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ABSTRACT. In this paper we obtain a generalization of Ozaki-Nunokawa’s univalence criterion
using the method of Loewner chains.
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1. INTRODUCTION

Let A be the class of analytic functiorfsdefined in the unit disk/ = {z € C: |z| < 1}, of
the form

(1.1) fR)=z+a*+---, z€U.
In [1] Ozaki and Nunokawa showed thatfifc A and
22 f'(2) ’ 2
1.2 — 1| < |z, forallzeU,
(1.2) ) 2]
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then the functionf is univalent inU. In this paper we use the method of Loewner chains to
establish a generalization of Ozaki-Nunokawa’s univalence criterion.

2. LOEWNER CHAINS AND UNIVALENCE CRITERIA

In order to prove our main result we need a brief summary of Ch. Pommerenke’s method of
constructing univalence criteria. A family of univalent functions

L(,t): U —C, t>0

is a Loewner chain, if.(-, s) is subordinate td.(-, ¢) for all 0 < s < ¢. Recall that a function
f : U — Cis said to be subordinate to a functipn U — C (in symbolsf < g) if there
exists a functionv : U — U such thatf(z) = g(w(z)) for all z € U. We also recall the
following known result (see [4, pp. 159-173)):

Theorem 2.1.LetL(z,t) = a;(t)z+. .. be an analytic functionof € U, = {z € C : |z| < r}
forall ¢ > 0. Suppose that:

i) L(z,t) is alocally absolutely continuous functionflocally uniform with respect to
ze U,
ii) ay(t) is a complex-valued continuous function[6noo) such that

ar(t) #0, tlim lai(t)| = o0

{ L(a t) }
aq (t) >0
is a normal family of functions iy, ;

i) there exists an analytic functign: U x [0, c0) — C satisfying
Rep(z,t) >0, forall (z,t) € U x [0,00)

and

and OL(z,t) OL(z,t)
z,t z,t
Y — t Y
aZ p (Z7 ) at )
Then for allt > 0, the functionZ(-,¢) has an analytic and univalent extension to the whole
unit diskU.

We can now prove the main result, as follows:

z foranyz € U,, a.e.t > 0.

Theorem 2.2.Let f € A and letm be a positive real number such that the inequalities

22f'(2) m—1 m+1
. (e -1)- "<

and

(2.2)

21 (2) m—1 mA1
G A B

are satisfied for alk € U. Then the functiorf is univalent inU.

Proof. Let a andb be any positive real numbers chosen such that g We define:
e %z
(€ —e ) Z](ce(*‘”z)g

—at\_p—at, )
1 — (ebt —e—at) PR AL e a4 (ei)tz)eQ -

for ¢ > 0. Since the functiorf(e~%'z) is analytic inU, it is easy to see that for ea¢h> 0
there exists am € (0, 1] arbitrarily fixed, the functior’.(z, ¢) is analytic in a neighborhood,

L(z,t) = f(e7"2) +
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of 2 =0.If L(z,t) = a1(t)z +- - - is the power series expansionlofz, t) in the neighborhood
U,, it can be checked that we haue(t) = e and therefore:,(t) # 0 for allt > 0 and

lim; . |a1(t)] = oco. Since L(z(f) is the summation betweenand a holomorphic function,

it follows that{ (tt))} is a normal family of functions i/,.. By elementary computations

it can be shown easny tha(?[M can be expressed as the summation betwe&n and a

holomorphic function. From thls representatloniaégz—t) we obtain the absolute continuity

requirement i) of Theorein 2.1. Lgtz, t) be the function defined by
OL(z,t OL(z,t
) = 220 / OED

0z ot

In order to prove that the functiom z, ¢) is analytic and has a positive real partlin we will
show that the function

(2.3) m(z,t) =

is analytic inU and
(2.4) Im(z,t)] <1
forall z € U andt > 0. We have

(1) = (1+a)F(z,t)+1—b
ST TR D + 140

where

F 2t :e(aer)t |: efat 2f/( ) . 11 .
(2.7) () ey
The condition[(2.}4) is therefore equivalent to
b—a o +0b
2a a

Fort = 0, the inequality[(2.6) becomes

22f'(2) m—1] m+1
(G R b

and observing thde 2| < e < 1forallz € U = {z € C: |z| < 1} andt > 0, we obtain
thatG(z, t) is an analytic function i/, Using the Maximum Modulus Principle it follows that
for eacht > 0 arbitrarily fixed there exist8 € R such that:

G(z,t)] < max|G(z, )] = |G (e, 1)

(2.5) F(z,t) — , forall z € U andt > 0.

wherem = 9 Defining:
a

)

forall z € U. Let u = e "¢, We havelu| = e, e~ (@)t — (g=at)ym+1 — ||™ ! and

therefore
1 <u2f’(u)_1>_m—1’
lu™ T\ f2(u) 2 |
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From the hypothesi$ (4.2) we obtain therefore:

(2.6) G, 1) < m; L

From (2.1) and[(2]6) it follows that the inequalify (2.5) holds true forafl U and allt > 0.
Since all the conditions of Theordm R.1 are satisfied, we obtain that the fugtion has an
analytic and univalent extension to the whole unit diskfor all t > 0. Fort = 0 we have
L(z,0) = f(=), for all z € U, and therefore the functiofi is univalent inU, concluding the
proof of the theorem. O

It is easy to check that inequality (2.2) implies the inequality](2.1) and thus we obtain the
following corollary :

Corollary 2.3. Let f € A and letm be a positive real number such that
Z2f/<Z) ~1) = m— 1 |Z’m+1
f*(z) 2

for all z € U. Then the functiotf is univalent inU.

m+ 1 ‘Z|m+1

(2.7) <

Remark 2.4. We conclude with the following remarks:

i) In the particular case: = 1, condition [2.7) of the above corollary becomes condition
(L.2). Therefore, we obtain Ozaki-Nunokawa’s univalence criterion as a particular case
(m = 1) of the above corollary, which generalizes it to all positive real numbers 0.

ii) The function f(z) = % satisfies the conditio.?) of the above corollary for every
z
positive real numbem > 0.
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