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Abstract

We show that the expectation of a class of functions of the sum of weighted
identically independent distributed positive random variables is Schur-concave
with respect to the weights. Furthermore, we optimise the expectation by
choosing extra-weights with a sum constraint. We show that under this opti-
misation the expectation becomes Schur-convex with respect to the weights.
Finally, we explain the connection to the ergodic capacity of some multiple-
antenna wireless communication systems with and without adaptive power al-
location.

2000 Mathematics Subject Classification: Primary 60E15, 60G50; Secondary
94A05.
Key words: Schur-convex function, Optimisation, Sum of weighted random vari-

ables.
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1. Introduction
The Schur-convex function was introduced by I. Schur in 1923 [11] and has
many important applications. Information theory [14] is one active research
area in which inequalities were extensively used. [2] was the beginning of in-
formation theory. One central value of interest is the channel capacity. Recently,
communication systems which transmit vectors instead of scalars have gained
attention. For the analysis of the capacity of those systems and for analyzing
the impact of correlation on the performance we use Majorization theory. The
connection to information theory will be further outlined in Section6.

The distribution of weighted sums of independent random variables was
studied in the literature. LetX1, . . . , Xn be independent and identically dis-
tributed (iid) random variables and let

(1.1) F (c1, . . . , cn; t) = Pr(c1X1 + · · ·+ cnXn ≤ t).

By a result of Proschan [13], if the common density ofX1, . . . , Xn is sym-
metric about zero and log-concave, then the functionF is Schur-concave in
(c1, . . . , cn). For nonsymmetric densities, analogous results are known only in
several particular cases of Gamma distributions [4]. In [12], it was shown for
two (n = 2) iid standard exponential random variables, thatF is Schur-convex
on t ≤ (c1 + c2) and Schur-concave ont ≥ 3

2
(c1 + c2). Extensions and appli-

cations of the results in [12] are given in [9]. For discrete distributions, there
are Schur-convexity results for Bernoulli random variables in [8]. Instead of the
distribution in (1.1), we study the expectation of the weighted sum of random
variables.
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We define an arbitrary functionf : R → R with f(x) > 0 for all x > 0.
Now, consider the following expectation

(1.2) G(µ) = G(µ1, . . . , µn) = E

[
f

(
n∑

k=1

µkwk)

)]
with independent identically distributed positive1 random variablesw1, . . . , wn

according to some probability density functionp(w) : p(x) = 0 ∀x < 0 and
positive numbersµ1, . . . , µn which are in decreasing order, i.e.µ1 ≥ µ2 ≥
· · · ≥ µn ≥ 0 with the sum constraint

n∑
k=1

µk = 1.

The functionG(µ) with the parametersf(x) = log(1 + ρx) for ρ > 0 and with
exponentially distributedw1, . . . , wn is very important for the analysis of some
wireless communication networks. The performance of some wireless systems
depends on the parametersµ1, . . . , µn. Hence, we are interested in the impact
of µ1, . . . , µn on the functionG(µ1, . . . , µn). Because of the sum constraint
in (1), and in order to compare different parameter setsµ1 = [µ1

1, . . . , µ
1
n] and

µ2 = [µ2
1, . . . , µ

2
n], we use the theory of majorization. Majorization induces a

partial order on the vectorsµ1 andµ2 that have the samel1 norm.
Our first result is that the functionG(µ) is Schur-concave with respect to the

parameter vectorµ = [µ1, . . . , µn], i.e. if µ1 majorizesµ2 thenG(µ1) is smaller
than or equal toG(µ2).

1A random variable is obviously positive, ifPr(wl < 0) = 0. Those variables are called
positive throughout the paper.
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In order to improve the performance of wireless systems, adaptive power
control is applied. This leads mathematically to the following objective function

H(p, µ) = H(p1, . . . , pn; µ1, . . . , µn) = E

[
f

(
n∑

k=1

pkµkwk

)]
for fixed parametersµ1, . . . , µn and a sum constraint

∑n
k=1 pk = P . We solve

the following optimisation problem

(1.3) I(µ, P ) = I(µ1, . . . , µn, P ) = max H(p1, . . . , pn; µ1, . . . , µn)

s.t.
n∑

k=1

pk = P and pk ≥ 0 1 ≤ k ≤ n

for fixed µ1, . . . , µn. The optimisation in (1.3) is a convex programming prob-
lem which can be completely characterised using the Karush-Kuhn-Tucker (KKT)
conditions.

Using the optimality conditions from (1.3), we characterise the impact of
the parametersµ1, . . . , µn on the functionI(µ, P ). Interestingly, the function
I(µ, P ) is a Schur-convex function with respect to the parameter vectorµ =
[µ1, . . . , µn], i.e. if µ1 majorizesµ2 thenI(µ1, P ) is larger thanI(µ2, P ) for
arbitrary sum constraintP .

The remainder of this paper is organised as follows. In the next, Section2,
we introduce the notation and give definitions and formally state the problems.
Next, in Section3 we prove thatG(µ) is Schur-concave. The optimal solution of
a convex programming problem in Section4 is then used to show thatI(µ, P )
is Schur-convex for allP > 0. The connection and applications in wireless
communications are pointed out in Section6.
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2. Basic Results, Definitions and Problem
Statement

First, we give the necessary definitions which will be used throughout the paper.

Definition 2.1. For two vectorsx,y ∈ Rn one says that the vectorx majorizes
the vectory and writes

x � y if
m∑

k=1

xk ≥
m∑

k=1

yk , m = 1, . . . , n− 1. and
n∑

k=1

xk =
n∑

k=1

yk.

The next definition describes a functionΦ which is applied to the vectorsx
andy with x � y:

Definition 2.2. A real-valued functionΦ defined onA ⊂ Rn is said to be
Schur-convex onA if

x � y on A ⇒ Φ(x) ≥ Φ(y).

Similarly,Φ is said to be Schur-concave onA if

x � y on A ⇒ Φ(x) ≤ Φ(y).

Remark 2.1. If the functionΦ(x) onA is Schur-convex, the function−Φ(x) is
Schur-concave onA.

Example 2.1. Suppose thatx,y ∈ Rn
+ are positive real numbers and the func-

tion Φ is defined as the sum of the quadratic components of the vectors, i.e.
Φ2(x) =

∑n
k=1 |xk|2. Then, it is easy to show that the functionΦ2 is Schur-

concave onRn
+, i.e. if x � y ⇒ Φ2(x) ≤ Φ2(y).
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The definition of Schur-convexity and Schur-concavity can be extended if
another functionΨ : R → R is applied toΦ(x). Assume thatΦ is Schur-
concave, if the functionΨ is monotonic increasing then the expressionΨ(Φ(x))
is Schur-concave, too. If we take for example the functionΨ(n) = log(n) for
n ∈ R+ and the functionΦp from the example above, we can state that the
composition of the two functionsΨ(Φp(x)) is Schur-concave onRn

+. This result
can be generalised for all possible compositions of monotonic increasing as well
as decreasing functions, and Schur-convex as well as Schur-concave functions.
For further reading see [11].

We will need the following lemma (see [11, Theorem 3.A.4]) which is some-
times called Schur’s condition. It provides an approach for testing whether some
vector valued function is Schur-convex or not.

Lemma 2.1.LetI ⊂ R be an open interval and letf : In → R be continuously
differentiable. Necessary and sufficient conditions forf to be Schur-convex on
In are

f is symmetric on In

and

(xi − xj)

(
∂f

∂xi

− ∂f

∂xj

)
≥ 0 for all 1 ≤ i, j ≤ n.

Sincef(x) is symmetric, Schur’s condition can be reduced as [11, p. 57]

(2.1) (x1 − x2)

(
∂f

∂x1

− ∂f

∂x2

)
≥ 0.

From Lemma2.1, it follows thatf(x) is a Schur-concave function onIn if f(x)
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is symmetric and

(2.2) (x1 − x2)

(
∂f

∂x1

− ∂f

∂x2

)
≤ 0.

Finally, we propose the concrete problem statements: At first, we are inter-
ested in the impact of the vectorµ on the functionG(µ).

This problem is solved in Section3.

Problem 1. Is the functionG(µ1, . . . , µn) in (1.2) a Schur-concave function,
i.e. withµ1 = [µ1

1, . . . , µ
1
n] andµ2 = [µ2

1, . . . , µ
2
n] it holds

µ1 � µ2 =⇒ G(µ1) ≤ G(µ2)?

Next, we need to solve the following optimisation problem in order to char-
acterise the impact of the vectorµ on the functionI(µ, P ).

We solve this problem in Section4.

Problem 2. Solve the following optimisation problem

(2.3) I(µ1, . . . , µn, P ) = max H(p1, . . . , pn; µ1, . . . , µn)

s.t.
n∑

k=1

pk = P and pk ≥ 0 1 ≤ k ≤ n

for fixedµ1, . . . , µn.

Finally, we are interested in whether the function in (2.3) is Schur-convex or
Schur-concave with respect to the parametersµ1, . . . , µn. This leads to the last
Problem statement 3.

This problem is solved in Section5.
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Problem 3. Is the functionI(µ, P ) in (2.3) a Schur-convex function, i.e. for all
P > 0

µ1 � µ2 =⇒ I(µ1, P ) ≤ I(µ2, P )?
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3. Schur-concavity ofG(µ)
In order to solve Problem1, we consider first the functionf(x) = log(1 + x).
This function naturally arises in the information theoretic analysis of communi-
cation systems [14]. That followed, we generalise the statement of the theorem
for all concave functionsf(x). Therefore, Theorem3.1can be seen as a corol-
lary of Theorem3.2.

Theorem 3.1.The function

(3.1) C1(µ) = C1(µ1, . . . , µn) = E

[
log

(
1 +

n∑
k=1

µkwk

)]
with iid positive random variablesw1, . . . , wn is a Schur-concave function with
respect to the parametersµ1, . . . , µn.

Proof. We will show that Schur’s condition (2.2) is fulfilled by the function
C1(µ) with µ = [µ1, . . . , µn]. The first derivative ofC1(µ) with respect toµ1

andµ2 is given by

α1 =
∂C1

∂µ1

= E
[

w1

1 +
∑n

k=1 µkwk

]
(3.2)

α2 =
∂C1

∂µ2

= E
[

w2

1 +
∑n

k=1 µkwk

]
.(3.3)

Sinceµ1 ≥ µ2 by definition, we have to show that

(3.4) E
[

w1 − w2

z + µ1w1 + µ2w2

]
≤ 0
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with z = 1 +
∑n

k=3 µkwk. The expectation operator in (3.4) can be written as a
n-fold integral over the probability density functionsp(w1), . . . , p(wn). In the
following, we show that for allz ≥ 0

(3.5)
∫ ∞

0

∫ ∞

0

g(w1, w2, z)p(w1)p(w2)dw1dw2 ≤ 0

with g(w1, w2, z) = w1−w2

z+µ1w1+µ2w2
. Rewrite the double integral in (3.5) as

(3.6)
∫ ∞

0

∫ ∞

0

g(w1, w2, z)p(w1)p(w2)dw1dw2

=

∫ ∞

w1=0

∫ w1

w2=0

(g(w1, w2, z) + g(w2, w1, z)) p(w1)p(w2)dw1dw2

because the random variablesw1 andw2 are independent identically distributed.
In (3.6), we split the area of integration into the area in whichw1 > w2 andw2 ≥
w1 and used the fact, thatg(w1, w2, z) for w1 > w2 is the same asg(w2, w1, z)
for w2 ≥ w1. Now, the expressiong(w1, w2, z) + g(w2, w1, z) can be written
for all z ≥ 0 as

g(w1, w2, z) + g(w2, w1, z) =
(w1 − w2)(µ1w2 + µ2w1 − µ1w1 − µ2w2)

(z + µ1w1 + µ2w2)(z + µ1w2 + µ2w1)

=
(w1 − w2)

2(µ2 − µ1)

(z + µ1w1 + µ2w2)(z + µ1w2 + µ2w1)
.(3.7)

From assumptionµ2 ≤ µ1 and (3.7) follows (3.5) and (3.4).
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Remark 3.1. Interestingly, Theorem3.1 holds for all probability density func-
tions which fulfillp(x) = 0 for almost everyx < 0. The main precondition
is that the random variablesw1 and w2 are independent and identically dis-
tributed. This allows the representation in (3.6).

Theorem3.1answers Problem1 only for a specific choice of functionf(x).
We can generalise the statement of Theorem3.1in the following way. However,
the most important, in practice is the case in whichf(x) = log(1 + x).

Theorem 3.2. The functionG(µ) as defined in (1.2) is Schur-concave with
respect toµ if the random variablesw1, . . . , wn are positive identically inde-
pendent distributed and if the inner functionf(x) is monotonic increasing and
concave.

Proof. Let us define the difference of the first derivatives off(
∑n

k=1 µkwk) with
respect toµ1 andµ2 as

∆(w1, w2) =

(
∂f(
∑n

k=1 µkwk)

∂µ1

− ∂f(
∑n

k=1 µkwk)

∂µ2

)
.

Since the functionf is monotonic increasing and concave,f ′′(x) ≤ 0 andf ′(x)
is monotonic decreasing, i.e.

f ′(x1) ≤ f ′(x2) for all x1 ≥ x2

Note, thatw1 ≥ w2 andµ1 ≥ µ2 andµ1w2 + µ2w2 ≥ µ1w2 + µ2w1. Therefore,
it holds

(w1−w2)

(
f ′(µ1w1 + µ2w2 +

n∑
k=3

µkwk)− f ′(µ1w2 + µ2w1 +
n∑

k=3

µkwk)

)
≤ 0
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Using equation (3.6), it follows

(3.8)
∫ ∞

w1=0

∫ w1

w2=0

(∆(w1, w2)−∆(w2, w1)) p(w1)p(w2)dw1dw2 ≤ 0

because the densities are positive. This verifies Schur’s condition for (1.2).

The condition in Theorem3.2can be easily checked. Consider for example
the function

(3.9) k(x) =
x

1 + x
.

It is easily verified that the condition in Theorem3.2 is fulfilled by (3.9). By
application of Theorem3.2it has been shown that the functionK(µ) defined as

K(µ) = E
[ ∑n

k=1 µkwk

1 +
∑n

k=1 µkwk

]
is Schur-concave with respect toµ1, . . . , µn.
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4. Optimality Conditions for Convex Programming
Problem max H(µ,p)

Next, we consider the optimisation problem in (2.3) from Problem2. Here,
we restrict our attention to the casef(x) = log(1 + x). The motivation for
this section is to find a characterisation of the optimalp which can be used to
characterise the impact ofµ under the optimum strategyp on H(µ,p). The
results of this section, mainly the KKT optimality conditions are used in the
next section to show thatH(µ,p) with the optimalp∗(µ) is Schur-convex.

The objective function is given by

(4.1) C2(p, µ) = E

[
log

(
1 +

n∑
k=1

pkµkwk

)]

and the optimisation problem reads

(4.2) p∗ = arg max C2(p, µ) s.t.
n∑

k=1

pk = 1 and pk ≥ 0 1 ≤ k ≤ n.

The optimisation problem in (4.2) is a convex optimisation problem. Therefore,
the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient for the
optimality of somep∗ [5]. The Lagrangian for the optimisation problem in (4.2)
is given by

(4.3) L(p, λ1, . . . , λn, ν) = C2(p, µ) +
n∑

k=1

λkpk + ν

(
P −

n∑
k=1

pk

)
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with the Lagrangian multiplierν for the sum constraint and the Lagrangian
multipliersλ1, . . . , λn for the positiveness ofp1, . . . , pn. The first derivative of
(4.3) with respect topl is given by

(4.4)
dL
dpl

= E
[

µlwl

1 +
∑n

k=1 µkpkwk

]
+ λl − ν.

The KKT conditions are given by

E
[

µlwl

1 +
∑n

k=1 µkpkwk

]
= ν − λl 1 ≤ l ≤ n,

ν ≥ 0,

λk ≥ 0 1 ≤ l ≤ n,

pk ≥ 0 1 ≤ l ≤ n,

P −
n∑

k=1

pk = 1.(4.5)

We define the following coefficients

(4.6) αk(p) =

∫ ∞

0

e−t

nT∏
l=1,l 6=k

1

1 + tplµl

· µk

(1 + tµkpk)2
dt.

These coefficients in (4.6) naturally arise in the first derivative of the Lagrangian
of (4.2) and directly correspond to the first KKT condition in (4.5) where we
have used the fact that

E
[

wl

1 +
∑n

k=1 pkµkwk

]
= E

[
wl

∫ ∞

0

e−t(1+
∑n

k=1 pkµkwk)dt

]
.
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Furthermore, we define the set of indices for whichpi > 0, i.e.

(4.7) I(p) = {k ∈ [1, . . . , nT ] : pk > 0}.

We have the following characterisation of the optimum pointp̂.

Theorem 4.1.A necessary and sufficient condition for the optimality ofp̂ is

{k1, k2 ∈ I(p̂) =⇒ αk1 = αk2 and

k 6∈ I(p̂) =⇒ αk ≤ max
l∈I(p̂)

αl}.(4.8)

This means that all indicesl which obtainpl greater than zero have the same
αl = maxl∈[1,...,nT ]. Furthermore, all otherαi are less than or equal toαl.

Proof. We name the optimal point̂p, i.e. from (4.2)

p̂ = arg max
||p||≤P,pi≥0

C(p, ρ, µ).

Let theµ1, . . . , µnT
be fixed. We define the parametrised point

p(τ) = (1− τ)p̂ + τp

with arbitraryp : ||p|| ≤ P, pi ≥ 0. The objective function is given by

(4.9) C(τ) = E log

(
1 + ρ

nT∑
l=1

p̂kµkwk + ρτ

nT∑
l=1

(pk − p̂k)µkwk

)
.
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The first derivative of (4.9) at the pointτ = 0 is given by

dC(τ)

dτ

∣∣∣∣
τ=0

=

nT∑
k=1

(pk − p̂k)αk(p̂)

with αk(p̂) defined in (4.6). It is easily shown that the second derivative ofC(τ)
is always smaller than zero for all0 ≤ τ ≤ 1. Hence, it suffices to show that
the first derivative ofC(τ) at the pointτ = 0 is less than or equal to zero, i.e.

(4.10)
nT∑
k=1

(pk − p̂k)αk(p̂) ≤ 0.

We split the proof into two parts. In the first part, we will show that the condition
in (4.8) is sufficient. We assume that (4.8) is fulfilled. We can rewrite the first
derivative ofC(τ) at the pointτ = 0 as

Q =

nT∑
k=1

(p̂k − pk)αk(p̂k)

=

nT∑
k=1

p̂kαk(p̂)−
n∑

k=1

pkαk(p̂)

= max
k∈[1,...,nT ]

αk(p̂)
∑

l∈I(p̂)

p̂l −
nT∑
l=1

plαl(p̂).(4.11)

But we have that
nT∑
l=1

plαl(p̂) ≤
nT∑
l=1

pl max
k∈[1,...,nT ]

αl(p̂).
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Therefore, it follows forQ in (4.11)

Q ≥ max
k∈[1,...,n]

αk(p̂)

∑
l∈I(p̂)

p̂l −
n∑

l=1

pl

 = 0,

i.e. (4.10) is satisfied.
In order to show that condition (4.8) is a necessary condition for the optimal-

ity of power allocation̂p, we study two cases and prove them by contradiction.

1. Assume (4.8) is not true. Then we have ak ∈ I(p̂) andk0 ∈ I(p̂) with the
following properties:

max
1≤k≤nT

αk(p̂) = αk0(p̂)

andαk(p̂) < αk0(p̂). We setp̃k0 = 1 andp̃i∈[1,...,nT ]k0 = 0. It follows that

nT∑
l=1

(p̂k − p̃k)αk(p̂) < 0

which is a contradiction.

2. Assume there is ak0 : αk0 > αk with k0 6∈ I(p̂) andk ∈ I(p̂), then set
p̃k0 = 1 andõl∈[1,...,nT ]k0 = 0. Then we have the contradiction

nT∑
k=1

(p̂k − p̃k)αk < 0.

This completes the proof of Theorem4.1.
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5. Schur-convexity ofI(µ, P )

We use the results from the previous section to derive the Schur-convexity of
the functionI(µ, P ) for all P > 0. The representation of theαk(p) in (4.6)
is necessary to show that the conditionpl

µl
≥ pl+1

µl+1
is fulfilled for all 1 ≤ l ≤

n − 1. This condition is stronger than majorization, i.e. it follows thatp � µ
[11, Proposition 5.B.1]. Note that

∑n
k=1 pk =

∑n
k=1 µk = 1. The result is

summarised in the following theorem.

Theorem 5.1. For all P > 0, the functionI(µ, P ) is a Schur-convex function
with respect to the parametersµ1, . . . , µn.

Proof. The proof is constructed in the following way: At first, we consider two
arbitrary parameter vectorsµ1 andµ2 which satisfyµ1 � µ2. Then we construct
all possible linear combinations ofµ1 andµ2, i.e. µ(θ) = θµ2 + (1 − θ)µ1.
Next, we study the parametrised functionI(µ(θ)) as a function of the linear
combination parameterθ. We show that the first derivative of the parametrised
capacity with respect toθ is less than or equal to zero for all0 ≤ θ ≤ 1. This
result holds for allµ1 andµ2. As a result, we have shown that the functionI(µ)
is Schur-convex with respect toµ.

With arbitraryµ1 andµ2 which satisfyµ1 � µ2, define the vector

µ(θ) = θµ2 + (1− θ)µ1(5.1)

for all 0 ≤ θ ≤ 1. The parameter vectorµ(θ) in (5.1) has the following proper-
ties which will be used throughout the proof.
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• The parametrisation in (5.1) is order preserving between the vectorsµ1

andµ2, i.e.

∀0 ≤ θ1 ≤ θ2 ≤ 1 : µ2 = µ(1) � µ(θ2) � µ(θ1) � µ(0) = µ1.

This directly follows from the definition of majorization. E.g. the first
inequality is obtained by

µ(θ2) = θ2µ
2 + (1− θ2)µ

1 ≥ θ2µ
2 + (1− θ2)µ

2 = µ2.

• The parametrisation in (5.1) is order preserving between the elements, i.e.
for ordered elements inµ1 andµ2, it follows that for the elements inµ(θ),
for all 0 ≤ θ ≤ 1,

∀1 ≤ l ≤ nT − 1 : µl(θ) ≥ µl+1(θ).

This directly follows from the definition in (5.1).

The optimum power allocation is given byp1(θ), . . . , pn(θ). The parametrised
objective functionH(µ(θ),p(θ)) as a function of the parameterθ is then given
by

H(θ) = E log

(
1 + ρ

n∑
k=1

µk(θ)pk(θ)wk

)

= E log

(
1 + ρ

n∑
k=1

(µ1
k + θ(µ2

k − µ1
k))pk(θ)wk

)
.(5.2)

http://jipam.vu.edu.au/
mailto:
mailto:boche@hhi.de
mailto:
mailto:
mailto:jorswieck@hhi.de
http://jipam.vu.edu.au/


On Schur-Convexity of
Expectation of Weighted Sum of

Random Variables with
Applications

Holger Boche and
Eduard A. Jorswieck

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 21 of 32

J. Ineq. Pure and Appl. Math. 5(2) Art. 46, 2004

http://jipam.vu.edu.au

The first derivative of (5.2) with respect toθ is given by

(5.3)
dH(θ)

dθ
= E

(∑n
k=1(µ

2
k − µ1

k)pk(θ)wk + dpk(θ)
dθ

(µ2
k + θ(µ1

k − µ2
k))

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
.

Let us consider the second term in (5.3) first. Define

φk(θ) = (µ2
k + θ(µ1

k − µ2
k)) ∀k = 1, . . . , n.

Then we have

(5.4)
n∑

k=1

dpk(θ)

dθ
E
(

φk(θ)wk

1 +
∑n

k=1 φk(θ)pk(θ)wk

)
=

n∑
k=1

dpk(θ)

dθ
αk(θ).

In order to show that (5.4) is equal to zero, we define the indexm for which
holds

(5.5)
dpk(θ)

dθ
6= 0 ∀1 ≤ k ≤ m and

dpk(θ)

dθ
= 0 k ≥ m + 1.

We split the sum in (5.4) in two parts, i.e.

(5.6)
m∑

k=1

dpk(θ)

dθ
αk(θ) +

n∑
k=m+1

dpk(θ)

dθ
αk(θ).

For all1 ≤ k ≤ m we have from (5.5) three cases:

• First case:pm(θ) > 0 and obviouslyp1(θ) > 0, ..., pm−1(θ) > 0. It
follows that

α1(θ) = α2(θ) = · · · = αm(θ)
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• Second case: There exists anε1 > 0 such thatpm(θ) = 0 andpm(θ+ε) > 0
for all 0 < ε ≤ ε1. Therefore, it holds

(5.7) α1(θ + ε) = · · · = αm(θ + ε).

• Third case: There exists anε1 > 0 such thatpm(θ) = 0 andpm(θ− ε) > 0
for all 0 < ε ≤ ε1. Therefore, it holds

(5.8) α1(θ − ε) = · · · = αm(θ − ε).

Next, we use the fact that iff andg are two continuous functions defined on
some closed intervalO, f, g : O → R. Then the set of pointst ∈ O for which
f(t) = g(t) is either empty or closed.

Assume the case in (5.7). The set of pointsθ for which αk(θ) = α1(θ) is
closed. Hence, it holds

(5.9) αk(θ) = lim
ε→0

αk(θ + ε) = lim
ε→0

α1(θ + ε) = α1(θ).

For the case in (5.8), it holds

αk(θ) = lim
ε→0

αk(θ − ε) = lim
ε→0

α1(θ − ε) = α1(θ).

The consequence from (5.9) and (5) is that all activek with pk > 0 at pointθ and
all k which occur or vanish at this pointθ fulfill α1(θ) = α2(θ) = · · · = αm(θ).
Therefore, the first addend in (5.6) is

m∑
k=1

dpk(θ)

dθ
= α1(θ)

m∑
k=1

dpk(θ)

dθ
= 0.
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The second addend in (5.6) is obviously equal to zero. We obtain for (5.3)

dH(θ)

dθ
= E

( ∑n
k=1(µ

2
k − µ1

k)pk(θ)wk

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
.

We are going to show that

(5.10)
n∑

k=1

(µ2
k − µ1

k)E
(

pk(θ)wk

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
≤ 0.

We define

ak = µ1
k − µ2

k

sl =
l∑

k=1

ak

sn = 0

s0 = 0.

Therefore, it holds thatsk ≥ 0 for all 1 ≤ k ≤ n. We can reformulate (5.10)
and obtain

(5.11)
n−1∑
l=1

sl(bl(θ)− bl+1(θ)) ≥ 0

with

bl(θ) = E
(

pl(θ)wl

1 +
∑n

k=1(µ
2
k + θ(µ1

k − µ2
k))pk(θ)wk

)
.
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The inequality in (5.11) is fulfilled if

bl(θ) ≥ bl+1(θ).

The termbl in (5) is related toαl from (4.8) by

bl(θ) =
pl(θ)

µl(θ)
αl(θ).

As a result, we obtain the sufficient condition for the monotony of the parametrised
functionH(θ)

(5.12)
pl(θ)

µl(θ)
≥ pl+1(θ)

µl+1(θ)
.

As mentioned above this is a stronger condition than that the vectorp majorizes
the vectorµ. From (5.12) it follows thatµ � p.

Finally, we show that the condition in (5.12) is always fulfilled by the op-
timum p. In the following, we omit the indexθ. The necessary and sufficient
condition for the optimalp is that for activepl > 0 andpl+1 > 0 it holds

αl − αl+1 = 0,

i.e.

(5.13)
∫ ∞

0

e−tf(t)
µl

1 + ρtµlpl

dt−
∫ ∞

0

e−tf(t)
µl+1

1 + ρtµl+1pl+1

dt = 0

with

f(t) =
n∏

k=1

1

1 + ρtµkpk
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and
gl(t) = (1 + ρtµlpl)

−1(1 + ρtµl+1pl+1)
−1.

From (5.13) it follows that∫ ∞

0

e−tf(t)gl(t) (µl − µl+1 − (ρtµl+1µl)(pl − pl+1)) dt = 0.

This gives ∫ ∞

0

e−tf(t)gl(t)

(
µl − µl+1

pl − pl+1

1

ρµlµl+1

− t

)
dt = 0

and

(5.14)
µl − µl+1

pl − pl+1

1

ρµlµl+1

∫ ∞

0

e−tf(t)gl(t)dt−
∫ ∞

0

e−tf(t)gl(t)tdt = 0.

Note the following facts about the functionsf(t) andgl(t)

gl(t) ≥ 0 ∀ 0 ≤ t ≤ ∞ f(t) ≥ 0 ∀ 0 ≤ t ≤ ∞
dgl(t)

dt
≤ 0 ∀ 0 ≤ t ≤ ∞ df(t)

dt
≤ 0 ∀ 0 ≤ t ≤ ∞.(5.15)

By partial integration we obtain the following inequality

(5.16)
∫ ∞

0

f(t)gl(t)(1− t)e−tdt

=
(
f(t)gl(t)te

−t
)∞

t=0
−
∫ ∞

0

d(f(t)gl(t))

dt
te−tdt ≥ 0.
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From (5.16) and the properties off(t) andgl(t) in (5.15) follows that∫ ∞

0

e−tf(t)gl(t)dt ≥
∫ ∞

0

te−tf(t)gl(t)dt.

Now we can lower bound the equality in (5.14) by

0 =
µl − µl+1

pl − pl+1

1

ρµlµl+1

∫ ∞

0

e−tf(t)gl(t)dt−
∫ ∞

0

e−tf(t)gl(t)tdt

≥ µl − µl+1

pl − pl+1

1

ρµlµl+1

− 1.(5.17)

From (5.17) it follows that

1 ≥ µl − µl+1

pl − pl+1

1

ρµlµl+1

and further on

(5.18) µl − µl+1 ≤ (pl − pl+1)ρµlµl+1.

From (5.18) we have

µl(1− ρµl+1pl) ≤ µl+1(1− ρµlpl+1)

and finally

(5.19) ρµl+1pl ≥ ρµlpl+1.

From (5.19) follows the inequality in (5.12). This result holds for allµ1 andµ2

with
∑n

k=1 µ1
k =

∑n
k=1 µ2

k = 1. As a result,I(µ) is a Schur-convex function of
µ. This completes the proof.
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6. Application and Connection to Wireless
Communication Theory

As mentioned in the introduction, the three problem statements have an ap-
plication in the analysis of the maximum amount of information which can
be transmitted over a wireless vector channel. Recently, the improvement of
the performance and capacity of wireless systems employing multiple transmit
and/or receive antennae was pointed out in [15, 6]. Three scenarios are practical
relevant: The case when the transmitter has no channel state information (CSI),
the case in which the transmitter knows the correlation (covariance feedback),
and the case where the transmitter has perfect CSI. These cases lead to three dif-
ferent equations for the average mutual information. Using the results from this
paper, we completely characterize the impact of correlation on the performance
of multiple antenna systems.

We say, that a channel is more correlated than another channel, if the vector
of ordered eigenvalues of the correlation matrix majorizes the other vector of
ordered eigenvalues. The average mutual information of a so called wireless
multiple-input single-output (MISO) system withnT transmit antennae and one
receive antenna is given by

(6.1) CnoCSI(µ1, . . . , µnT
, ρ) = E log2

(
1 + ρ

nT∑
k=1

µkwk

)

with signal to noise ratio (SNR)ρ and transmit antenna correlation matrixRT

which has the eigenvaluesµ1, . . . , µnT
and iid standard exponential random

variablesw1, . . . , wnT
. In this scenario it is assumed that the receiver has perfect
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channel state information (CSI) while the transmit antenna array has no CSI.
The transmission strategy that leads to the mutual information in (6.1) is Gaus-
sian codebook with equal power allocation, i.e. the transmit covariance matrix
S = ExxH , with transmit vectorsx that is complex standard normal distributed
with covariance matrixS, is the normalised identity matrix, i.e.S = 1

nT
I.

The ergodic capacity in (6.1) directly corresponds toC1 in (3.1). Applying
Theorem3.1, the impact of correlation can be completely characterized. The
average mutual information is a Schur-concave function, i.e. correlation always
decreases the average mutual information. See [2] for an application of the re-
sults from Theorem3.1. If the transmitter has perfect CSI, the ergodic capacity
is given by

CpCSI(µ1, ..., µn, ρ) = E log2

(
1 + ρ

n∑
k=1

µkwk

)
.

This expression is a scaled version of (6.1). Therefore, the same analysis can be
applied.

If the transmit antenna array has partial CSI in terms of long-term statistics
of the channel, i.e. the transmit correlation matrixRT , this can be used to adap-
tively change the transmission strategy according toµ1, . . . , µnT

. The transmit
array performs adaptive power controlp(µ) and it can be shown that the ergodic
capacity is given by the following optimisation problem

(6.2) CcvCSI(µ1, . . . , µnT
, ρ) = max

||p||=1
E log2

(
1 + ρ

nT∑
k=1

pkµkwk

)
.
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The expression for the ergodic capacity of the MISO system with partial CSI
in (6.2) directly corresponds toC2 in (4.1). Finally, the impact of the transmit
correlation on the ergodic capacity in (6.2) leads to Problem3, i.e. to the result
in Theorem5.1. In [10], Theorem4.1and5.1have been applied. Interestingly,
the behavior of the ergodic capacity in (6.2) is the other way round: it is a
Schur-convex function with respect toµ, i.e. correlation increases the ergodic
capacity.
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7. Note added in proof
After submission of this paper, we found that the cumulative distribution func-
tion (cdf) of the sum of weighted exponential random variables in (1.1) has
not the same clear behavior in terms of Schur-concavity like the function (3.1).
In [3], we proved that the cdfF (x) = Pr[

∑n
k=1 µkwk ≤ x] is Schur-convex

for all x ≤ 1 and Schur-concave for allx ≥ 2. Furthermore, the behavior of
F (x) between1 and2 is completely characterized: For1 ≤ x < 2, there are
at most two global minima which are obtained forµ1 = ... = µk = 1

k
and

µk+1 = ... = µn = 0 for a certaink. This result verifies the conjecture by
Telatar in [15].
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