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ABSTRACT. Given a polynomiap(z) = =" a;27, we denote by] || the maximum norm on

the unit circle{z: |z| = 1}. We obtain a characterization of the best possible constant 1
such that the inequalityzp’'(2) — xa,2"|| < (n — z)||p|| holds for0 < z < x,,.
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1. INTRODUCTION AND STATEMENTS OF THE RESULTS

We denote byP,, the class of all polynomials with complex coefficients, of degree:
(1.1) p(z) = Zajzj.
j=0
Let||p|| := max,—; |p(2)|. The classical inequality

(1.2) 1P|l < nlipll

is known as Bernstein’s inequality. A great number of refinements and generalizatipng of (1.2)
have been obtained. See [4, Part Ill] for an extensive study of that subject. An example of
refinement is[[2, p. 84]

1

1
2p'(2) — zan2" + ~ag

(1.3) > :

1
+ulaol < (n= 5 ) Il
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2 CLEMENT FRAPPIER

where
(}l, n=1(mod2), n > 1,
%, n =2,
" %, n =4,
\%, n = 0(mod2), n > 6.

For eachn, the constant, is best possible in the following sense: given- 0, there exists a
polynomialp. € P, p-(2) = >_7_, a;(¢)#’, such that

/ ]‘ n 1
zp.(2) — §an(8)z + ZQO(E)

The inequality[(1.3) implies that

O+ Mol > (n= 5 ) Il

< (n-3) sl

In view of the inequality[[4, p. 637)ax| < ||p|l, 0 < k < n, and the triangle inequality, it
follows from (1.4) that

(1.5) 120 (2) — zan2"|| < (n — 2)]lp]

(1.4)

2p' (2) — éanz”

for0 <z < % (herez is a parameter independent of R®. If z > % then the same reasoning
gives(n+x — 1) in the right-hand side of (1.5). Bt +z—1) > (n—=z) forz > 1, so that the
following natural question arises: what is the greatest constant % such that the inequality
(L.5) holds for0 < z < z,,?

The Chebyshev polynomials of the first and second kind are respectively

T, (x) = cos(nd)
and

Un(x) = sin(s(irflgz)l)e) |

wherez = cos(¢). We prove the following result.

Theorem 1.1. Letz,, be the smallest root of the equation

1 n 1 1
(1.6) I o %UQ’H-‘FI ( 1- %> —Tonp1 ( 1- %>

in the interval(3, co). The inequality(T-5) then holds fol0 < z < z,,. The constant., is best
possible.

It will be clear that all the roots of the equatidn (1.6) arei—. Consider the polynomial, of
degreg(n + 1), defined by

n 1) - /1 - L
W.7) D) = T e BN iU (/12 8) ~ 2T (/1 - 5)

2 2 1_ 1

The solutions of the equatiop (1.6) are the roots of the polynomijal, ). We also have the
following asymptotic result.
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Theorem 1.2. For any complex numbet, we have

n+1 2 :
(1.8) lim 2D <n L C—> _ sine)

n—oo N2 2 8n? c
whereD(n, z) is defined by{I-7). In particular, if z,, is the constant of Theorgin] then
(2.9) xn~1+7r—2, n — oo.
2 8n?

2. PROOFS OF THE THEOREMS

Given two analytic functions

f2) =) a2, g(z) =) b2 (]z] < K),
=0 =0
the function
(fx9)(z) =) a;bz (2| < K)
§=0

is said to be their Hadamard product.
Let 5, be the class of polynomial3 in P,, such that

1Q*pll < |[p|l forevery pe P,
To p € P,, we associate the polynomig(z) := z”@. Observe that
QeB, — QehB,.
Let us denote by’ the subclass aB,, consisting of polynomialg in B, for which R(0) = 1.

Lemma 2.1.[4, p. 414]The polynomialR(z) = > " b;»’, whereb, = 1, belongs td3, if and
only if the matrix

by b baa b
by bo - bnz bn
M(bg, by, ...,b,) == : :
1_773—1 én—Q bo b
b, bn_1 by bo

is positive semi-definite.

The following well-known result enables us to study the definiteness of the miatrixo,, . . .
associated with the polynomial

R(z)=Q(z) =1+ ibjzj.

Lemma 2.2. [3] p. 274]The hermitian matrix

a1 A2 - Qin
Q21 Qg2 -+ Aop -

. y Qi = Qg
Ap1 QAp2 - (07973

is positive semi-definite if and only if all its eigenvalues are non-negative.
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Proof of Theorerfl.1 The preceding lemmas are applied to a polynomial of the form

~ n n—j .
2.1 R(z) = =1 7,
D) ()= Q) +;(n_ ):
We study the definiteness of the matfik(n — z,n — 1,...2,1,0). Let
n—z n—1 n—2 --- 2 1 0
n—1 n—x2 n—1 --- 3 2 1
n—2 n—1 n—x --- 4 3 2
(2.2) F(n,x):= ) ) ) ] ] _
1 2 3 on—1 n—xz n—1
0 1 2 e nmn—2 n—1 n—=x

We will prove thatF'(n,z) = D(n,z), where D(n,z) is defined by[(1]7). Let, be the
smallest positive root of the equatidt{n, z) = 0. The smallest eigenvalueof M (n — x,n —
1,...,2,1,0) is the one for which\ + = = x,,; we thus have\ > 0 wheneve < = < z,,. For
n > 1, it will be clear thatF'(n, z*) < 0 for somex* > z,; the constant,, is thus the greatest
one for which an inequality of the forrx (1.5) holds.

In order to evaluate explicitly the determingnt (2.2) we perform on it a sequence of operations.
We denote byL; the i-th row of the determinant in consideration. After each operation we
continue to denote by; the newi-th row.

(1) L; — Lix1, 1 < i < n, i.e., we subtract it$; + 1)-st row from itsi-th row fori: =
1,2,...,n.
(2) Liy1 — Liy 1 < i < n, i.e., we subtract the newth row from its new(; + 1)-st row for
i=1,2,...,(n—1).
After these two steps, we obtain

(2.3) F(n,x)
1l—2 z-1 —1 —1 —1 —1 —1 —1
T 2—2x X 0 e 0 0 0 0
0 T 2—2x T e 0 0 0 0
0 0 T 2—2x --- 0 0 0 0
0 0 0 0 X 2 —2x T 0
0 0 0 0 0 T 2 —2x T
0 1 2 3 n—-—3 n—2 n—1 n—=zx
Consider now the recurrence relations
2 —2x
(2-4) Yk = k-1 — (T)ykl

forl <k <mn,and
(2.5) o= (k+1) =y

for 1 < k < n—1, with the initial valuegj, = 0, zo = 1. On the determinanf (2.3), we perform
the operations

(3) Lyt1 — %—72 nt=34,...,n.

(4) Ly + Lo.

(5) LQ — Qle.
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We obtain
1 1—-2 x-1 -1 .- -1 =1 =1 1
0 m 1 T N x T
0 T 2—2x T ) 0 0 0
O 0 O O e 0 0 Yn_1 Z;;,l

wherea; = (z — 1)(z — 2), 61 = #(2 — ) and

(2.7) Ga=(n—2) = Y

forn=2,3,....
We continue with the following operations on the determingani (2.6).

(6) Li+2 — fLH-ll 1=1,2,..., (TL — 2), andLn_H — yn:ll L,, where

«

Br—1

Q1

(2.8) ap=(2-2x)—z

forl < k < n,
(2.9) Br =2+ Ap1
forl <k <n,and

-1 k., .k+1
(2.10) A= T
al CEEEEY ak
We obtain
1 1—-2 z—1 -1 -1 —1 —1 —1 —1
0 o b oz oz x x x T
0 0 6%)] Ba Ay Ay Ay A4 Ay
0 0 0 (6%} ﬁg Ag AQ Ag Ag
0 0 0 0 « A A: A A
(2.11) F(n,z) = . ) _4 ° .5 _3 ’
0 0 0 0 0 Qp—3 ﬁn—B An—4 An—4
0 0 0 0 0 0 Ap_9 ﬂn—Z An_g
0 0 0 0 0 0 0 Q1 Bn-1
0 0 0 0 0 0 0 0 zr
where
(2.12) = = Oy
Qp—1

It follows from (2.11) that
(2.13) F(n,z) = ajag - ap_125"
forn=2,3,.... Let
(2.14) Vi = Qg Q.
It is readily seen that

(2.15) Fnz)=(n—2 — Yn—2)Vn-1 — TYn—1Vn—2 + (—1)"‘13:"_1%_1.
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The sequenceg, and~, satisfy the recurrence relations

(2.16) Y + (2 = 22)Yp—1 + TYp—2 = kx
for k > 2, with yo = 0, y; = 1, and
(2.17) Ve — (2 = 22) Y1 + 2P yp_e = (—1)F 2"

for k > 2, with~y :=1— 2,7 = (x — 1)(xz — 2). These recurrence relations can be solved by
elementary means (a mathematical software may help). We find that

(2.18)  yr =yi(z) = (x=1) = V1=20)"" = (@ =) +VI=20)"  (k+ Do

4ak=1,/1 = 2z 2
and
e = () = (—x)ktt N (2=32)+ (2 —2)V1—=21)((1 — ) + 1 —22)*
(2.19) 2 4V1-22
L (Br=2)+2-0)yT-2)((1—2) - VT-20)"
441 =22 '

Substituting in the right-hand member pf (2.15), we finally obtain an explicit representation for
F(n,x):

ﬁ(((l —z)—V1-22)"((n—2)V1—2z+ (n+ 1)z —n)

+ (1= 2)+VI—22)" ((n— 2)VI=22 — (n+ Dz +n) +2(—1)"HamH /T = 2:10).
It follows from (2.20) that

(2.20) F(n,z) =

2.21) F(n.z)= " S ?) > (22) (1—22)(1 — 2)"%
. S | i (=1
— 5((n + 1)z —n) ; (2]' N 1>(1 —22) (1 — )" %1 4 5 "t
The identity
(2.22) F(n,z) = D(n,z),

whereD(n, z) is defined by[(1]7), also follows fror (2]20). It is a direct verification noticing
that the well-known representation

(z+ V22 = 1)+ (v — Va2 - 1)

To(z) = 5
and
U (:c) B (x + \/m)mﬂ _ (x _ \/m)mﬂ
e W2 — 1
readily give

[ 1 i(—1)" . —
—((1—2)—VI=22)"(1 - VI 2x))
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and
L\ (=1 n+1 nt1
SinceM(n — z,n —1,...,2,1,0) is a symmetric matrix we know from the general theory

that all its eigenvalues are real. It is evident from (2.21) #h@t, ) > 0 for = < 0. The proof
of Theore will be complete if we can show tHfatn, 2) # 0 for 0 < z < 1. In fact, the

polynomialsF (n, ) are decreasing if0, 3], with
_ 1 1 (=)™ +1)
_ n—1 _ 2
F(n,0) = n2 and F(n,§)2n+1(n +T :
If n is even then the foregoing affirmation is evident since all the fundamental terms are decreas-
ing in (Z.21). Ifn is odd then all the fundamental terms are decreasing exegpt 'z ! =
2", In that case we note that — z)(1 — z)" = (n — 1)(1 — )" + (1 — )"} itis
then sufficient to observe that the functioh— z)" ' + 2"*! =: p(z) is decreasing (we have
P@)=m+1)(z"—(1—2)") <0for0 <z <3). O

Proof of Theorerfl.2 The representatiof (2.21) gives

gntl 1
2.2 F -+ —
(2.23) n? (n, 2" 8n2)

B 1_i+c_2 i]: () 2 n72j(_c.2)j
2n  8n3 j:0n23+1(n—2j)! 4n? (29)!

[n;l}

" <(n; . In?CQ) 2 i . 27— 1) (1 ) H)ﬁ

J]=

(_1)n+1 2 n+l
+ 1+ .

2n? 4n?
For any fixed integerm we have(n_L?’n)! ~ n™, asn — oo. It follows from (2.23) and the
dominated convergence theorem that
DA 1 = (=1Yc¥  sin(e)

2.24 li Flon 24+ )= _
e20 () X
which is the relation(118).

2For largen, we deduce from{(2.24) thdt (n, 1 + <) > 0if 0 < ¢ < 7 and thatF(n, 1 +
=) < 0if 7 < ¢ < 27. We obtain[(I.p) by continuity. O

3. CONCLUDING REMARKS AND OPEN PROBLEMS

There exists inequalities similar to (1L.4) that cannot be proved with the method of convolu-
tion. An example is

(3.1) 120 (2) = 2a02"(| < (n = 1)]|pll

for n > 1. The inequality[(3.]1) is a consequence of the particular easer, m = 1 of [1,
Lemma 2]. If we wish to apply the method described at the beginning of S¢gtion 2 then the
relevant polynomial should bB(z) = EZ:?% + 25 EZ:{gzﬂ'. But R(0) = EZ;; # 1, so that
Lemmg 2.1 is not applicable.
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The constant,, of Theorenj 1.[1 can be computed explicitly for some values.dVe have
=10 =22, 15 =2 — V2, 15 = 22— V3), zr = 4+ 2V2 — 1/2(10 + 7V2),

T9 = 64+2v/5—1/2(25 + 11y/5) andz;, = 8 —3v/6 — 1/ 2(49 — 201/6). The values:, andz;
are more complicated. For other values0it seems difficult to express the roots bfn, x)
by means of radicals. It is numerically evident that, < x,,.

The substitution /1 — 5= — 2 permits us to write the equation (1..6) as

(3.2) n(l— 332)U2n+1(f’5) — Tonia(v) = .
We thus have

1
(3.3) Ln = m;

wherey,, is the smallest positive root of the equatin [3.2). The identitles z*)U,,(x) =
Tl mi1(x) — Thpya(x) @and Ty () + Ty (z) = 2T(x)T,, () lead us to the factorization

(3.4) n(1 — 2®)Uppy1 () — Tonys1(x) — 2 = Tphi1(2) ((n — )T, (x) — nTnJrQ(x)).
It follows that the valuey,, defined by|(3.B) is the least positive root of the polynorfiial; ()
or the least positive root of the equation— 2)7,,(x) = nT,.2(x).

Conjecture 3.1. If n is odd theny,, = sin (ﬁ) (so thatz,, = W). If n is even then
2(n+1)

v, is the smallest positive root of the equation— 2)7,,(z) = nT,,2(x).

We finally mention the following (not proved) representationf:, x):

— L(2n—k+1D(n?—(k—1)n+k)

(35) D(n,z)= ;;(_1) (2n — 2k + 2)!K!

ankxk T (_1)n+1xn+1.
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