The map{zy, z2,...,2,} — (z—21)(z—22) - - - (2 — z,,) from L,, to P,, is a homeomorphism.

Theorem 2.5.1f GG is a claw-free graph with real non-negative vertex weighthen all roots
of pi..,(z) are real and negative.

Proof. Assume that the the statement is false since there is a grapith weightsw such
thatpe ., (a + bi) = 0, wherea andb are real numbers and# 0. Assume thapg .,(z) =
Po + p1z + paz? + - + paz?, wherepy # 0. Sincep, andp, are non-zero the map+— 1/r
is a bijection between the multiset of rootsef ,,(z) and the multiset of roots of the monic
polynomial p(z) = pq + pa_12 + pa_22% + -+ + pez¢. The distance inC,, as defined in
Theorenj 2.4, between the multiset of rootg0f) and the multiset of roots of any real rooted
polynomial is at leas|/ (a* + b?) since

1 a b . - |5
Catbi| (r_ a2+b2> e | T2
for any realr. Now we will find a contradiction to the homeomorphism statement in Theo-
rem[2.4 by constructing polynomials which are arbitrary closg(t9 in P,, but on distance at
least|b|/(a®+b?) in L4. Lete > 0 be arbitrarily small, at least smaller thayy2. By Lemmd 2.8
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there is a real rooted polynomig(z) = fo + fiz + -+ + fs2¢ such that < p; — f; < ¢ and
fo = 1. We assumed that < p,/2 so that bothf, and f, are non-zero. All roots of the monic
polynomialf(z) = fo+ fa12+ fa_022+ -+ foz? are real, since they are the inverses of the
roots of f(z), which are real. Hence the distance between the rogié:ofand f(z) in L, is at
least|b| /(a2 + b%). But since|p; — f;| < ¢, the distance betweei{z) and f(z) in P, is at most
E.

The roots are negative since all coefficientp@f, (=) are non-negative, ang; ,,(0) = 1. O

3. WEIGHTED POINTS ON A CIRCLE

The circumference of the circle is parametrizedby: {(z,y) € R* | 22+ y* = 1}, and the
distance between two points is the ordinary euclidean metric. To & setC of points on the
circle and a distancé, we associate a gragh(P; d) with P as a vertex set, and two distinct
verticesa andb are adjacent if their distance is not more thian

Lemma 3.1. The graphG(P; d) is claw-free.

Proof. Assume that the pointg;, p2, ps, p4 lie clockwise on the circle and form a claw in the
graph withp,; adjacent to the other ones. Not bgthandp, can be further away from, than
ps is from py, since they are on clockwise order on the circle. But the distance frcendp,

to p; is larger thanl, and the distance betweenandps is at mostd since they are in a claw.
We have a contradiction and thG§ P; d) is claw-free. O

If the points are equally distributed on the circle, we get a class of graphs which was studied
in a topological setting by Engstrom [4] and used in the proof of Lovasz’s conjecture by Babson
and Kozlov [1].

Now we can use the extension of Chudnovsky and Seymour’s theorem.

Theorem 3.2. Let P be a finite set of points on the circumference of a circle, where all points
are assigned non-negative real weight§). And let P, be the set of all subsets &f with &
points and no two points within a fixed distanteThen the roots of

f(I) :W0+W1I+W2$2+"'
are real and negative if

andW, = 1.
Proof. By Lemmd 3.1 the grapt'(P; d) is claw-free. The sums of products of weight$ii,
and by Theore5 the roots of the polynonyigt) = pe(p.4)..(2) are real and negative.J

Newton’s inequalities used for coefficients of polynomials with real and non-positive roots
as described in [7] gives the following corollary.

Corollary 3.3. Using the notation of Theorem 3.2, wittthe largest integer such th&t’,, # 0,

we have )
Wi - Wit Wi

M° () G

and 1/k 1/(k+1)
Wt W
n 1/k — n 1/(k+1)
() )

for0 < k < d.

There is an easily stated slightly weaker versiofg, > W, W,1.
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