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ABSTRACT. In this paper, we present various functional means in the sense of convex analy-
sis. In particular, a logarithmic mean involving convex functionals, extending the scalar one,
is introduced. In the quadratic case, our functional approach implies immediately that of pos-
itive operators. Some examples, illustrating theoretical results and showing the interest of our
functional approach, are discussed.
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1. I NTRODUCTION

Recently, many authors have been interested in the construction of means involving convex
functionals and extending that of scalar and operator ones. The original idea, due to Atteia-
Raïssouli [1], comes from the fact that the Legendre-Fenchel conjugate operation can be consid-
ered as an inverse in the sense of convex analysis. This interpretation has allowed them to intro-
duce a functional duality, with which they have constructed for the first time, the convex geomet-
ric functional mean, which in the quadratic case, immediately gives the operator result already
discussed by some authors, [3, 6, 7, 9]. After this, several works [5, 8, 13, 14, 15, 16, 17, 18, 19]
proved that the theory of functional means contains that of means for positive operators.

In this paper we introduce a class of functional means in convex analysis. To convey the key
idea to the reader, we wish to briefly describe our aim in the following. The logarithmic mean
of two positive realsa andb is known as

L(a, b) =
a− b

ln a− ln b
if a 6= b, L(a, a) = a,

or alternatively, in integral form as

(L(a, b))−1 =

∫ +∞

0

dt

(a+ t)(b+ t)
.
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2 MUSTAPHA RAÏSSOULI

The extension of the logarithmic mean from the scalar case to the functional one is not obvious
and appears to be interesting: what should be the analogue ofL(a, b) when the variablesa
andb are convex functionals? The functional logarithm in convex analysis has already been
introduced in [14], but it is not sufficient since the product (resp. quotient) of two convex
functionals, extending that of operators, has not yet been covered. This is where the difficulty
lies in extending the logarithmic mean from the two above scalar forms.

A third representation ofL(a, b) is given by the convex form

(L(a, b))−1 =

∫ 1

0

(t · a+ (1− t) · b)−1dt,

whose importance stems from the fact that it does not contain any product nor quotient of
scalars, but only an inverse which, as already mentioned, has been extended to convex function-
als. For this, we suggest that a reasonable analogue ofL(a, b) involving convex functionalsf
andg is

L(f, g) =

(∫ 1

0

(t · f + (1− t) · g)∗dt
)∗

,

where∗ denotes the conjugate operation defined, for a functionalΦ ∈ R̃E, by the relationship

Φ∗(u∗) = sup
u∈E

{〈u∗, u〉 − Φ(u)}.

In the quadratic case, i.e., if

f(u) = fA(u) :=
1

2
〈Au, u〉 , g(u) = fB(u) :=

1

2
〈Bu, u〉 ,

for all u ∈ E, whereA,B : E −→ E∗ are two positive invertible operators, then we obtain
immediately a convex form of the logarithmic operator mean ofA andB given by

L(A,B) =

(∫ 1

0

(t · A+ (1− t) ·B)−1dt

)−1

.

This paper is divided into five parts and organized as follows: Section 2 contains some basic
notions of convex analysis that are needed throughout the paper. In Section 3, we introduce the
logarithmic mean of two convex functionals and we study its properties. Section 4 is devoted to
the intermediary functional means constructed from the arithmetic, logarithmic and harmonic
ones. Finally, in Section 5 we present the logarithmic mean of several functional variables
from which we deduce another intermediary mean, called the arithmetic-logarithmic-harmonic
functional mean. In the quadratic case, the above definitions and results immediately give those
of positive operators.

2. PRELIMINARY RESULTS

In this section, we recall some standard notations and results in convex analysis which are
needed in the sequel. For further details, the reader can consult for instance [2, 4, 10].

LetE be a real normed space (reflexive Banach when it is necessary),E∗ its topological dual,
and〈·, ·〉 the duality bracket betweenE andE∗.

If we denote byRE
the space of all functions defined fromE into R = R ∪ {−∞,+∞}, we

can extend the structure ofR onR by setting

∀x ∈ R, −∞ ≤ x ≤ +∞, (+∞) + x = +∞, 0 · (+∞) = +∞.

With this, the spaceRE
is equipped with the partial ordering relation defined by

∀f, g ∈ RE
, f ≤ g ⇐⇒ ∀u ∈ E f(u) ≤ g(u).
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Given a functionalf : E → R̃ = R∪{+∞}, we denote byf ∗ the Legendre-Fenchel conjugate
of f defined by

∀u∗ ∈ E∗ f ∗(u∗) = sup
u∈E

{〈u, u∗〉 − f(u)}.

It is clear that, iff ≤ g theng∗ ≤ f ∗.
We notice that, ifE is a complex normed space, the conjugate operation can be replaced by

the extended one,

∀u∗ ∈ E∗ f ∗(u∗) = sup
u∈E

{Re 〈u∗, u〉 − f(u)},

whereRe 〈u∗, u〉 denotes the real part of the complex number〈u∗, u〉.
In what follows, we restrict ourselves to the case of real normed spaces since the complex

one can be stated in a similar manner.
Let f ∈ R̃E andλ > 0 be a real. We define the functionalsλ · f andf · λ by

∀u ∈ E, (λ · f)(u) = λ · f(u) and (f · λ)(u) = λ · f
(u
λ

)
.

With this, it is not hard to see that

(λ · f)∗ = f ∗ · λ and (f · λ)∗ = λ · f ∗.

The bi-conjugate off is the functionalf ∗∗ : E −→ R̃ defined as follows

∀u ∈ E f∗∗(u) := (f ∗)∗(u) = sup
u∗∈E∗

{〈u∗, u〉 − f ∗(u∗)}.

It is well-known that,f ∗∗ ≤ f and,f ∗∗ = f if and only if f ∈ Γ0(E), whereΓ0(E) is the
cone of lower semi-continuous convex functionals fromE into R∪{+∞} not identically equal
to +∞. Analogously, we can definef ∗∗∗ : E∗ −→ R̃ which satisfiesf ∗∗∗ = f ∗, and thus
f ∗ ∈ Γ0(E

∗) for all f ∈ R̃E.
An important and typical example of aΓ0(E)−functional isfA defined by

∀u ∈ E fA(u) =
1

2
〈Au, u〉 ,

whereA : E −→ E∗ is a bounded linear positive operator. We say thatfA is quadratic in the
sense thatf(t·u) = t2f(u) for all u ∈ E andt ∈ R. It is easy to see that the conjugate operation
preserves the quadratic character. If, moreover,A is invertible thenf ∗A has the explicit form

∀u∗ ∈ E∗ f ∗A(u∗) =
1

2

〈
A−1u∗, u∗

〉
.

That is,f ∗A = fA−1 and so, as already observed, the conjugate operation can be considered as a
reasonable extension of the inverse operator in the sense of convex analysis.

Now, let us recall that, for allf, g ∈ R̃E andα ∈]0, 1[,

(2.1) (αf + (1− α)g)∗ ≤ αf ∗ + (1− α)g∗,

i.e., the mapf 7−→ f ∗ is convex with respect to the point-wise ordering onR̃E.
In the quadratic case, i.e., iff = fA andg = fB, andA,B : E −→ E∗ are positive invertible

operators, then the above inequality immediately implies,

∀α ∈]0, 1[ (α · A+ (1− α) ·B)−1 ≤ α · A−1 + (1− α) ·B−1,

which, without the conjugate operation, is not directly obvious, see [11] for example.
A convex-integral version of inequality(2.1) is given in the following result.
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Lemma 2.1. Let Ω be a nonempty subset ofRm, F : Ω × E −→ R̃ and ψ : Ω −→ [0,+∞[
such that

∫
Ω
ψ(t)dt = 1. If we put

∀u ∈ E Φ(u) =

∫
Ω

ψ(t)F (t, u)dt,

then the conjugate functionalΦ∗ : E∗ −→ R̃ of Φ satisfies

∀u∗ ∈ E∗ Φ∗(u∗) ≤
∫

Ω

ψ(t)F ∗(t, u∗)dt,

where
F ∗(t, u∗) = sup

u∈E
{ 〈u∗, u〉−F (t, u)}.

Proof. Form = 1, Ω =]a, b[⊂ R, this lemma is proved in [16]. Form ≥ 2, the same result is
achieved by using arguments analogous to those in [16]. �

Finally, for f, g ∈ R̃E such thatdom f ∩ dom g 6= ∅, the arithmetic and harmonic functional
means off andg are respectively defined by, [1]

(2.2) A(f, g) =
f + g

2
, H(f, g) =

(
1

2
f ∗ +

1

2
g∗
)∗

.

Clearly,H(f, g) ∈ Γ0(E) and, iff, g ∈ Γ0(E) then so isA(f, g). Moreover,(2.1) immediately
gives the arithmetic-harmonic mean inequality

∀f, g ∈ R̃E H(f, g) ≤ A(f, g).

3. L OGARITHMIC FUNCTIONAL M EAN

As mentioned before, the fundamental goal of this section is to introduce the logarithm mean
of two convex functionals. Such functional means extend available results for that of positive
real numbers.

Definition 3.1. Let f, g ∈ Γ0(E) such thatdom f ∩ dom g 6= ∅. We put

L(f, g) =

(∫ 1

0

(t · f + (1− t) · g)∗dt
)∗
,

which will be called the logarithmic functional mean off andg in the sense of convex analysis.

The fact thatf, g belong toΓ0(E) is not the only way to defineL(f, g). The logarithmic
mean off andg can be defined by the above formulae for allf, g ∈ R̃E. However, in order to
simplify the presentation for the reader, we assume thatf, g ∈ Γ0(E).

The elementary properties ofL(f, g) are summarized in the following.

Proposition 3.1. Letf, g ∈ Γ0(E). The following statements hold true.
(1) L(f, g) ∈ Γ0(E), L(f, f) = f, L(f, g) = L(g, f).
(2) L(λ · f, λ · g) = λ · L(f, g) and L(f · λ, g · λ) = L(f, g) · λ, for all λ > 0.
(3) L(f + a, g + b) = L(f, g) + A(a, b), for all a, b ∈ R.

Proof. It is immediate from the definition with the properties of the conjugate operation.�

Proposition 3.2. Letf1, f2, g1, g2 in Γ0(E) such thatf1 ≤ f2 andg1 ≤ g2. Then

L(f1, g1) ≤ L(f2, g2).

In particular, for all f, g ∈ Γ0(E) one has

(inf(f, g))∗∗ ≤ L(f, g) ≤ sup(f, g).
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Proof. It is immediate from the properties of the conjugate operation stated in Section 2.�

Proposition 3.3. Let f, g ∈ Γ0(E). Then the following arithmetic-logarithmic-harmonic mean
inequality holds

H(f, g) ≤ L(f, g) ≤ A(f, g),

whereA(f, g) andH(f, g) are respectively defined by(2.2).

Proof. By Lemma 2.1, we obtain

L(f, g) ≤
∫ 1

0

(t · f + (1− t) · g)∗∗dt ≤
∫ 1

0

(t · f + (1− t) · g)dt =
f + g

2
,

which gives the right inequality.
To prove the left one, we use(2.1) to write∫ 1

0

(t · f + (1− t) · g)∗dt ≤
∫ 1

0

(t · f ∗ + (1− t) · g∗)dt =
f ∗ + g∗

2
,

which, by taking the polar of the two members, gives(
f ∗ + g∗

2

)∗
≤
(∫ 1

0

(t · f + (1− t) · g)∗dt
)∗
,

thus proving the desired result. �

Corollary 3.4. Letf, g ∈ Γ0(E) such thatdom f = dom g. Then

dom H(f, g) = dom L(f, g) = dom A(f, g) = dom f.

Proof. In [5], the authors proved thatdom f = dom g if and only if

dom H(f, g) = dom A(f, g).

This, with the latter proposition, and the fact that

dom A(f, g) = dom f ∩ dom g,

implies the desired result. �

We notice that the above hypothesisdom f = dom g, also assumed below, is not a restriction
since it can be omitted with regularization. In this sense, the reader can consult [5] for similar
examples of regularization.

Proposition 3.5. Let f, g ∈ Γ0(E). If f andg are quadratic, then so isL(f, g). Moreover, if
f = fA andg = fB, whereA andB are two positive invertible operators then

L(f, g) = fL(A,B),

with

(3.1) L(A,B) =

(∫ 1

0

(t · A+ (1− t) ·B)−1dt

)−1

.

Proof. The result comes from the fact that

t · fA + (1− t) · fB = ft·A+(1−t)·B,

with
(t · fA + (1− t) · fB)∗ = f(t·A+(1−t)·B)−1 .

The rest of the proof is immediate. �

The following example explains the interest of our approach and the chosen terminology in
the above definition.
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Example 3.1. LetE = R andf(x) = fa(x) := 1
2
ax2, g(x) = fb(x) := 1

2
bx2, with a > 0, b >

0. According to(3.1), a simple calculation yields

L(a, b) =
a− b

ln a− ln b
if a 6= b, L(a, a) = a.

That is,L(a, b) is the known logarithmic mean. Otherwise, Proposition 3.3 gives immediately
the arithmetic-logarithmic-harmonic mean inequality

H(a, b) =
2ab

a+ b
≤ L(a, b) ≤ A(a, b) =

a+ b

2
.

We can now present the next definition whose convex integral form appears to be new.

Definition 3.2. The operatorL(A,B), defined by relation(3.1), is the logarithmic operator
mean ofA andB.

As for all monotone operator means, the explicit formulae ofL(A,B) can be easily deduced
from (3.1) and we obtain:

Corollary 3.6. The logarithmic operator mean ofA andB is given by

L(A,B) = A1/2F
(
A−1/2BA−1/2

)
A1/2,

whereF (x) = x−1
ln x

for all x > 0 with F (1) = 1.

According to the above study, it follows that the analogue of the scalar (resp. operator) map
F : x 7−→ x−1

ln x
, F (1) = 1, to convex functionals isf 7−→ L(f, σ), whereσ = 1

2
‖ · ‖2 is, in the

Hilbertian case, the only self-conjugate functional.

4. THE I NTERMEDIARY FUNCTIONAL M EANS

In [13], the authors discussed three intermediary functional means constructed from the arith-
metic, geometric and harmonic ones. The aim of this section follows the same path.

Let f, g ∈ Γ0(E), takef0 = f, g0 = g and consider the following two statements:

(P1) For alln ≥ 0, we putfn+1 = L(fn, gn), gn+1 = A(fn, gn).
(P2) For alln ≥ 0, we putfn+1 = L(fn, gn), gn+1 = H(fn, gn).

The fundamental result of this section is the following.

Theorem 4.1. Let f, g ∈ Γ0(E) such thatdom f = dom g. Then the sequences(fn) and(gn)
corresponding to(P1) (resp. (P2)) both converge point-wise to the same convex functional.
Moreover, denoting these limits byLA(f, g) andLH(f, g) respectively, we have the following
inequalities

H(f, g) ≤ LH(f, g) ≤ L(f, g) ≤ LA(f, g) ≤ A(f, g).

Proof. We prove the theorem for(P1), since that of(P2) can be stated in a similar manner.
First, it is easy to see, by induction, thatfn ∈ Γ0(E) andgn ∈ Γ0(E) for all n ≥ 0.
By Proposition 3.3, we immediately obtain

∀n ≥ 1 fn ≤ gn,

which, with Proposition 3.1, 1. and Proposition 3.2, implies that

∀n ≥ 1, fn+1 ≥ fn and gn+1 ≤ gn.

Summarizing, we have proved that

(4.1) L(f, g) = f1 ≤ · · · ≤ fn−1 ≤ fn ≤ gn ≤ gn−1 ≤ · · · ≤ g1 = A(f, g).
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It follows that, (fn) is an increasing sequence upper bounded byg1 ∈ Γ0(E) and (gn) is a
decreasing one lower bounded byf1 ∈ Γ0(E). We deduce that(fn) and(gn) both converge
point-wise inR̃E. Denoting their convex limits byφ andψ, respectively, we claim thatφ = ψ.
First, passing to the limit in the inequalityfn ≤ gn we obtainφ ≤ ψ. This, thanks to(4.1),
yields

L(f, g) ≤ φ ≤ ψ ≤ A(f, g).

If dom f = dom g then, by(4.1) again, one hasdom A(f, g) = dom L(f, g) which, with the
latter inequality, givesdomφ = domψ.

Now, lettingn −→ +∞ in the relation

gn+1 = A(fn, gn) :=
fn + gn

2
,

we obtain2 · ψ = φ + ψ, which with domφ = domψ implies thatφ = ψ, thus proving the
desired result. �

Definition 4.1. The convex functionalLA(f, g) (resp.LH(f, g)) defined by Theorem 4.1 will
be called the logarithmic-arithmetic (resp. logarithmic-harmonic) mean off andg.

In the quadratic case, the above theorem and definition give immediately that of positive
operators. In fact, letA andB be two positive (invertible) linear operators fromE intoE∗, take
A0 = A, B0 = B and define the two quadratic processes:

(QP1) For alln ≥ 0, we putAn+1 = L(An, Bn), Bn+1 = A(An, Bn).
(QP2) For alln ≥ 0, we putAn+1 = L(An, Bn), Bn+1 = H(An, Bn).

From the above, we obtain the following quadratic version.

Corollary 4.2. LetA andB as in the above. Then the sequences(An) and (Bn) correspond-
ing to (QP1) (resp. (QP2)) both converge strongly to the same positive operatorLA(A,B)
(resp.LH(A,B)) satisfying

H(A,B) ≤ LH(A,B) ≤ L(A,B) ≤ LA(A,B) ≤ A(A,B).

Similar to the functional case, we have the following definition.

Definition 4.2. The above positive operatorLA(A,B) (resp. LH(A,B)) will be called the
logarithmic-arithmetic (resp. logarithmic-harmonic) mean ofA andB.

Remark 1. Let f, g ∈ Γ0(E) and define the map

T (f, g) = (L(f, g),A(f, g)) , resp.T (f, g) = (L(f, g),H(f, g)) .

If T n denotes then−th iterate ofT , Theorem 4.1 tells us that there exists a convex functionalF
such that

lim
n↑+∞

T n(f, g) = (F,F).

Analogous deductions can be made for Corollary 4.2.

5. L OGARITHMIC M EAN OF SEVERAL VARIABLES

Below, we outline the procedure to extend the above logarithmic mean from two functional
variables to three or more.

Letm ≥ 2 be an integer and define

∆m−1 =

{
(t1, t2, . . . , tm−1) ∈ Rm−1,

m−1∑
i=1

ti ≤ 1, ti ≥ 0 for 1 ≤ i ≤ m− 1

}
.
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Let us put

tm = 1−
m−1∑
i=1

ti,

and by analogy to Definition 3.1, we find a realam > 0 such that the expression(
am

∫
∆m−1

(
m∑

i=1

tifi

)∗
dt1dt2 . . . dtm−1

)∗
,

is a reasonable extension ofL(f, g). For this, we computeam by requiring that (analogously
with L(f, f) = f )

am ·
∫

∆m−1

dt1dt2 . . . dtm−1 = 1.

A classical integration gives

a−1
m =

∫
∆m−1

dt1dt2 . . . dtm−1 =
1

(m− 1)!
.

Now, we can introduce the following definition.

Definition 5.1. Let f1, f2, . . . , fm ∈ Γ0(E) such that
⋂m

i=1 dom fi 6= ∅. The logarithmic func-
tional mean off1, f2, . . . , fm is given by

L(f1, f2, . . . , fm) =

(
(m− 1)!

∫
∆m−1

(
m∑

i=1

tifi

)∗
dt1dt2 . . . dtm−1

)∗
,

where tm = 1−
∑m−1

i=1 ti.

From the above definition, the properties ofL(f1, f2, . . . , fm) can be stated, in a similar
manner to that of the two functional variables case. In the following, we summarize these
properties whose proofs are omitted (and we leave it to the reader, since they are analogous to
that of L(f, g)). To simplify the notations, we writeL(F ) instead ofL(f1, f2, . . . , fm) with
F = (f1, f2, . . . , fm) ∈ (Γ0(E))m, andFτ = (fτ(1), fτ(2), . . . , fτ(m)) for a permutationτ of
{1, 2, . . . ,m}. With this, we define, forλ > 0

λ · F = (λ · f1, λ · f2, . . . , λ · fm) and F · λ = (f1 · λ, f2 · λ, . . . , fm · λ).

If F = (f, f, . . . , f) with f ∈ Γ0(E) we writeL(f).

Proposition 5.1. With the above, the following statements hold true:
(1) L(F ) ∈ Γ0(E), L(f) = f, and L(F ) = L(Fτ ) for all permutationsτ of the set

{1, 2, . . . ,m}.
(2) For all λ > 0, L(λ · F ) = λ · L(F ) and L(F · λ) = L(F ) · λ.
(3) If fi, gi ∈ Γ0(E) such thatfi ≤ gi for all i = 1, 2, . . . ,m, thenL(F ) ≤ L(G) with

G = (g1, g2, . . . , gm).

Now, forF = (f1, f2, . . . , fm) ∈ (Γ0(E))m we put

A(F ) =
m∑

i=1

fi

m
, H(F ) =

(
m∑

i=1

f ∗i
m

)∗
,

which are, respectively, the arithmetic and harmonic means off1, f2, . . . , fm.

Proposition 5.2. With the above conditions, the following arithmetic-logarithmic-harmonic
functional mean inequality holds

H(F ) ≤ L(F ) ≤ A(F ).

J. Inequal. Pure and Appl. Math., 10(4) (2009), Art. 102, 12 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


LOGARITHMIC FUNCTIONAL MEAN 9

Proof. Firstly, for brevity, we only present the fundamental points of this proof. By virtue of
the relation

(m− 1)!

∫
∆m−1

dt1dt2 . . . dtm = 1,

Lemma 2.1, with Definition 5.1, implies that

L(F ) ≤ (m− 1)!

∫
∆m−1

(
m∑

i=1

ti · fi

)
dt1dt2 . . . dtm−1,

with tm = 1−
∑m−1

i=1 ti. By the symmetry of∆m, a classical computation yields∫
∆m−1

tidt1dt2 . . . dtm−1 =
1

m!
,

for all i = 1, 2, . . . ,m. Substituting this in the above, we obtain the arithmetic-logarithmic
inequality. The logarithmic-harmonic one can be similarly obtained to that of Proposition 3.3,
which completes the proof. �

The main interest of our functional approach appears in its convex form with the simple
related proofs. In what follows, we provide another example explaining this situation.

Proposition 5.3. LetF = (fi)
m
i=1 with fi = fAi

, whereAi : E −→ E∗ are positive invertible
operators. If we setA = (A1, A2, . . . , Am), then

L(F ) = fL(A),

where

(5.1) L(A) =

(m− 1)!

∫
∆m−1

(
m∑

i=1

tiAi

)−1

dt1dt2 . . . dtm−1

−1

.

L(A) is called the logarithmic operator mean ofA1, A2, . . . , Am.

Proof. It is a simple exercise for the reader. �

Corollary 5.4. For all positive invertible operatorsA1, A2, . . . , Am, we have the arithmetic-
logarithmic-harmonic operator mean inequality

H(A) ≤ L(A) ≤ A(A),

where

A(A) =
m∑

i=1

Ai

m
, H(A) =

(
m∑

i=1

A−1
i

m

)−1

,

and L(A) is defined by(5.1).

Proof. It is sufficient to combine Proposition 5.2 with Proposition 5.3. �

Example 5.1. Let a, b, c be three positive reals. According to(5.1), we wish to compute the
logarithmic mean ofa, b andc. First, it is easy to see thatL(a, a, a) = a for all a > 0. For
a 6= b, a 6= c andb 6= c, a classical integration yields

L(a, b, c) =
1

2

(a− b)(b− c)(c− a)

a(c− b) ln a+ b(a− c) ln b+ c(b− a) ln c
,

see also [12]. By symmetry (Proposition 5.1,1.), fora 6= c one has

L(a, a, c) = L(a, c, a) = L(c, a, a),
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which naturally satisfies

L(a, a, c) = lim
b→a

L(a, b, c).

After a simple computation of this limit (or using(5.1)), we obtain (fora 6= c)

L(a, a, c) =
(a− c)2

2 (a− c+ c(ln c− ln a))
.

The arithmetic-logarithmic-harmonic mean inequality is immediately given by

3 · abc
ab+ bc+ ca

≤ L(a, b, c) ≤ a+ b+ c

3
.

These latter inequalities are not directly immediate, that proves the interest of our approach.

Finally, we end this section by introducing another functional mean of three variables con-
structed from the arithmetic, logarithmic and harmonic ones.

Let f, g, h ∈ Γ0(E), takef0 = f, g0 = g, h0 = h and define the recursive process

∀n ≥ 0, fn+1 = H(fn, gn, hn), gn+1 = L(fn, gn, hn), hn+1 = A(fn, gn, hn).

Clearly,fn, gn andhn belong toΓ0(E) for eachn ≥ 0.

Theorem 5.5. Let f, g, h ∈ Γ0(E) such thatdom f = dom g = domh. Then the sequences
(fn), (gn) and(hn) both converge point-wise to the same limitALH(f, g, h) satisfying

H(f, g, h) ≤ ALH(f, g, h) ≤ A(f, g, h).

Proof. By Proposition 5.2, we obtain

∀n ≥ 1 fn ≤ gn ≤ hn,

which, with Proposition 5.1,1. and 3., implies that

∀n ≥ 1, fn+1 ≥ fn and hn+1 ≤ hn.

In summary, we have shown that

(5.2) H(f, g, h) = f1 ≤ · · · ≤ fn−1 ≤ fn ≤ gn ≤ hn ≤ hn−1 ≤ · · · ≤ h1 = A(f, g, h).

We conclude that(fn) is increasing upper bounded byh1 and(hn) is decreasing lower bounded
by f1. Thus they converge point-wise iñRE whose limits are denoted respectively byφ andψ.
Otherwise, from the relation

(5.3) 3 · hn+1 = fn + gn + hn,

we deduce that(gn) is also point-wise convergent to a limitθ. Now, lettingn −→ +∞ in
relation(5.2), we can write

(5.4) H(f, g, h) ≤ φ ≤ θ ≤ ψ ≤ A(f, g, h).

Sincedom f = dom g = domh then, following [15], one hasdom H(f, g, h) = dom A(f, g, h) =
dom f , and by(5.4), we obtain

(5.5) domφ = dom θ = domψ.

Passing to the limit in(5.3), we have3 · ψ = φ+ θ+ ψ and so, with(5.5), 2 · ψ = φ+ θ. This,
when combined with(5.4), yieldsφ = ψ = θ. This completes the proof. �
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As in the above section, if the convex functionalsf, g andh are quadratic then we immedi-
ately obtain a similar result for positive operators. Indeed, letA,B,C : E −→ E∗ be three
positive (invertible) operators and letA0 = A,B0 = B,C0 = C and define the quadratic
sequences

∀n ≥ 0, An+1 = H(An, Bn, Cn), Bn+1 = L(An, Bn, Cn), Cn+1 = A(An, Bn, Cn).

Corollary 5.6. Let A,B,C as in the above. The sequences(An), (Bn) and (Cn) both con-
verge strongly to the same positive operatorALH(A,B,C), called the arithmetic-logarithmic-
harmonic operator mean, which satisfies

H(A,B,C) ≤ ALH(A,B,C) ≤ A(A,B,C).

Definition 5.2. ALH(f, g, h) defined by Theorem 5.5 (resp.ALH(A,B,C) defined by Corol-
lary 5.6) will be called the arithmetic-logarithmic-harmonic functional mean off, g andh (resp.
operator mean ofA,B andC).

As in Remark 1, Theorem 5.5 (and analogously Corollary 5.6) can be summarized by saying
that there exists a convex functionalF such that

lim
n↑+∞

T n(f, g, h) = (F,F,F),

where
T (f, g, h) = (A(f, g, h),L(f, g, h),H(f, g, h)) .
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