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ABSTRACT. In this paper we present inequalities for integrals of functions that are the compo-
sition of nonnegative convex functions on an open convex set of a vector spaceRm and vector-
valued functions in a weakly compact subset of a Banach vector space generated bym Lp

µ-spaces
for 1 ≤ p < +∞ and inequalities when these vector-valued functions are in a weakly* compact
subset of a Banach vector space generated bym L∞µ -spaces.
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1. I NTRODUCTION

When studying extremum problems and integral estimates in many areas of applied mathe-
matics, we may require the convexity of functions and the weak compactness of sets. Many
properties of convex functions and weakly compact sets can be found in the literature (e.g., see
[2], [3], [4], [5] and [7]). In some research fields such as the existence of solutions of differ-
ential equations (e.g., see [1] and [6]), we usually enconter some problems on the estimates of
integrals of functions that are the composition of convex functions on an open convex set of a
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vector space and vector-valued functions in a weakly (or weakly*) compact subset in a Banach
space. The estimates of integrals of this kind of composite function is interesting and impor-
tant in many application areas. Inequalities for integrals of composite functions are necessary,
therefore, for solving many problems in applied mathematics.

Let us first introduce some notations which will be used throughout this paper.R denotes
the real number system,Rn is the usual vector space of realn-tuplesx = (x1, x2, . . . , xn),
µ is a nonnegative Lebesgue measure ofRn, Lp

µ(Rn) represents a Banach space where each
measurable functionu(x) has the following norm

(1.1) ‖u‖p =

(∫
Rn

|u(x)|pdµ

) 1
p

for anyp ∈ [1, +∞), (Lp
µ(Rn))m denotes a Banach vector space where each measurable vector-

valued function hasm components inLp
µ(Rn), L∞µ (Rn) represents a Banach space where each

measurable functionu(x) has the following norm

(1.2) ‖u‖∞ = esssup
x∈Rn

|u(x)| (or say‖u‖∞ = inf
E⊆Rn

µ(EC)=0

sup
x∈E

|u(x)|),

whereEC represents the complement set ofE in Rn, and(L∞µ (Rn))m denotes a Banach vector
space where each measurable vector-valued function hasm components inL∞µ (Rn).

Below, we give the definition of weak convergence of a sequence inLp
µ(Rn), wherep ∈

[1, +∞). Assume thatq = p/(p− 1) asp ∈ (1, +∞) and thatq = ∞ asp = 1. If u ∈ Lp
µ(Rn)

and it is assumed that a sequence{ui}+∞
i=1 in Lp

µ(Rn) satisfies

(1.3) lim
i→+∞

∫
Rn

uivdµ =

∫
Rn

uvdµ

for all v ∈ Lq
µ(Rn), then the sequence{ui}+∞

i=1 is said to be weakly convergent inLp
µ(Rn) to

u asi → +∞. Similarly, we introduce the definition of weak* convergence of a sequence in
L∞µ (Rn). If u ∈ L∞µ (Rn) and it is assumed that a sequence{ui}+∞

i=1 in L∞µ (Rn) satisfies the
equality (1.3) for allv ∈ L1

µ(Rn), then the sequence{ui}+∞
i=1 is said to be weakly* convergent

in L∞µ (Rn) to u asi → +∞. Then we define the weak (or weak*) convergence of a sequence
in (Lp

µ(Rn))m (or (L∞µ (Rn))m). If 1 ≤ p < +∞ and{uji}+∞
i=1 is weakly convergent inLp

µ(Rn)

to ûj for all j = 1, 2, . . . ,m as i → +∞, then a sequence{ui = (u1i, u2i, . . . , umi)}+∞
i=1

is called weakly convergent in a Banach vector space(Lp
µ(Rn))m to û = (û1, û2, . . . , ûm) as

i → +∞. Similarly, if {uji}+∞
i=1 is weakly* convergent inL∞µ (Rn) to ûj for all j = 1, 2, . . . ,m

asi → +∞, then a sequence{ui = (u1i, u2i, . . . , umi)}+∞
i=1 is said to be weakly* convergent in

a Banach vector space(L∞µ (Rn))m to û = (û1, û2, . . . , ûm) asi → +∞.
We now recall the definition of a convex function. Iff(x) is a function with its values being

real numbers or±∞ and its domain is a subsetS of anm dimensional vector spaceRm such
that {(x, y)|x ∈ S, y ∈ R, y ≥ f(x)} is convex as a subset of anm + 1 dimensional vector
spaceRm+1, thenf(x) is called a convex function onS. It is known thatf(x) is convex fromS
to (−∞, +∞] if and only if

(1.4) f(λ1x1 + λ2x2 + · · ·+ λkxk) ≤ λ1f(x1) + λ2f(x2) + · · ·+ λkf(xk)

wheneverS is a convex subset ofRm, xi ∈ S (i = 1, 2, . . . ) λ1 ≥ 0, λ2 ≥ 0, . . . , λk ≥ 0,
λ1 + λ2 + · · ·+ λk = 1. This is called Jensen’s inequality whenS = Rm.

There are inequalities for integrals of functions that are the composition of convex functions
on a vector spaceRm and vector-valued functions in a weakly* compact subset of(L∞µ (Rn))m

(see [6] or Theorem 3.2 in Section 3). IfF (x, y) is a special nonnegative convex function
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defined byF (x, y) = (x − y) log(x
y
) for (x, y) ∈ (0, +∞) × (0,∞) and{(ai, bi)}+∞

i=1 is a
nonnegative sequence weakly convergent in(L1

µ(Rn))2 to (a, b), then similar inequalities for
integrals of the composite functions can also be obtained (see [1]), as follows:

lim
i→+∞

∫
Rn

F (ai, bi)dµ ≥
∫

Rn

F (a, b)dµ.

Below, we extend the two results mentioned above to a more general case. More precisely, this
paper aims to show inequalities for integrals of functions that are the composition of nonnega-
tive convex functions on an open convex set of a vector spaceRm and vector-valued functions in
a weakly compact subset of a Banach vector space generated bym Lp

µ-spaces for1 ≤ p < +∞.
We also show inequalities for integrals of functions when these vector-valued functions are in a
weakly* compact subset of a Banach vector space generated bym L∞µ -spaces.

2. I NEQUALITIES FOR WEAKLY CONVERGENT SEQUENCES

Some basic concepts have been introduced in the previous section. In this section we show in-
equalities for integrals of functions which are the composition of nonnegative convex functions
on an open convex set of a vector spaceRm and vector-valued functions in a weakly compact
subset of a Banach vector space generated bym Lp

µ-spaces for any givenp ∈ [1, +∞). That is
the following

Theorem 2.1. Suppose that a sequence{ui}+∞
i=1 weakly converges in(Lp

µ(Rn))m to u as i →
+∞, wherep ∈ [1, +∞) andm andn are two positive integers. Assume that all the values of
u andui (i = 1, 2, 3, . . . ) belong to an open convex setK in Rm and thatf(x) is a nonnegative
convex function fromK to R. Then

(2.1) lim
i→+∞

∫
Ω

f(ui)dµ ≥
∫

Ω

f(u)dµ

for any measurable setΩ ⊆ Rn.

In order to prove Theorem 2.1, let us first recall the following lemma:

Lemma 2.2. Assumeun → u weakly in a normed linear space. Then there exists, for any
ε > 0, a convex combination

∑n
k=1 λkuk (λk ≥ 0,

∑n
k=1 λk = 1) of {uk : k = 1, 2, . . . } such

that‖u−
∑n

k=1 λkuk‖ ≤ ε where‖v‖ is a norm ofv in the space.

This is called Mazur’s lemma. Its proof can be found in [5] and [7]. Using this lemma, we
can give a proof of Theorem 2.1.

Proof of Theorem 2.1.Let ΩR be a bounded set defined byΩR = Ω ∩ {w : |w| < R, w ∈
Rn} for all R > 0. Put αi =

∫
ΩR

f(ui)dµ (i = 1, 2, . . . ) andα = lim
i→+∞

∫
ΩR

f(ui)dµ for all

the bounded setsΩR. Then there exists a subsequence of{αi}+∞
i=1 such that this subsequence,

denoted without loss of generality by{αi}+∞
i=1 , converges toα asi → +∞.

TakeKl = {x : x ∈ K, |x| ≤ l, ρ(∂K, x) ≥ 1/l} andDl(u) = {ω : ω ∈ Rn, u(ω) ∈ Kl}
for any fixed positive integerl, whereρ(∂K, x) is defined as a distance between the pointx and
the boundary∂K of K. Then all the setsKl are bounded, closed and convex subsets ofK such
that lim

l→+∞
Kl = K andKl ⊂ Kl+1 for any positive integerl. It can also be easily proven that

lim
l→+∞

Dl(u) = Rn and thatDl(u) ⊆ Dl+1(u) for any positive integerl. Sincef(x) is a convex

function defined on an open convex setK, f(x) is continuous inK (see [3]). Thusf(x) is
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uniformly continuous inKl+1, that is, for any given positive numberε, there exists a positive
numberδ such that

(2.2) |f(x)− f(y)| < ε/µ(ΩR)

as|x− y| < δ for anyx andy in Kl+1.
Sinceui weakly converges in(Lp

µ(Rn))m to u, using Lemma 2.2, one know that for any

natural numberj, there exists a convex combination
∑N(j)

k=j λkuk of {uk : k = j, j + 1, . . . }
such that

∥∥∥u−
∑N(j)

k=j λ
(j)
k uk

∥∥∥ p ≤ 1
j
, whereN(j) is a natural number which depends onj and

{uk : k = j, j+1, . . . }, ‖v‖p represents a norm ofv in (Lp
µ(Rn))m, λ

(j)
k ≥ 0 and

∑N(j)
k=j λ

(j)
k = 1.

Putvj =
∑N(j)

k=j λ
(j)
k uk. Then, asj tends to infinity,vj converges in(Lp

µ(Rn))m to u. Thus there
exists a subsequence of{vj}+∞

j=1 such that this subsequence, denoted without loss of generality
by {vj}+∞

j=1, converges almost everywhere inRn to u asj goes to infinity. In particular, for any
given R > 0, vj converges almost everywhere inΩR to u asj goes to infinity. By Egorov’s
theorem, it is known that for any given positive numberσ, there exists a measurable setER in
ΩR with µ(ER) < σ such thatvj converges uniformly inΩR\ER to u. Therefore for the above
numberδ, there exists a natural numberN such that

(2.3) sup
ω∈(ΩR\ER)∩Dl(u)

|u(ω)− vj(ω)| < δ

for all j > N. Since all the values ofu in Dl(u) are in the closed setKl andKl ⊂ Kl+1, δ can
be chosen to be sufficiently small such that all the values ofvj in (ΩR\ER)∩Dl(u) fall in Kl+1

and (2.2) and (2.3) still hold for this choice ofδ. Combining (2.2) and (2.3), we know that for
any given positive numberε, there exists a natural numberN such that

(2.4) f(u) < f(vj) + ε/µ(ΩR)

in (ΩR\ER) ∩Dl(u) for all j > N. Since all the values of{ui}+∞
i=1 andu are inK andf(x) is

convex and nonnegative, integrating (2.4) gives

(2.5)
∫

ΩR∩Dl(u)

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k

∫
ΩR

f(uk)dµ + σ max
x∈Kl

f(x) + ε.

(2.5) can be equivalently written as

(2.6)
∫

ΩR∩Dl(u)

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k αk + σ max

x∈Kl

f(x) + ε.

Notice thatαk → α ask → +∞. By first lettingj → +∞ and thenε → 0, (2.6) gives

(2.7)
∫

ΩR∩Dl(u)

f(u)dµ ≤ α + σ max
x∈Kl

f(x).

The fact that lim
l→+∞

Dl(u) = Rn shows that the limit ofΩR∩Dl(u) in (2.7) isΩR. By first letting

σ → 0 and thenl → +∞, (2.7) reads

(2.8)
∫

ΩR

f(u)dµ ≤ α ≤ lim
i→+∞

∫
Ω

f(ui)dµ,

where the last inequality is obtained using the nonnegativity off(x). Finally, by lettingR →
+∞ and using the Lebesgue dominated convergence theorem, (2.8) leads to (2.1). This com-
pletes the proof. �
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3. I NEQUALITIES FOR WEAKLY * C ONVERGENT SEQUENCES

In the previous section we have given inequalities for integrals of composite functions for
weakly convergent sequences in(Lp

µ(Rn))m for 1 ≤ p < +∞. In this section we present a
similar result for weakly* convergent sequences in(L∞µ (Rn))m .

Using the process of the proof in Theorem 2.1, we can prove the following theorem.

Theorem 3.1. Assume that a sequence{ui}+∞
i=1 weakly* converges in(L∞µ (Rn))m to u as

i → +∞, wherem and n are two positive integers. Assume that all the values ofu and ui

(i = 1, 2, 3, . . . ) belong to an open convex setK of Rm and thatf(x) is a nonnegative convex
function fromK to R. Then the inequality (2.1) holds for any measurable setΩ ⊆ Rn.

Proof. Put ΩR = Ω ∩ {w : |w| < R, w ∈ Rn}. Then ΩR is a bounded set inRn for all
fixed positive real numbersR. Sinceui → u weakly* in (L∞µ (Rn))m, ui → u weakly* in
(L∞µ (ΩR))m. Hence, byL∞(ΩR) ⊂ L1(ΩR), it can be easily shown thatui → u weakly in
(L1

µ(ΩR))m. Then, using the process of the proof of Theorem 2.1, we obtain

(3.1) lim
i→+∞

∫
ΩR

f(ui)dµ ≥
∫

ΩR

f(u)dµ.

It follows from the nonnegativity of the convex functionf that

(3.2) lim
i→+∞

∫
Ω

f(ui)dµ ≥
∫

ΩR

f(u)dµ.

Finally, by the Lebesgue monotonous convergence theorem, asR → +∞, (3.2) implies (2.1).
Our proof is completed. �

Furthermore, by removing the nonnegativity off(x) and assuming that the convex setK is
closed, we can deduce the following result.

Theorem 3.2. Assume that a sequence{ui}+∞
i=1 weakly* converges in(L∞µ (Rn))m to u as i →

+∞, wherem and n are two positive integers. Assume that all the values ofu and ui (i =
1, 2, 3, . . . ) belong to a closed convex setK in Rm and thatf(x) is a continuous convex function
fromK to R. Then the inequality (2.1) holds for any bounded measurable setΩ ⊂ Rn.

We can also obtain Theorem 3.1 from Theorem 3.2. Theorem 3.2 can be easily proved using
Lemma 2.2. In fact, Theorem 3.2 is a part of the results given by Ying [6]. However, we still
give its proof below.

Proof of Theorem 3.2.Putαi =
∫

Ω
f(ui)dµ (i = 1, 2, . . . ) andα = lim

i→+∞

∫
Ω

f(ui)dµ for any

bounded setΩ. Then there exists a subsequence of{αi}+∞
i=1 such that this subsequence, denoted

without loss of generality by{αi}+∞
i=1 , converges toα asi → +∞.

Take K̃ = K ∩ {x : x ∈ Rm, |x| ≤ ‖u‖∞ + 1}. Then, sinceK is closed andf(x) is
continuous inK, K̃ is a bounded closed set andf(x) is uniformly continuous inK̃, that is, for
any given positive numberε, there exists a positive numberδ < 1 such that

(3.3) |f(x)− f(y)| < ε/µ(Ω)

as|x− y| < δ for anyx andy in K̃.
Sinceui → u weakly* in (L∞µ (Rn))m, ui → u weakly* in (L∞µ (Ω))m. Hence, byL∞(Ω) ⊂

L1(Ω), it can be easily shown thatui → u weakly in (L1
µ(Ω))m. It follows from Lemma 2.2

that, for any natural numberj, there exists a convex combination
∑N(j)

k=j λ
(j)
k uk of {uk : k =

j, j + 1, . . . } such that
∥∥∥u−

∑N(j)
k=j λ

(j)
k uk

∥∥∥∞ ≤ 1
j

whereN(j) is a natural number which
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depends onj and{uk : k = j, j + 1, . . . }, ‖v‖∞ represents a norm ofv in (L∞µ (Ω))m, λ
(j)
k ≥ 0

and
∑N(j)

k=j λ
(j)
k = 1. Putvj =

∑N(j)
k=j λ

(j)
k uk. Thenvj converges in(L∞µ (Ω))m to u asj tends to

∞. In particular, for the above numberδ, there exists a natural numberN such that

(3.4) esssup
ω∈Ω

|u(ω)− vj(ω)| < δ

for all j > N. Since all the values ofu andui are inK andK is convex, all the values ofu and
vj in Ω are inK̃ for all j > N. Combining (3.3) and (3.4), we know that for any given positive
numberε, there exists a natural numberN such that

(3.5) f(u) < f(vj) + ε/µ(Ω)

almost everywhere inΩ for all j > N. Thus, integrating (3.5) gives

(3.6)
∫

Ω

f(u)dµ ≤
∫

Ω

f(vj)dµ + ε

for all j > N. By the convexity of the functionf(x), integrating (3.6) gives

(3.7)
∫

Ω

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k

∫
Ω

f(uk)dµ + ε.

(3.7) can be equivalently written as

(3.8)
∫

Ω

f(u)dµ ≤
N(j)∑
k=j

λ
(j)
k αk + ε.

By letting j → +∞ and using the convergence ofαk to α, (3.8) gives

(3.9)
∫

Ω

f(u)dµ ≤ α + ε.

By letting ε → 0, (3.9) leads to (2.1). This completes the proof. �
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