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Abstract

Given a polynomial p(z) = " a;2’, we denote by | || the maximum norm on
the unit circle {z: |z| = 1}. We obtain a characterization of the best possible
constant z,, > % such that the inequality ||zp/(z) — za,2"|| < (n — z)|p| holds
for0 <z <.
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We denote byP, the class of all polynomials with complex coefficients, of
degree< n:

p(z) = Z a;z’.

J=0

(1.1)

Let||p|| := max,—; |p(2)|. The classical inequality

(1.2) 121l < nllpll

is known as Bernstein’s inequality. A great number of refinements and general-
izations of (L.2) have been obtained. Se# Part Ill] for an extensive study of
that subject. An example of refinement s p. 84]

(1.3) 2p'(2) — Qanz” + iao + Ynlaol < <n - %) [l
where - B
e n = 1(mod2), n > 1,
- %, n =2,
20 n =4,
\%, n = 0(mod 2), n > 6.

For eachn, the constant, is best possible in the following sense: giver 0,
there exists a polynomial € P, p-(2) = 3_7_, a;(¢)2, such that

L (o) (©)

— _a/n

2

2"+ —ag

2pl(2) 1

# Ot M@l > (n= 3 ) Il
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The inequality {.3) implies that

1
20 (2) — =anz

<(n-2Y 1l
n — — .
2 = ) IIP

In view of the inequality {, p. 637]|ax| < ||p||, 0 < k& < n, and the triangle
inequality, it follows from (.4) that

(1.5) 120/ (2) = wanz"|| < (n — z)]|p||

n

(1.4)

for 0 < z < 1 (herez is a parameter independent of ®p. If = > 1 then the
same reasoning givés-+x—1) in the right-hand side ofi(5). But(n+xz—1) >

(n —x) for z > 3, so that the following natural question arises: what is the
greatest constant, > % such that the inequalityl(5) holds for0 < z < z,,?

The Chebyshev polynomials of the first and second kind are respectively
T, (z) = cos(nh)
and
sin((n + 1)6)
sin(g)
wherex = cos(6). We prove the following result.

Un(r) =

Theorem 1.1. Letz,, be the smallest root of the equation

1 n 1 1
(1.6) 1— o %UZnJrl ( 1 - %> — Topta ( 1 - %)

in the interval(%,oo). The inequality(1.5) then holds for0 < = < z,. The
constantz,, is best possible.
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It will be clear that all the roots of the equatioh.§) are> % Consider the
polynomial, of degre¢n + 1), defined by

-1 n+1
(1.7) D(n,x) := %m”“
Ly (8 (1= 3) — T (1 - F)
5 %

The solutions of the equation. ) are the roots of the polynomié}(n, ). We
also have the following asymptotic result.

Theorem 1.2. For any complex numbet, we have

2n+1 1 2 :
(1.8) lim =D (n Sy C—) _ sin(9).

n—oo N2 2 8n?2 C

where D(n, x) is defined by(1.7). In particular, if z,, is the constant of Theo-
rem1.1then

1 w2

(2.9) Ty~ =+

— . n— 0.
2 8n?’
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Given two analytic functions

z) = Zajzj, 9(2) = ijzj (Jz] < K),
j=0 J=0

the function

(f *9)(z Za]b J (2 <K)

is said to be their Hadamard product.
Let 3, be the class of polynomialg in P, such that

1Qpll <|lp|| forevery peP,.

Top € P, we associate the polynomia(z) := z"p(). Observe that

QeB, — QehB,.

Let us denote bys® the subclass 0B, consisting of polynomialg? in B, for

which R(0) =

Lemma 2.1. [4, p. 414] The polynomiaR(z) = Z?:o b;z7, whereb, = 1,

belongs ta3? if and only if the matrix
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by bo b2 bny
M (bo, by, ..., by) = : : :
67_171 éan bo b
b, bn_1 by bo

is positive semi-definite.

The following well-known result enables us to study the definiteness of the
matrix M (1,04, ...,b,) associated with the polynomial
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R(z)=Q(z) =1+ Z b

. . Title Page
Lemma 2.2.[3, p. 274] The hermitian matrix
Contents
aipr a1z - Adip
Qg1 Q22 -+ Q2p _ « dd
y o Qi = Qi < >
Ap1 Ap2 " Apn Go Back
is positive semi-definite if and only if all its eigenvalues are non-negative. Close
Proof of Theoreni.l The preceding lemmas are applied to a polynomial of the Quit
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We study the definiteness of the matfik(n — z,n — 1,...2,1,0). Let

n—xz n—1 n—2 .- 2 1 0
n—1 n—-z n—1 .- 3 2 1
n—-2 n—1 n—-x --- 4 3
(22) F(n,z):=| . : : - :
1 2 3 n—1 n—xz n—1
1 2 n—2 n—1 n—=x

We will prove thatF'(n,z) = D(n,x), whereD(n, z) is defined by {.7). Let
x, be the smallest positive root of the equatibiin,z) = 0. The smallest
eigenvalue\ of M(n —z,n —1,...,2,1,0) is the one for which\ + z = xz,,;
we thus have\ > 0 whenevern) < z < z,. Forn > 1, it will be clear that
F(n,z*) < 0 for somez* > z,; the constant:,, is thus the greatest one for
which an inequality of the forml(5) holds.

In order to evaluate explicitly the determina@t4) we perform on it a se-
guence of operations. We denote bythei-th row of the determinant in con-
sideration. After each operation we continue to denoté fhe newi-th row.

1. L; — Liy1, 1 <i <n,i.e., we subtract it§ + 1)-st row from itsi-th row
fori=1,2,... n.

2. Ly — L;, 1 < i < n,ie., we subtract the newth row from its new
(¢ +1)-strow fori =1,2,...,(n —1).
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After these two steps, we obtain

(2.3) F(n,x)

l—z z-1 -1 -1 -1 —1 -1 -1
T 2—2x T 0 . 0 0 0 0
0 T 2—2x T 0 0 0 0
0 0 T 2 —2x 0 0 0 0
0 0 0 0 T 2 —2x T 0
0 0 0 0 0 T 2 —2x T
0 1 2 3 e n—=3 n—2 n—1 n—=x

Consider now the recurrence relations
(2 — 2x)

(2-4) Y = Zp—1 — ——Yk—1
T

forl1 <k <n,and

(2.5) ze=(k+1) =y

for1 < k < n — 1, with the initial valuesy, = 0, zo = 1. On the determinant
(2.3), we perform the operations

(3) Loys — 2L, i = 3,4, n.
(4) Ly + Lo.
(5) LQ - .Z'Ll.
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We obtain

(2.6) F(n,x)
1 1—2 z-1 —1 R | —1
0 o 01 T R A T
0 T 2—2x T - 0 0 0
— |0 0 x 2—22 --- 0 O 0
0 0 0 0 e 0 2—2x
0 0 0 0 - 00 Yn—1
wherea; = (x — 1)(z — 2), f; = z(2 — ) and
(2.7) Zpoy = —2) —yn2o
forn=2,3,....

We continue with the following operations on the determinarf)(
(6) Livo — ZLiy1,i=1,2,...,(n—2),andL,, — &1L, where

(2.8) ar = (2—2z) — xﬁk_l
k-1
forl <k <mn,
forl < k < n,and
(_1)kxk+l

(2.10) Ay =

al...ak.
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We obtain

(2.11)
11-z -1 -1 -1 --- -1 —1
0 o 631 r x --- z T
0 0 ay  Po A oo Ay Ay
0 0 0 a3 B3 -+ Ay A
0 0 0 0 a --- A A

F(n,z) =|. . . ! K K

0 0 0 0 0 p_3 6%—3
0 0 0 0 0 0  ap9
0 0 0 0 0 0 0
0 0 0 0 0 0 0

where

(2.12) o =2 1 — @L—lyn,l

Qp—1

It follows from (2.117) that
(2.13) F(n,z) = ajag - oy 1207
forn=2,3,.... Let
(2.14) Vi = QrQg - Q.
It is readily seen that

(2.15) F(n,z) = (n — 2 — Yn—2)VYn-1 — TYn—1Yn—2 + (—1)

—1 —1

i T

A A

Ay Ay

Ay Ay
An—4 An—4
ﬁn—Q An—3
An-1 On-1
0 A
n—lxn—lyn_ 1
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The sequenceg, and~; satisfy the recurrence relations
(2.16) Ty + (2 = 27)Yp1 + TYR2 = k2

fork > 2, withyy =0, y; = 1, and

(2.17) Ve — (2 - 2-77)%—1 + $2’Yk—2 = (—1)k+1fl?k

for k > 2, with~ := 1 — 2,7 = (z — 1)(z — 2). These recurrence relations
can be solved by elementary means (a mathematical software may help). We

Another Refinement of

find that Bernstein’s Inequality
(2.18) Uk = yr(x) Clément Frappier
(x—1) = V1 =2x) — ((x — 1) + /1 = 2z)**! '
B 4ok=1/1T — 22 Title Page
(k+ 1)z Contents
2 « 13
and ) ,
(2.19) = (o) Go Back
= (_@kﬂ Close
2 -
t
L (@=30)+ @-a)VT-20)((1~2) + yT-20)" Qui
441 — 22 Page 12 of 19
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Substituting in the right-hand member &f.{5, we finally obtain an explicit
representation fof'(n, x):

(2.20) F(n,z)
1 n
— m(((l —2) —vV1-22)"((n —2)V1 =22+ (n+ 1)z — n)
+(1-2)+vV1-22)"((n—2)V1 -2z — (n+ 1)z +n)
+2(=1)" /T — 2x>.
It follows from (2.20) that

2.21) F(n.z)= " S ?) 3 (273) (1—22)(1 — 2)"%
J (23]
— —((n+ 1)z —n) Z (QJZ 1) (1—22)(1 — z)"%-1
+ (_12)n+1:z:”“.
The identity
(2.22) F(n,z) = D(n,z),

whereD(n, x) is defined by {.7), also follows from 2.20). It is a direct verifi-
cation noticing that the well-known representation

(x+vV22 =1)"+ (z — Va2 - 1)

Ton(z) = 9
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and

Unle) = 227 — 1
readily give
1
Tont1 ( 1- %>
i(—=1)" n
=———|((1—2)+V1-2 14++v1-2
S (- B V)
— (=)= VI—22)"(1 - VI 23;))
and
1
Uzn1 ( 1- %>
. Z<_1)n n+1 n+1
_ mxn<((1—x)+\/l—2x) — (1 =2) = VT=22)"").
SinceM (n —z,n—1,...,2,1,0) is a symmetric matrix we know from the

general theory that all its eigenvalues are real. It is evident froml) that
F(n,z) > 0for z < 0. The proof of Theoreni.1 will be complete if we can
show thatF'(n,z) # 0 for 0 < z < 3. In fact, the polynomial§(n, z) are
decreasing irf0, 3], with

F(n,0)=n2""' and F (n %) = 2n1+1 (n2 + W)
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If n is even then the foregoing affirmation is evident since all the fundamental
terms are decreasing i2.21). If n is odd then all the fundamental terms are
decreasing except-1)""'z" ! = z"*! In that case we note that — x)(1 —

)" = (n—1)(1 — 2)” + (1 — z)™*; it is then sufficient to observe that the
function (1 — z)"* + 2" =: p(x) is decreasing (we havg/(z) = (n +
1)(x”—(1—x)")SOfOI’OSxS%). O

Proof of Theorenmi..2. The representatior2(21) gives

2n+1 1 C2
F _ —
n? (n, 2" 8n2>

(2.23)

-5

LAY ey
. An? (25 +1)!

(s

(-1

+ 2n2

CQ n+1
14— .
( +4n2)

For any fixed integefn we have(n_L:n)! ~ n™, asn — oo. It follows from

(2.23 and the dominated convergence theorem that

F 14_0_2 —i
o) T

=0

ntl (—=1)/¢¥  sin(c)

(2.24) i+ e’

lim

n—oo n2

which is the relation.8).
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For largen, we deduce froma.24) that F'(n, 1 + £&,) > 0if 0 < ¢ < 7 and
thatF(n, 1 + &) < 0if 7 < ¢ < 2r. We obtain (.9) by continuity. O
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There exists inequalities similar ta.@) that cannot be proved with the method
of convolution. An example is

(3.1) 12p'(2) = 2a2"|| < (n = 1)[p]|

for n > 1. The inequality 8.1) is a consequence of the particular case T,
= 1 of [1, Lemma 2]. If we wish to apply the method described at the

L . . o (n72) i
beginning of Sectior2 then the relevant polynomial should B¥z) = o T ’E’g;hs’i;ﬁesf'l’r‘g‘j;ft;’f
S =i But R(0) = = 2) ; # 1, so that Lemma.1is not applicable. ) _
j=1 (n—1) (n— Clément Frappier
The constant,, of Theoreml lcan be computed explicitly for some values
of n. We haver; = 1, 20 = 2 — V2, 23 = 2 — V2, 25 = 2(2 — /3),
Title P
27 =4+ 2v2 — \/2(10 + 7v/2), 9 = 6+ 2v/5 — /2(25 + 111/5) andzy; = He Tage
Contents
8 — 3v/6 — 1/2(49 — 201/6). The values:, andz; are more complicated. For
other values of:, it seems difficult to express the rootsofn, =) by means of « dd
radicals. It is numerically evident that, ,; < z,,. < >
The substitution /1 — 5= — 2 permits us to write the equatiofi.¢) as e
Close
(3.2) n(1 = 2*)Usp i1 () — Tonga(z) = .
Quit

We thus have Page 17 of 19
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wherey,, is the smallest positive root of the equatiénd). The identitieq1 —
22 )Upn(z) = 2Ty1(2) — Thgo(z) and Ty (2) + Toom(z) = 2Ty(2) T, (2)
lead us to the factorization

(3.4) n(1=2?)Usps1 () = Tont1(2) =2 = Tppr () (n—2) T () =1 T yo(2)).

It follows that the valuey, defined by 8.3) is the least positive root of the
polynomial7,, . (z) or the least positive root of the equatiom — 2)7,,(x) =
nTn+2(:C).

Another Refinement of

Conjecture 3.1. If n is odd thery,, = sin (m) (so thatz,, = Wlﬂ))_ Bernstein's Inequality
2(n+1) z .
If n is even them, is the smallest positive root of the equation— 2)7),(z) = I R
nT, o).
. . . . Title Page
We finally mention the following (not proved) representatiof:, z):
Contents
= 2n —k+1)!(n? — (k-1 k
(3.5) D(n, ) = Z(_l)k( n +2 ) (n% (2 - )+ k) ok « >
— (2n — 2k + 2)!k! < >
+ (_1)n+1xn+1. o Back
Close
Quit
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