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Abstract

In this paper sufficient conditions for the instability of the zero solution of the
equation (1.1) are given.
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1. Introduction and Statement of the Result
This paper is concerned with the study of the instability of the trivial solution
X = 0 of the vector differential equations of the form:

(1.1) X(4) + Ψ(
..

X)
...

X + Φ(
.

X)
..

X +H(
.

X) + F (X) = 0

in the real Euclidean spaceRn (with the usual norm, denoted in what follows
by ‖.‖) whereΨ andΦ are continuousn× n symmetric matrices depending, in
each case, on the arguments shown,H andF are continuousn-vector functions
andH(0) = F (0) = 0.

It will be convenient to consider, instead of the equation (1.1), the equivalent
system

(1.2)


.

X = Y,
.

Y = Z,
.

Z = W,

.

W = −Ψ(Z)W − Φ(Y )Z −H(Y )− F (X)

obtained as usual by setting
.

X = Y,
..

X = Z,
...

X = W in (1.1).
Let JF (X), JH(Y ), JΦ(Y ) andJΨ(Z) denote the Jacobian matrices corre-

sponding to the functionsF (X), H(Y ) and the matricesΦ(Y ), Ψ(Z), respec-

tively, that is, JF (X) =
(
∂fi

∂xj

)
, JH(Y ) =

(
∂hi

∂yj

)
, JΦ(Y ) =

(
∂φi

∂yj

)
and

JΨ(Z) =
(
∂ψi

∂zj

)
(i, j = 1, 2, . . . , n), where(x1, x2, . . . , xn), (y1, y2, . . . , yn),

(z1, z2, . . . , zn), (f1, f2, . . . , fn), (h1, h2, . . . , hn), (φ1, φ2, . . . , φn) and
(ψ1, ψ2, . . . , ψn) are the components ofX,Y, Z, F,H,Φ andΨ, respectively.
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Other than these, it is assumed that the Jacobian matricesJF (X), JH(Y ), JΦ(Y )
and JΨ(Z) exist and are continuous. The symbol〈X,Y 〉 corresponding to
any pairX, Y in Rn stands for the usual scalar product

∑n
i=1 xiyi, andλi(A)

(i = 1, 2, . . . , n) are the eigenvalues of then× n matrixA.
In the relevant literature, the instability properties for various third-, fourth-,

fifth-, sixth- and eighth order nonlinear differential equations have been con-
sidered by many authors, see, for example, Berketoğlu [1], Ezeilo ([3] – [7]),
Li and Yu [8], Li and Duan [9], Miller and Michel [10], Sadek [12], Skrapek
([13, 14]), Tiryaki ([15] – [17]) and the references therein. However, with re-
spect to our observations in the relevant literature, in the casen = 1, the in-
stability properties of solutions of nonlinear differential equations of the fourth
order have been studied by Ezeilo ([3, 6]), Li and Yu [8], Skrapek [13] and
Tiryaki [15]. Recently, the author in [12] also discussed the same subject for
the vector differential equation as follows:

X(4) + A
...

X +H(X,
.

X,
..

X,
...

X)
..

X +G(X)
.

X + F (X) = 0.

Also, according to our observations in the relevant literature, we have not been
able to locate results on the instability of solutions of certain nonlinear vector
differential equations of the fourth order. The present investigation is a different
attempt than the result in Sadek [12] to obtain sufficient conditions for the insta-
bility of the trivial of solutions of certain nonlinear vector differential equations
of the fourth order. The motivation for the present study has come from the
paper of Sadek [12] and the papers mentioned above. Our aim is to acquire a
similar result for certain nonlinear vector differential equation of (1.1).

Now, we consider, in the casen = 1, the linear constant coefficient scalar
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differential equation of the form:

(1.3) x(4) + a1
...
x + a2

..
x+ a3

.
x+ a4x = 0.

It should be pointed out that ifa4 >
1
4
a2

2 , then the trivial solutionx = 0 of
the equation (1.3) is unstable.

Our aim is to prove the following.

Theorem 1.1. Suppose that the functionsΨ, Φ, H and F that appeared in
(1.1) are continuously differentiable and there are positive constantsa1, a2, a3

and a4(6= 0) with a4 > 1
4
a2

2 such thatλi(Ψ(Z)) ≥ a1 for all Z ∈ Rn,
λi(Φ(Y )) ≥ a2 and λi(JH(Y )) ≥ a3 for all Y ∈ Rn andλi(JF (X)) ≥ a4

for all X(6= 0) ∈ Rn (i = 1, 2, . . . , n).

Then the zero solutionX = 0 of the system (1.2) is unstable.

In the subsequent discussion we require the following lemma.

Lemma 1.2. LetA be a real symmetricn× n matrix and

a′ ≥ λi(A) ≥ a > 0 (i = 1, 2, . . . , n),wherea′, a are constants.

Then
a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and
a′

2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .

Proof. See [2].
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2. Proof of the Theorem
The proof is based on the use of Ceatev’s instability criterion in [10]. For the
proof of the theorem our main tool is the Lyapunov functionV = V (X,Y, Z,W )
defined by:

(2.1) V = 〈W,Z〉+ 〈Y, F (X)〉+

∫ 1

0

〈σΨ(σZ)Z,Z〉 dσ

+

∫ 1

0

〈Φ(σY )Z, Y 〉 dσ +

∫ 1

0

〈H(σY ), Y 〉 dσ.

It is clear thatV (0, 0, 0, 0) = 0.
Since ∂

∂σ
〈H(σY ), Y 〉 = 〈JH(σY )Y, Y 〉 andH(0) = 0, then

〈H(Y ), Y 〉 =

∫ 1

0

〈JH(σY )Y, Y 〉 dσ ≥
∫ 1

0

〈a3Y, Y 〉 dσ = a3 〈Y, Y 〉 .

Therefore

(2.2)
∫ 1

0

〈H(σY ), Y 〉 dσ ≥ a3

∫ 1

0

〈σY, Y 〉 dσ =
1

2
a3 ‖Y ‖2 .

By using the assumptions of the theorem, the above lemma and (2.2) it can be
easily obtained that:

V (X, Y, Z,W ) ≥ 1

2
a1 ‖Z‖2 +

1

2
a3 ‖Y ‖2

+ 〈W,Z〉+ 〈Y, F (X)〉+

∫ 1

0

〈Φ(σY )Z, Y 〉 dσ.
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and hence

V (0, ε, ε, 0) ≥ 1

2
a1 ‖ε‖2 +

1

2
a3 ‖ε‖2 +

∫ 1

0

〈Φ(σε)ε, ε〉 dσ

≥ 1

2
(a1 + a2 + a3) ‖ε‖2 > 0

for all arbitraryε ∈ Rn. So, in every neighborhood of(0, 0, 0, 0) there exists
a point(ξ, η, ζ, µ) such thatV (ξ, η, ζ, µ) > 0 for all ξ, η, ζ andµ in Rn. Let
(X,Y, Z,W ) = (X(t), Y (t), Z(t),W (t)) be an arbitrary solution of (1.2). We
obtain from (2.1) and (1.2) that

.

V =
d

dt
V (X, Y, Z,W )(2.3)

= 〈W,W 〉 − 〈Ψ(Z)W,Z〉 − 〈Φ(Y )Z,Z〉
− 〈H(Y ), Z〉+ 〈Y, JF (X)Y 〉

+
d

dt

∫ 1

0

〈σΨ(σZ)Z,Z〉 dσ +
d

dt

∫ 1

0

〈Φ(σY )Z, Y 〉 dσ

+
d

dt

∫ 1

0

〈H(σY ), Y 〉 dσ.

But

d

dt

∫ 1

0

〈H(σY ), Y 〉 dσ(2.4)

=

∫ 1

0

σ 〈JH(σY )Z, Y 〉 dσ +

∫ 1

0

〈H(σY ), Z〉 dσ
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=

∫ 1

0

σ
∂

∂σ
〈H(σY ), Z〉 dσ +

∫ 1

0

〈H(σY ), Z〉 dσ

= σ 〈H(σY ), Z〉
1

|
0

= 〈H(Y ), Z〉 ,

d

dt

∫ 1

0

〈Φ(σY )Z, Y 〉 dσ(2.5)

=

∫ 1

0

〈Φ(σY )Z,Z〉 dσ +

∫ 1

0

σ 〈JΦ(σY )ZY,Z〉 dσ

+

∫ 1

0

〈Φ(σY )W,Y 〉 dσ

=

∫ 1

0

〈Φ(σY )Z,Z〉 dσ +

∫ 1

0

σ
∂

∂σ
〈Φ(σY )Z,Z〉 dσ

+

∫ 1

0

〈Φ(σY )Y,W 〉 dσ

= 〈Φ(Y )Z,Z〉+

∫ 1

0

〈Φ(σY )Y,W 〉 dσ

and

d

dt

∫ 1

0

〈σΨ(σZ)Z,Z〉 dσ(2.6)
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=

∫ 1

0

〈σΨ(σZ)Z,W 〉 dσ +

∫ 1

0

σ2 〈JΨ(σZ)ZW,Z〉 dσ

+

∫ 1

0

〈σΨ(σZ)W,Z〉 dσ

=

∫ 1

0

〈σΨ(σZ)W,Z〉 dσ +

∫ 1

0

σ
∂

∂σ
〈σΨ(σZ)W,Z〉 dσ

= σ 〈Ψ(σZ)W,Z〉
1

|
0

= 〈Ψ(Z)W,Z〉 .

On gathering the estimates (2.4) – (2.6) into (2.3) we obtain

(2.7)
.

V = 〈W,W 〉+

∫ 1

0

〈Φ(σY )Y,W 〉 dσ + 〈Y, JF (X)Y 〉 .

Let

Φ1(Y ) =

∫ 1

0

Φ(σY )Y dσ.

Then ∫ 1

0

〈Φ(σY )Y,W 〉 dσ = Φ1(Y )W.

Hence, by using the assumptions of the theorem and the lemma, we have

.

V =

∥∥∥∥W +
1

2
Φ1(Y )

∥∥∥∥2

+ 〈Y, JF (X)Y 〉 − 1

4
〈Φ1(Y ),Φ1(Y )〉

≥ 〈Y, JF (X)Y 〉 − 1

4
〈Φ1(Y ),Φ1(Y )〉 ≥

(
a4 −

1

4
a2

2

)
‖Y ‖2 > 0.
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Thus, the assumptiona4 >
1
4
a2

2 shows that
.

V0 is positive semi-definite. Also
.

V0 = 0 (t ≥ 0) necessarily implies thatY = 0 for all t ≥ 0, and therefore also
thatX = ξ (a constant vector),Z =

.

Y = 0, W =
..

Y = 0,
...

Y =
.

W = 0, for
t ≥ 0. Substituting the estimates

X = ξ, Y = Z = W = 0

in (1.2) it follows thatF (ξ) = 0 which necessarily implies thatξ = 0 because
of F (0) = 0. So

X = Y = Z = W = 0 for all t ≥ 0.

Therefore, the functionV has all the requisite Ceatev criterion proved in [10]
subject to the conditions in the theorem, which now follows. The basic prop-
erties ofV (X, Y, Z,W ), which are proved above justify that the zero solution
of (1.2) is unstable. (See Theorem 1.15 in Reissig [11] and Miller and Michel
[10].) The system of equations (1.2) is equivalent to the differential equation
(1.1). Consequently, it follows the original statement of the theorem.
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