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ABSTRACT. The hybrid proximal point algorithm introduced by Solodov and Svaiter allowing
significant relaxation of the tolerance requirements imposed on the solution of proximal sub-
problems will be combined with the inertial method introduced by Alvarez and Attouch which
incorporates second order information to achieve faster convergence. The weak convergence of
the resulting method will be investigated for finding zeroes of a maximal monotone operator in
a Hilbert space.
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1. I NTRODUCTION AND PRELIMINARIES

The theory of maximal monotone operators has emerged as an effective and powerful tool
for studying a wide class of unrelated problems arising in various branches of social, physi-
cal, engineering, pure and applied sciences in unified and general framework. In recent years,
much attention has been given to develop efficient and implementable numerical methods in-
cluding the projection method and its variant forms, auxiliary problem principle, proximal-point
algorithm and descent framework for solving variational inequalities and related optimization
problems. It is well known that the projection method and its variant forms cannot be used to
suggest and analyze iterative methods for solving variational inequalities due to the presence of
the nonlinear term. This fact motivated the development of another technique which involves
the use of the resolvent operator associated with maximal monotone operators, the origin of
which can be traced back to Martinet [4] in the context of convex minimization and Rockafellar
[8] in the general setting of maximal monotone operators. The resulting method, namely the
proximal point algorithm has been extended and generalized in different directions by using
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2 A. MOUDAFI

novel and innovative techniques and ideas, both for their own sake and for their applications
relying on the Bregman distance or based on the variable metric approach.

To begin with let us recall the following concepts which are of common use in the context
of convex and nonlinear analysis, see for example Brézis [3]. Throughout,H is a real Hilbert
space,〈·, ·〉 denotes the associated scalar product and‖ · ‖ stands for the corresponding norm.
An operator is said to be monotone if

〈u− v, x− y〉 ≥ 0 whenever u ∈ A(x), v ∈ A(y).

It is said to be maximal monotone if, in addition, the graph,{(x, y) ∈ H ×H : y ∈ A(x)}, is
not properly contained in the graph of any other monotone operator. It is well-known that for
eachx ∈ H andλ > 0 there is a uniquez ∈ H such thatx ∈ (I + λA)z. The single-valued
operatorJA

λ := (I + λA)−1 is called the resolvent ofA of parameterλ. It is a nonexpansive
mapping which is everywhere defined and satisfies:z = JA

λ z, if and only if,0 ∈ Az.
In this paper we will focus our attention on the classical problem of finding a zero a maximal

monotone operatorsA on a real Hilbert spaceH
(1.1) find x ∈ H such that A(x) 3 0.

One of the fondamental approaches to solving (1.1) is the proximal method proposed by Rock-
afellar [8]. Specifically, havingxn ∈ H a current approximation to the solution of (1.1), the
proximal method generated the next iterate by solving the proximal subproblem

(1.2) 0 ∈ A(x) + µn(x− xn),

whereµn > 0 is a regularization parameter.
Because solving (1.2) exactly can be as difficult as solving the original problem itself, it is of

practical relevance to solve the subproblems approximately, that is findxn+1 ∈ H such that

(1.3) 0 = vn+1 + µn(xn+1 − xn) + εn, vn+1 ∈ A(xn+1),

whereεn ∈ H is an error associated with inexact solution of subproblem (1.2).
In many applications proximal point methods in the classical form are not very efficient.

Developments aimed at speeding up the convergence of proximal methods focus, among other
approaches, on the ways of incorporating second order information to achieve faster conver-
gence. To this end, Alvarez and Attouch proposed an inertial method obtained by discretization
of a second-order (in time) dissipative dynamical system. Also, it is worth developing new algo-
rithms which admit less stringent requirements on solving the proximal subproblems. Solodov
and Zvaiter followed suit and showed that the tolerance requirements for solving the subprob-
lems can be significantly relaxed if the solving of each subproblem is followed by a projection
onto a certain hyperplane which separates the current iterate from the solution set of the prob-
lem.

To take advantage of the two approaches, we propose a method obtained by coupling the two
previous algorithms.

Specifically, we introduce the following method.

Algorithm 1.1. Choose anyx0, x1 ∈ H andσ ∈ [0, 1[. Havingxn, chooseµn > 0 and

(1.4) findyn ∈ H such that 0 = vn + µn(yn − zn) + εn, vn ∈ A(yn),

where

(1.5) zn := xn + αn(xn − xn−1) and ‖εn‖ ≤ σ max{‖vn‖, µn‖yn − zn‖}.
Stop ifvn = 0 or yn = zn. Otherwise, let

(1.6) xn+1 = zn −
〈vn, zn − yn〉

‖vn‖2
vn.
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Note that the last equation amounts to

xn+1 = projHn(zn),

where

(1.7) Hn := {z ∈ H, 〈vn, z − yn〉 = 0}.
Throughout we assume that the solution set of the problem (1.1) is nonempty.

2. CONVERGENCE ANALYSIS

To begin with, let us state the following lemma which will be needed in the proof of the main
convergence result.

Lemma 2.1. ([9, Lemma 2.1]). Letx, y, v, x̄ be any elements ofH such that

〈v, x− y〉 > 0 and 〈v, x̄− y〉 ≤ 0.

Let z = projH(x), where
H := {s ∈ H, 〈v, s− y〉 = 0}.

Then

‖x− x̄‖2 ≤ ‖x− x̄‖2 −
(
〈v, x− y〉
‖v‖

)2

.

We are now ready to prove our main convergence result.

Theorem 2.2.Let{xn} be any sequence generated by our algorithm, whereA : H → P(H) is
a maximal monotone operator, and the parametersαn, µn satisfy

(1) ∃µ̄ < +∞ such thatµn ≤ µ̄.
(2) ∃α ∈ [0, 1[ such that∀k ∈ N∗ 0 ≤ αk ≤ α.

If the following condition holds

(2.1)
∞∑

n=1

αn‖xn−1 − xn‖2 < +∞,

then, there exists̄x ∈ S := A−1(0) such that the sequence{vn} strongly converges to zero and
the sequence{xn} weakly converges tōx.

Proof. Suppose that the algorithm terminates at some iterationn. It is easy to check thatvn = 0
in other wordsyn ∈ S. From now on, we assume that an infinite sequence of iterates is gen-
erated. It is also easy to see, using the monotonicity ofA and the Cauchy-Schwarz inequality,
that the hyperplaneHn, given by (1.7), strictly seperatesxn from any solution̄x ∈ S. We are
now in a position to apply Lemma 2.1, which gives

(2.2) ‖xn+1 − x̄‖2 ≤ ‖zn − x̄‖2 − 〈vn, zn − yn〉2

‖vn‖2
.

Settingϕn = 1
2
‖xn − x̄‖2 and taking in account the fact that

1

2
‖zn − x̄‖2 =

1

2
‖xn − x̄‖2 + αn〈xn − x̄, xn − xn−1〉+

α2
n

2
‖xn − xn−1‖2,

and that

〈xn − x̄, xn − xn−1〉 = ϕn − ϕn−1 +
1

2
‖xn − xn−1‖2,

we derive

ϕn+1 − ϕn ≤ αn(ϕn − ϕn−1) +
αn + α2

n

2
‖xn − xn−1‖2 − 1

2

〈vn, zn − yn〉2

‖vn‖2
.
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On the other hand, using the same arguments as in the proof of Theorem 2.2 ([9]), we obtain
that

(2.3)
〈vn, zn − yn〉

‖vn‖
≥ (1− σ)2

(1 + σ)4µ2
n

‖vn‖2.

Hence, from (2.2) it follows that

ϕn+1 − ϕn ≤ αn(ϕn − ϕn−1) +
αn + α2

n

2
‖xn − xn−1‖2 − 1

2
· (1− σ)2

(1 + σ)4µ2
n

‖vn‖2,

from which we infer that

(2.4) ϕn+1 − ϕn ≤ αn(ϕn − ϕn−1) + αn‖xn − xn−1‖2 − 1

2
· (1− σ)2

(1 + σ)4µ̄2
‖vn‖2.

Settingθn := ϕn − ϕn−1, δn := αn‖xn − xn−1‖2 and[t]+ := max(t, 0), we obtain

θn+1 ≤ αnθn + δn ≤ αn[θn]+ + δn,

whereα ∈ [0, 1[.
The rest of the proof follows that given in [1] and is presented here for completeness and to

convey the idea in [1]. The latter inequality yields

[θn+1]+ ≤ αn[θ1]+ +
n−1∑
i=0

αiδn−i,

and therefore
∞∑

n=1

[θn+1] ≤
1

1− α

(
[θ1]+ +

+∞∑
n=1

δn

)
,

which is finite thanks to the hypothesis of the theorem. Consider the sequence defined by
tn := ϕn −

∑n
i=1[θi]+. Sinceϕn ≥ 0 and

∑n
i=1[θi]+ < +∞, it follows that{tn} is bounded

from below. But

tn+1 = ϕn+1 − [θn+1]+ −
n∑

i=1

[θi]+ ≤ ϕn+1 − ϕn+1 + ϕn −
n∑

i=1

[θi]+ = tn,

so that{tn} is nonincreasing. We thus deduce that{tn} is convergent and so is{ϕn}. On the
other hand, from (2.4), we obtain the following estimate

1

2

(1− σ)2

(1 + σ)4µ̄2
‖vn‖2 ≤ ϕn − ϕn+1 + α[θn]+ + δn.

Passing to the limit in the last inequality and taking into account that{ϕn} converges,[θn]+
andδn go to zero asn tends to+∞, we obtain that the sequence{vn} strongly converges to0.
Since, by (1.4),

µ̄−1‖vn‖ ≥ ‖zn − yn‖,
we also have that the sequence{zn − yn} strongly converges to0.

Now letx∗ be a weak cluster point of{xn}. There exists a subsequence{xν}, which weakly
converges tox∗. According to the fact that

lim
ν→+∞

‖zν − yν‖ = 0 with zν = xν + αν(xν − xν−1)

and in the light of assumption (2.1), it is clear that the sequences{zν} and{yν} also weakly
converge to the weak cluster pointx∗. By the monotonicity ofA, we can write

∀z ∈ H ∀w ∈ A(z) 〈z − yν , w − vν〉 ≥ 0,
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Passing to the limit, asν → +∞, we obtain

〈z − x∗, w〉 ≥ 0,

this being true for anyw ∈ A(z). From the maximal monotonicity ofA, it follows that0 ∈
A(x∗), that isx∗ ∈ S. The desired result follows by applying the well-known Opial Lemma
[7]. �

3. CONCLUSION

In this paper we propose a new proximal algorithm obtained by coupling the hybrid proximal
method with the inertial proximal scheme. The principal advantage of this algorithm is that it al-
lows a more constructive error tolerance criterion in solving the inertial proximal subproblems.
Furthermore, its second-order nature may be exploited in order to accelerate the convergence. It
is worth mentioning that ifσ = 0, the proposed algorithm reduces to the classical exact inertial
proximal point method introduced in [2]. Indeed,σ = 0 implies thatεn = 0, and consequently
xn+1 = yn. In this case, the presented analysis provides an alternative proof of the convergence
of the exact inertial proximal method that permits an interesting geometric interpretation.
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