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ABSTRACT. Elsewhere we developed rules for the monotonicity pattern of the ratior := f/g of
two differentiable functions on an interval(a, b) based on the monotonicity pattern of the ratio
ρ := f ′/g′ of the derivatives. Those rules are applicable even more broadly than l’Hospital’s
rules for limits, since in general we do not require that bothf andg, or either of them, tend
to 0 or ∞ at an endpoint or any other point of(a, b). Here new insight into the nature of the
rules for monotonicity is provided by a key lemma, which implies that, ifρ is monotonic, then
ρ̃ := r′ · g2/|g′| is so; hence,r′ changes sign at most once. Based on the key lemma, a number
of new rules are given. One of them is as follows: Suppose thatf(a+) = g(a+) = 0; suppose
also thatρ ↗↘ on (a, b) – that is, for somec ∈ (a, b), ρ ↗ (ρ is increasing) on(a, c) andρ ↘
on (c, b). Thenr ↗ or↗↘ on (a, b). Various applications and illustrations are given.
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etry, Right-angled triangles.
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1. I NTRODUCTION

Let−∞ ≤ a < b ≤ ∞. Let f andg be differentiable functions defined on the interval(a, b),
and let

r :=
f

g
.

It is assumed throughout (unless specified otherwise) thatg andg′ do not take on the zero value
and do not change their respective signs on(a, b). In [16], general “rules" for monotonicity
patterns, resembling the usual l’Hospital rules for limits, were given. In particular, according
to [16, Proposition 1.9], one has the dependence of the monotonicity pattern ofr (on (a, b)) on
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2 IOSIF PINELIS

that of

ρ :=
f ′

g′

(and also on the sign ofgg′) as given by Table 1.1. The vertical double line in the table separates
the conditions (on the left) from the corresponding conclusions (on the right).

ρ gg′ r

↗ > 0 ↗ or↘ or↘↗
↘ > 0 ↗ or↘ or↗↘
↗ < 0 ↗ or↘ or↗↘
↘ < 0 ↗ or↘ or↘↗

Table 1.1: Basic general rules for monotonicity.

Here, for instance,r ↘↗ means that there is somec ∈ (a, b) such thatr ↘ (that is,r is
decreasing) on(a, c) andr ↗ on (c, b). Now suppose that one also knows whetherr ↗ or r ↘
in a right neighborhood ofa and in a left neighborhood ofb; then Table 1.1 uniquely determines
the monotonicity pattern ofr.

Clearly, the stated l’Hospital-type rules for monotonicity patterns are helpful wherever the
l’Hospital rules for limits are so, and even beyond that, because these monotonicity rules do not
require that bothf andg (or either of them) tend to 0 or∞ at any point.

The proof of these rules is very easy if one additionally assumes that the derivativesf ′ and
g′ are continuous andr′ has only finitely many roots in(a, b) (which will be the case if, for
instance,r is not a constant whilef andg are real-analytic functions on[a, b]). Such an easy
proof [21, Section 1] is based on the identity

(1.1) g2 r′ = (ρ− r) g g′,

which is easy to check. A proof without using the additional conditions (that the derivativesf ′

andg′ are continuous andr′ has only finitely many roots) was given in [16].
Based on Table 1.1, one can generally infer the monotonicity pattern ofr given that ofρ,

however complicated the latter is. In particular, one has the rules given by Table 1.2.

ρ gg′ r

↗↘ > 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘
↘↗ > 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↗↘ < 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↘↗ < 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘

Table 1.2: Derived general rules for monotonicity.

Each monotonicity pattern ofr in Tables 1.1 and 1.2 does actually occur; see Remark 5.12
for details.

In the special case when bothf andg vanish at an endpoint of the interval(a, b), l’Hospital-
type rules for monotonicity and their applications can be found, in different forms and with
different proofs, in [11, 12, 13, 10, 2, 3, 1, 4, 5, 15, 16, 17, 18].
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L’H OSPITAL RULES FORMONOTONICITY 3

Thespecial-caserule can be stated as follows: Suppose thatf(a+) = g(a+) = 0 or f(b−) =
g(b−) = 0; suppose also thatρ is increasing or decreasing on the entire interval(a, b); then,
respectively,r is increasing or decreasing on(a, b). When the conditionf(a+) = g(a+) = 0
or f(b−) = g(b−) = 0 does hold, the special-case rule may be more convenient, because then
one does not have to investigate the monotonicity pattern of ratior near the endpoints of the
interval(a, b).

A unified treatment of the monotonicity rules, applicable whether or notf andg vanish at an
endpoint of(a, b), can be found in [16].

L’Hospital’s rule for limits when the denominator tends to∞ does not have a “special-case"
analogue for monotonicity; see e.g. [21, Section 1] for details.

In view of what has been said here, it should not be surprising that a very wide variety
of applications of these l’Hospital-type rules for monotonicity patterns were given: in areas
of analytic inequalities [5, 15, 16, 19], approximation theory [17], differential geometry [10,
11, 12, 21], information theory [15, 16], (quasi)conformal mappings [1, 2, 3, 4], statistics and
probability [13, 16, 17, 18], etc.

Clearly, the stated rules for monotonicity could be helpful whenf ′ or g′ can be expressed sim-
pler thanf or g, respectively. Such functionsf andg are essentially the same as the functions
that could be taken to play the role ofu in the integration-by-parts formula

∫
u dv = uv−

∫
v du;

this class of functions includes polynomial, logarithmic, inverse trigonometric and inverse
hyperbolic functions, and as well as non-elementary “anti-derivative” functions of the form
x 7→ c+

∫ x

a
h(u) du or x 7→ c+

∫ b

x
h(u) du.

“Discrete" analogues, forf andg defined onZ, of the l’Hospital-type rules for monotonicity
are available as well [20].

Let us conclude this Introduction by a brief description of the contents of the paper.
Section 2 contains what is referred to in this paper as the key lemma (Lemma 2.1). This

lemma provides new insight into the nature of the l’Hospital-type rules for monotonicity, as
well as a basis for further developments. The key lemma states that the monotonicity pattern
of function ρ̃ := r′ · g2/|g′| is the same as that ofρ if gg′ > 0, and opposite to the pattern of
ρ if gg′ < 0. Clearly, from this lemma, such rules as the ones given by Table 1.1 are easily
deduced, sincesign(r′) = sign ρ̃. We present two proofs of the key lemma: one proof is short
and self-contained, even if somewhat cryptic; the other proof is longer but apparently more
intuitive.

In Section 3, certain shortcuts are given for the monotonicity rules based on the key lemma.
As stated above, Table 1.1 uniquely determines the monotonicity pattern (↗ or↘) of r on(a, b)
provided that one knows (i) the monotonicity pattern ofρ on (a, b), (ii) the sign ofgg′ on (a, b),
and also (iii) whetherr ↗ or r ↘ in a right neighborhood ofa and in a left neighborhood of
b. In Section 3, it is noted (Corollary 3.2) that, instead of these assumptions (i)–(iii), it suffices
to know simply the signs of the limits̃ρ(a+) and ρ̃(b−) in order to determine uniquely the
monotonicity pattern ofr on (a, b) – provided thatρ is monotonic on(a, b). However, if the
sign of gg′ on (a, b) is taken into account as well as whetherρ is increasing or decreasing on
(a, b), then (Corollary 3.3) one needs to determine the sign of only one of the limitsρ̃(a+) and
ρ̃(b−).

In Section 4, the stated special-case rule for monotonicity (withf andg both vanishing at an
endpoint of the interval(a, b)) is extended (Propositions 4.3 and 4.4) to include the cases when
ρ is not monotonic on(a, b) but rather has one of the patterns↗↘ or↘↗. Moreover, it can be
allowed that bothf andg vanish at an interior point, rather than at an endpoint, of the interval
(Proposition 4.5). These developments are based on the key lemma, as well.
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4 IOSIF PINELIS

In Section 5, a general discussion concerning the interplay between the functionsr, ρ, andρ̃
is presented as viewed from different angles.

Finally, in Section 6, a number of applications and illustrations of the rules for monotonicity
are given.

2. K EY L EMMA

Lemma 2.1(Key lemma). The monotonicity pattern (↗ or ↘) of the function

(2.1) ρ̃ := g2 r′

|g′|
on (a, b) is determined by the monotonicity pattern ofρ and the sign ofgg′, according to Ta-
ble 2.1.

ρ gg′ ρ̃

↗ > 0 ↗
↘ > 0 ↘
↗ < 0 ↘
↘ < 0 ↗

Table 2.1: The monotonicity pattern ofρ̃ is the same as that
of ρ if gg′ > 0, and opposite to the pattern ofρ if gg′ < 0.

Proof of Lemma 2.1.Let us verify the first line of Table 2.1. So, it is assumed thatρ ↗ and
gg′ > 0. This verification follows very closely the lines of the proof of [16, Proposition 1.2].

Fix anyx andy such that
a < x < y < b

and consider the functionh defined by the formula

h(u) := hy(u) := f ′(y) g(u)− g′(y) f(u).

For allu ∈ (a, y), one has

h′(u) = f ′(y) g′(u)− g′(y) f ′(u) = g′(y) g′(u) (ρ(y)− ρ(u)) > 0,

becauseg′ is nonzero and does not change sign on(a, b) andρ ↗ on (a, b). Hence,h ↗ on
(a, y); moreover, being continuous,h is increasing on(a, y].

Next, one has a key identity

(ρ̃(y)− ρ̃(x)) |g′(y)| =
(
h(y)− h(x)

)
+

(
ρ(y)− ρ(x)

)
g(x) g′(y);

here it is taken into account thatg′ is nonzero and does not change sign on(a, b), so that
|g′(y)|/|g′(x)| = g′(y)/g′(x). The first summand,h(y) − h(x), on the right-hand side of this
identity is positive — becauseh↗ on (a, y]; the second summand,[ρ(y)− ρ(x)] g(x) g′(y) is
also positive — becauseρ ↗ on (a, b) while gg′ > 0 on (a, b) andg′ does not change sign on
(a, b). Thus,ρ̃(y) > ρ̃(x).

This verifies the first line of Table 2.1. Its second line can be deduced from the first one by
the “vertical reflection”; that is, by replacingf by−f (and hencer by−r, while keepingg the
same). The third line can be deduced from the second one by the “horizontal reflection”; that
is, by “changing the variable” fromx to −x. Finally, the fourth line can be deduced from the
third one by the “vertical reflection”. �
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L’H OSPITAL RULES FORMONOTONICITY 5

While the above proof is short and self-contained, it may seem somewhat cryptic. Let us
give another version of the proof, which is longer but perhaps more illuminating (especially its
Step 1). The latter proof makes use of the following technical lemma.

Lemma 2.2. Leth be any real functionh on (a, b) such that for allx ∈ (a, b)

h(x) ≥ h(x−) and (D+h)(x) ≥ 0,(2.2)

where (D+h)(x) := lim inf
∆x↓0

∆h

∆x
(2.3)

is the lower right Dini derivative (possibly infinite) of the functionh at pointx, and

∆h := (∆h)(x; ∆x) := h(x+ ∆x)− h(x).

Thenh is nondecreasing on(a, b).

Proof. This statement is essentially well known, at least when the functionh is continuous; cf.,
e.g., [22, Example 11.3 (IV)]. The following proof is provided for the readers’ convenience.
For anyx ∈ (a, b) and anyε > 0, consider the set

E := Ex,ε := {y ∈ [x, b) : h(u) ≥ h(x)− ε · (u− x) ∀u ∈ [x, y)}.

ThenE 6= ∅, sincex ∈ E. Therefore, there existsc := cx,ε := supE, andc ∈ [x, b] ⊆ [x,∞]. It
suffices to show thatc = b for everyε > 0; indeed, then one will haveh(u) ≥ h(x)−ε · (u−x)
for all u ∈ [x, b) and allε > 0, whenceh(u) ≥ h(x) for all x ∈ (a, b) andu ∈ [x, b).

To obtain a contradiction, assume thatc 6= b for someε > 0. Then it is easy to see that
c ∈ E, and so,h(u) ≥ h(x) − ε · (u − x) for all u ∈ [x, c) and hence foru = c (since
h(c) ≥ h(c−)). Thus,h(c) ≥ h(x)− ε · (c−x). On the other hand, the conditionc 6= b implies
that (D+h)(c) ≥ 0, and so, there exists somed ∈ (c, b) such thath(u) ≥ h(c) − ε · (u − c)
for all u ∈ [c, d). It follows thath(u) ≥ h(x) − ε · (u − x) for all u ∈ [c, d) and hence for all
u ∈ [x, d). That is,d ∈ E while d > c, which contradicts the conditionc = supE. �

The other proof of Lemma 2.1.Again, it suffices to verify the first line of Table 2.1, so that it is
assumed thatρ↗ andgg′ > 0 on (a, b). Note first that

(2.4) ρ̃ = (ρ g − f) sign(g′).

Recall thatsign(g′) is constant on(a, b). The proof will be done in two steps.
Step 1: Here the first line of Table 2.1 will be verified under the additional condition thatρ is
differentiable on(a, b). Then (2.4) implies

ρ̃′ = ρ′ · g · sign(g′), whence(2.5)

sign(ρ̃′) = sign(ρ′).(2.6)

Sinceρ ↗, one hasρ′ ≥ 0 and hence, by (2.6),̃ρ′ ≥ 0, so thatρ̃ is nondecreasing (on(a, b)).
To obtain a contradiction, suppose now that the conditionρ̃ ↗ fails (that is,ρ̃ is not strictly
increasing on(a, b)). Thenρ̃ must be constant and henceρ̃′ = 0 on some non-empty interval
(c, d) ⊂ (a, b). It follows by (2.6) thatρ′ = 0 on (c, d), which contradicts the conditionρ↗.
Step 2: Here the first line of Table 2.1 will be verified without the additional condition. In
view of (2.4), one has the obvious identity

(2.7) ∆ρ̃ =
(
(∆ρ) · (g + ∆g) + ρ ·∆g −∆f

)
· sign(g′).

Dividing both sides of this identity by∆x and letting∆x ↓ 0, one has (cf. (2.5))

D+ρ̃ = (D+ρ) · g · sign(g′) ≥ 0,
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6 IOSIF PINELIS

because (i) the functiong is differentiable and hence continuous; (ii)gg′ > 0; (iii) ρ g′ = f ′;
and (iv)ρ↗ and henceD+ρ ≥ 0. It also follows from (2.7) that for allx ∈ (a, b)

ρ̃(x−)− ρ̃(x) = lim
∆x↑0

∆ρ̃(x; ∆x)

= lim
∆x↑0

∆ρ(x; ∆x) · g(x) · sign(g′(x)) ≤ 0,

sinceρ ↗ andgg′ > 0. Hence,ρ̃(x) ≥ ρ̃(x−) for all x ∈ (a, b). Thus, by Lemma 2.2,̃ρ is
nondecreasing on(a, b).

Therefore, if the conditioñρ↗ fails, thenρ̃ is constant on some non-empty interval(c, d) ⊂
(a, b). It follows by (2.4) thatρ g−f = K on(c, d) for some constantK, whenceρ = (f+K)/g
is differentiable on(c, d). Thus, according to Step 1,ρ̃↗ on(c, d), which is a contradiction. �

3. REFINED GENERAL RULES FOR M ONOTONICITY

As before, the term “general rules for monotonicity” refers to the rules valid without the
special condition that bothf andg vanish at an endpoint of the interval(a, b).

From the key lemma (Lemma 2.1), the general l’Hospital-type rules for monotonicity given
by Table 1.1 easily follow.

Corollary 3.1. The rules given by Table 1.1 are true.

Proof. Indeed, consider the first line of Table 1.1. Thus, it is assumed thatρ↗ andgg′ > 0 on
(a, b). Then, by the first line of Table 2.1,̃ρ↗ on (a, b). Therefore,̃ρ(x) may change sign only
from − to + asx increases froma to b. In view of (2.1), the same holds withr′ instead ofρ̃.
More formally, there exists somec ∈ [a, b] such thatr′ < 0 on (a, c) andr′ > 0 on (c, b). Thus,
eitherr ↗ on (a, b) (whenc = a) or r ↘ on (a, b) (whenc = b) or r ↘↗ on (a, b) (when
c ∈ (a, b)). This verifies the first line of Table 1.1. The other three lines of Table 1.1 can be
verified similarly; alternatively, they can be deduced from the first line (cf. the end of the first
proof of Lemma 2.1). �

As was stated in the Introduction, if one also knows whetherr ↗ or r ↘ in a right neighbor-
hood ofa and in a left neighborhood ofb, then Table 1.1 uniquely determines the monotonicity
pattern ofr. Sometimes it is very easy to determine the monotonicity patterns ofr near an
endpoint,a or b. For example, ifr(b−) = ∞, then it follows immediately thatr ↗ in a left
neighborhood ofb (given the knowledge thatr ↗ or↘ or↘↗ or↗↘ on (a, b)). Or, if it is
known thatr(a+) = 0 while r > 0 on (a, b), then it follows immediately thatr ↗ in a right
neighborhood ofa.

However, in some other cases it may be not so easy to determine the monotonicity patterns
of r neara or b, especially when the functionsf andg depend on a number of parameters. In
such situations, any additional shortcuts may prove useful. With this in mind, let us present the
following corollaries to the key lemma.

Corollary 3.2. If ρ↗ or↘ on(a, b), then the limits̃ρ(a+) andρ̃(b−) always exist in[−∞,∞],
and ρ̃(a+) 6= ρ̃(b−). At that, the rules given by Table 3.1 are true.

Corollary 3.3. The rules given by Table 3.2 are true.

The message conveyed by Corollary 3.2 is the following. Ifρ ↗ or ↘ on (a, b), then the
monotonicity patterns ofr near the endpointsa andb (and hence on the entire interval(a, b))
are completely determined by the signs of the limitsρ̃(a+) andρ̃(b−). (In particular, at that the
sign ofgg′ is no longer relevant. Note also that the four cases in Table 3.1 concerning the signs
of ρ̃(a+) andρ̃(b−) are exhaustive. Moreover, the four cases are pairwise mutually exclusive
— becausẽρ(a+) 6= ρ̃(b−) and hencẽρ(a+) andρ̃(b−) cannot be simultaneously zero.)
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L’H OSPITAL RULES FORMONOTONICITY 7

ρ̃(a+) ρ̃(b−) r

≥ 0 ≥ 0 ↗
> 0 < 0 ↗↘
< 0 > 0 ↘↗
≤ 0 ≤ 0 ↘

Table 3.1: Ifρ ↗ or ↘, then the signs of̃ρ(a+) and ρ̃(b−) determine the pattern ofr on (a, b).

ρ gg′ ρ̃(a+) ρ̃(b−) r′ r

↗ > 0 ≥ 0 > 0 ↗
↗ > 0 ≤ 0 < 0 ↘
↘ > 0 ≥ 0 > 0 ↗
↘ > 0 ≤ 0 < 0 ↘
↘ < 0 ≥ 0 > 0 ↗
↘ < 0 ≤ 0 < 0 ↘
↗ < 0 ≥ 0 > 0 ↗
↗ < 0 ≤ 0 < 0 ↘

Table 3.2: The content of the blank cells is not needed, and easy to restore.

On the other hand, by Corollary 3.3, if the sign ofgg′ is taken into account, then — in8 of
the24 = 16 possible cases concerning the signs ofD+ρ, gg′, ρ̃(a+), andρ̃(b−) — one needs to
determine only one of the two signs,sign ρ̃(a+) or sign ρ̃(b−), depending on the case.

Note that lines 1, 4, 6, and 7 of Table 3.2 correspond to parts (1), (2), (3), and (4) of [16,
Corollary 1.3], where limits superior or inferior tõρ(x) asx ↓ a or x ↑ b are used in place of
the limitsρ̃(a+) andρ̃(b−) (which latter we now know always exist, by Corollary 3.2, provided
thatρ↗ or↘ on (a, b)).

Proof of Corollary 3.2.If ρ ↗ or ↘ then, by Table 2.1,̃ρ is (strictly) monotonic (on(a, b)).
Hence, the limits̃ρ(a+) andρ̃(b−) exist and differ from each other. Now the rules of Table 3.1
immediately follow by Lemma 2.1 (cf. the proof of Corollary 3.1). �

Proof of Corollary 3.3.It suffices to consider only the first line of Table 3.2, so that it is assumed
that ρ ↗, gg′ > 0, and ρ̃(a+) ≥ 0. By the first line of Table 2.1,̃ρ ↗. Hence,ρ̃(b−) >
ρ̃(a+) ≥ 0. It remains to refer to the first line of Table 3.1. �

4. DERIVED SPECIAL -CASE RULES FOR M ONOTONICITY

A slightly stronger version of the basic special-case rule for monotonicity mentioned in Sec-
tion 1 is

Proposition 4.1([15, Proposition 1.1], [16, Proposition 1.1]). Suppose thatf(a+) = g(a+) =
0 or f(b−) = g(b−) = 0.

(1) If ρ↗ on (a, b), thenr′ > 0 and hencer ↗ on (a, b).
(2) If ρ↘ on (a, b), thenr′ < 0 and hencer ↘ on (a, b).
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8 IOSIF PINELIS

Developments presented in Section 2 provide further insight into this special-case rule as
well. Indeed, in view of (2.1), Proposition 4.1 can be restated as follows.

Proposition 4.2. Suppose thatf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0.

(1) If ρ↗ on (a, b), thenρ̃ > 0 on (a, b).
(2) If ρ↘ on (a, b), thenρ̃ < 0 on (a, b).

To prove Proposition 4.2, one may observe that for ally ∈ (a, b)

ρ̃(y) = hy(y)/|g′(y)|,

wherehy(u) = f ′(y) g(u)−g′(y) f(u), as defined in the first proof of Lemma 2.1. In that proof,
it was shown that the functionhy is increasing on(a, y].

On the other hand, the conditionf(a+) = g(a+) = 0 implies thathy(a+) = 0. It follows
thathy(y) > hy(a+) = 0. Hence,ρ̃(y) > 0 for all y ∈ (a, b). Now (2.1) shows that indeed
r′ > 0 and hencer ↗ on (a, b). The casef(b−) = g(b−) = 0 is similar. The above reasoning
is very close to the lines of the proof of [15, Proposition 1.1].

Whenever it is indeed the case thatf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0, the special-
case rules are more convenient, because then one need not further investigate the behavior of
ratio r near the endpoints,a andb.

The main question in this section is the following: under the same special condition —
f(a+) = g(a+) = 0 or f(b−) = g(b−) = 0, can the derived general rules given by Table 1.2
be similarly simplified?

Proposition 4.3 below shows that the answer to this question is yes. Moreover, we shall also
consider the case whenf andg both vanish at an interior point of the interval, rather than at
one of its endpoints. To obtain these “derived” special-case rules, we shall again rely mainly on
the key lemma, Lemma 2.1. We shall also rely here on the “basic” special-case rules given by
Proposition 4.1 or, rather, on their re-formulation given by Proposition 4.2.

Proposition 4.3. The special-case rules given by Table 4.1 are true.

endpoint condition ρ r

f(a+) = g(a+) = 0 ↗↘ ↗ or ↗↘
f(a+) = g(a+) = 0 ↘↗ ↘ or ↘↗
f(b−) = g(b−) = 0 ↗↘ ↘ or ↗↘
f(b−) = g(b−) = 0 ↘↗ ↗ or ↘↗

Table 4.1: Derived special rules for monotonicity, whenf andg both vanish at an endpoint.

Proof of Proposition 4.3.It suffices to consider the first line of Table 4.1, so that it is assumed
thatf(a+) = g(a+) = 0 andρ ↗↘ on (a, b); that is, there exists somec ∈ (a, b) such that
ρ↗ on (a, c) andρ↘ on (c, b). The conditiong(a+) = 0 implies thatgg′ > 0 on (a, b). Then,
by the second line of Table 2.1,ρ̃ ↘ on (c, b). Also, by part (1) of Proposition 4.2,̃ρ > 0 on
(a, c). Hence, there exists somed ∈ [c, b] such that̃ρ > 0 on (a, c) ∪ (c, d) andρ̃ < 0 on (d, b).
(At that, d = b if ρ̃(b−) ≥ 0 (and hencẽρ(c+) > 0), andd ∈ [c, b) if ρ̃(b−) < 0.) Therefore
and in view of (2.1),r′ > 0 on (a, c) ∪ (c, d) andr′ < 0 on (d, b). Sincer is differentiable and
hence continuous on(a, b), it follows thatr ↗ on (a, d) andr ↘ on (d, b). Thus, ifd = b then
r ↗ on (a, b); and ifd ∈ [c, b) thenr ↗↘ on (a, b). �
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In the course of the proof of Proposition 4.3, a little more was established than stated in
Proposition 4.3. Namely, based on the sign ofρ̃(b−), one can discriminate between the two
alternative monotonicity patterns ofr given in the first line of Table 4.1; similarly, for the other
three lines of Table 4.1. Thus, one has the following.

Proposition 4.4. The special-case rules given by Table 4.2 are true.

endpoint condition ρ ρ̃(a+) ρ̃(b−) r

f(a+) = g(a+) = 0 ↗↘ ≥ 0 ↗
f(a+) = g(a+) = 0 ↗↘ < 0 ↗↘
f(a+) = g(a+) = 0 ↘↗ ≤ 0 ↘
f(a+) = g(a+) = 0 ↘↗ > 0 ↘↗
f(b−) = g(b−) = 0 ↗↘ ≤ 0 ↘
f(b−) = g(b−) = 0 ↗↘ > 0 ↗↘
f(b−) = g(b−) = 0 ↘↗ ≥ 0 ↗
f(b−) = g(b−) = 0 ↘↗ < 0 ↘↗

Table 4.2: Specific derived special-case rules for monotonicity, whenf andg both vanish at an endpoint.

Let us also consider the case when bothf andg vanish at an interior point of the interval.

Proposition 4.5. Suppose that the following conditions hold:

• −∞ ≤ a < b < c ≤ ∞;
• f andg are differentiable functions defined on the set(a, c) \ {b};
• on each of the intervals(a, b) and (b, c), the functionsg andg′ do not take on the zero

value and do not change their respective signs;
• lim

x→b
f(x) = lim

x→b
g(x) = 0;

• there exists a finite limitρ(b) := lim
x→b

ρ(x) and hence, by l’Hospital’s rule, the limit

r(b) := lim
x→b

r(x) = ρ(b), wherer(x) := f(x)/g(x) and ρ(x) := f ′(x)/g′(x) for

x ∈ (a, c) \ {b}, so that the functionsr andρ are extended from(a, c) \ {b} to (a, c).

Then the special-case rules given by Table 4.3 concerning the monotonicity patterns ofρ and
r on (a, c) are true.

ρ r

↗ ↗
↘ ↘
↘↗ ↗ or ↘ or ↘↗
↗↘ ↗ or ↘ or ↗↘

Table 4.3: Derived special-case rules for monotonicity, whenf andg both vanish at an interior point.

Proof of Proposition 4.5.Lines 1 and 2 of Table 4.3 follow immediately from Proposition 4.1.
Line 4 can be deduced from line 3 by the “vertical reflection”, that is, by replacingf by−f . It
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remains to consider line 3. Thus, it is assumed that there exists someξ ∈ (a, c) such thatρ ↘
on (a, ξ) andρ↗ on (ξ, c). One of the following three cases must occur.
Case 1: ξ = b. Then, by Proposition 4.1,r ↘ on (a, b) andr ↗ on (b, c), so thatr ↘↗ on
(a, c).
Case 2: ξ ∈ (b, c). Thenρ ↘ on (a, b) (sinceρ ↘ on (a, ξ)). Hence, by Proposition 4.1,
one hasr ↘ on (a, b). On the other hand,ρ ↘ on (b, ξ) and ρ ↗ on (ξ, c). Hence, by
Proposition 4.3 (line 2 of Table 4.1),r ↘ or ↘↗ on (b, c). It follows thatr ↘ or ↘↗ on
(a, c).
Case 3: ξ ∈ (a, b). This case is similar to Case 2, but here one will conclude thatr ↗ or↘↗
on (a, c).

This verifies line 3 of Table 4.3. �

5. DISCUSSION

Remark 5.1. It is easy to see from the proofs of the key lemma and the rules based on it
that, instead of the requirement forf andg to be differentiable on(a, b) it would be enough to
assume, for instance, only thatf andg are continuous and both have finite right derivativesf ′+
andg′+ (or finite left derivativesf ′− andg′−) on (a, b), and then use these one-side derivatives in
place off ′ andg′. (Cf. [15, Remark 1.2].)

One corollary of Remark 5.1 is as follows.

Corollary 5.2. Take anyc ∈ (a, b), and letf be any convex real function on(a, b). Then the
ratio f(x)/(x−c) switches at most once from decreasing to increasing whenx increases fromc
to b. Similarly, this ratio switches at most once from increasing to decreasing whenx increases
froma to c.

Remark 5.3. Here Corollary 5.2 appears as a particular application of Corollary 3.1 (enhanced
in accordance with Remark 5.1). However, one could, vice versa, deduce Corollary 3.1 from
Corollary 5.2 by “changing the variable” fromx to X := g(x), so thatf(x) = F (X) :=
f(g−1(X)), g(x) = X, r(x) = F (X)/X, andρ(x) = F ′(X).

An obvious special case of Corollary 5.2 is:

Corollary 5.4. Take anyc ∈ (a, b), and letf be any convex real function on(a, b). Letrc(x) :=
(f(x)− f(c))/(x− c) for x ∈ (a, b) \ {c}, andrc(c) := k, wherek is an arbitrary point in the
interval [f ′−(c), f ′+(c)]. Then the ratiorc(x) increases whenx increases froma to b.

Corollary 5.4 is immediate from Proposition 4.5 enhanced in accordance with Remark 5.1.

Remark 5.5. This remark complements Remark 5.1, which allowed using one-side derivatives
of f andg in place off ′ andg′. However, ifg is differentiable on(a, b), then the phrase “and do
not change their respective signs” in the assumption “g andg′ do not take on the zero value and
do not change their respective signs on(a, b)” stated in the beginning of Section 1 is superfluous.
Indeed, ifg is differentiable, then it is continuous and therefore does not change sign, since it
does not take on the zero value. As for the implication

g′ does not change sign provided thatg′ does not take on the zero value,

it follows by the intermediate value theorem for the derivative (see e.g. [6, Theorem 5.16]), as
was pointed out in [5].

Remark 5.6. Moreover, iff andg are differentiable on(a, b) andρ is monotonic on(a, b), then
ρ andρ̃ are continuous on(a, b). Indeed, take anyc ∈ (a, b). Sinceρ is monotonic, there exist
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limits ρ(c−) andρ(c+). On the other hand, the ratio

f(x)− f(c)

g(x)− g(c)
=

(f(x)− f(c))/(x− c)

(g(x)− g(c))/(x− c)

tends toρ(c) asx → c. Next, by the Cáuchy mean value theorem, this ratio tends toρ(c−) as
x ↑ c and toρ(c+) asx ↓ c. Thus,ρ(c−) = ρ(c) = ρ(c+), for eachc ∈ (a, b), so thatρ is
continuous on(a, b). Now it is seen that̃ρ is continuous as well, sincẽρ = (ρg − f) sign(g′).

Remark 5.7. All the stated rules for monotonicity have natural “non-strict” analogues, with
strict inequalities and terms “increasing” and “decreasing” replaced by the corresponding non-
strict inequalities and terms “non-decreasing” and “non-increasing”.

Remark 5.8. Lemma 2.1 shows that (given the sign ofgg′) the monotonicity pattern of̃ρ is
completely determined by the monotonicity pattern ofρ. It is readily seen — especially from
the second proof of Lemma 2.1 — that the relation between the patterns ofρ andρ̃ is reversible,
so that, given the monotonicity pattern ofρ̃ and the sign ofgg′, the monotonicity pattern ofρ can
be completely restored. That is, each line of Table 2.1 can be read right-to-left. For instance, if
ρ̃ ↗ andgg′ > 0, thenρ ↗. Thus, given the sign ofgg′, the monotonicity pattern of̃ρ carries
the same amount of information as the monotonicity pattern ofρ.

In contrast, it should now be clear that the relation between the monotonicity patterns ofr and
ρ is not reversible in any reasonable sense. The pattern ofρ can be anything even if the pattern
of r and the sign ofgg′ are given. For instance, if̃ρ is positive on(a, b) then, by (2.1),r ↗ on
(a, b); at that,ρ̃ and henceρ can be made as “wavy” as desired. To be even more specific, let
(a, b) := (0,∞) or (−∞, 0), g(x) := 1/x, andρ̃(x) := 2 + sin x, so thatρ̃ > 0 everywhere.
Next, in accordance with (2.1), let

r(x) :=

∫ x

0

|g′(u)|
g(u)2

ρ̃(u) du(5.1)

= 1 + 2x− cosx, whence

f(x) = g(x) r(x) = (1 + 2x− cosx)/x and

ρ(x) = 1− cosx− x sin x,

x ∈ (−∞, 0)∪ (0,∞), so thatr, ρ, andρ̃ can be extended toR, by continuity. Thenr′ > 0 and
hencer ↗ onR, while ρ is “infinitely wavy” on R, just asρ̃ is; see Figures 5.1 and 5.2.

-Π Π

x

5

rHxL, ΡHxL

Figure 5.1: Graphs ofr andρ: r, increasing; ρ, non-monotonic, “infinitely wavy".
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�Π Π
x

�2

2

Ρ�x�, Ρ� �x�

Figure 5.2: The monotonicity pattern of̃ρ exactly follows that ofρ, and vice versa, in accordance with Table 2.1.
Recall that herẽρ(x) = 2 + sin x > 0 for all x ∈ R.

Remark 5.9. As was pointed out in [16] (see Remark 1.21 and Examples 1.2 and 1.3 therein),
“the waves ofr may be thought of as obtained from the waves ofρ by a certain kind of delaying
and smoothing down procedure." Here, at least the “smoothing down" part is explicit in view of
(5.1), since the “waves" of̃ρ are in perfect unison with those ofρ, and hence vice versa. In this
connection, one can also consider the representation

r(x) =
r(c)g(c) +

∫ x

c
ρ(u)g′(u) du

g(c) +
∫ x

c
g′(u) du

for x ∈ [c, d] ⊂ (a, b)

of r on [c, d], which is (in the case whengg′ > 0) a weighted-average of the “initial” valuer(c)
and the values ofρ on [c, d].

As for the waves ofr being “delayed” relative to the waves ofρ, it should be assumed that
two particles are moving, one along the graph ofr and the other one along the graph ofρ,
left-to-right if gg′ > 0 and right-to-left ifgg′ < 0; at that, the abscissas of the two particles are
always staying equal to each other.

Remark 5.10. One can see that, under certain general conditions,ρ mustbe non-monotonic on
an interval whiler is monotonic on it. Indeed, suppose thatgg′ > 0 on (a, b) andr forms an
increasing “half-wave” on an interval[c, d] ⊂ (a, b); that is,r′ > 0 on(c, d) andr′(c) = r′(d) =
0. Assume also thatf andg are twice differentiable on(a, b), r′′(c) 6= 0, andr′′(d) 6= 0. It
follows thatr′′(c) > 0 andr′′(d) < 0. It is easy to check that

ρ = r + r′ v, where v := g/g′;

cf. [16, (1.8), (1.7)]. Then one can see that the conditionsr′(c) = r′(d) = 0 imply ρ(c) = r(c)
andρ(d) = r(d). Moreover,ρ′(c) = r′′(c) v(c) > 0 andρ′(d) = r′′(d) v(d) < 0, so thatρ is
necessarily non-monotonic on(c, d).

See Figure 5.3, where[c, d] := [−π/2, π/2], f(x) := ex sin x, andg(x) := ex, so that
r(x) = sinx andρ(x) =

√
2 sin(x+ π/4), for all x ∈ R; cf. [16, Example 1.2].

Remark 5.11. The latter example also illustrates a general situation. Indeed, without loss of
generality,g > 0. “Changing the variable”x toX := ln g(x), one hasg(x) = eX , so that one
may assume thatg(x) = ex and hencev(x) = 1 for all x. Next, if r is smooth enough on a
finite interval[c, d] then, for anyT > d− c, one can extendr from the interval[c, d] to a smooth

J. Inequal. Pure and Appl. Math., 7(2) Art. 40, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


L’H OSPITAL RULES FORMONOTONICITY 13

x

r�x�, Ρ�x�

�Π�2 Π�2

Figure 5.3:r, increasing; ρ, non-monotonic.

periodic function of periodT onR, so that one has the Fourier series representations

r(x) = A0 +
∞∑

n=1

(An cosnkx+Bn sinnkx) and hence

ρ(x) = A0 +
∞∑

n=1

√
1 + n2k2

(
An cos(nk(x+ ψn)) +Bn sin(nk(x+ ψn))

)
for some real sequences(An) and(Bn) and allx ∈ R, wherek := 2π

T
andψn := arctan(nk)

nk
. Thus,

with the variablex transformed intoX = ln g(x), thenth harmonic componentAn cosnkx
+Bn sinnkx of r has a

√
1 + n2k2 times smaller amplitude and a phase delayed byψn, as

compared with the amplitude and phase of thenth harmonic component ofρ, for every natural
n. It also follows thatρ conveys a more powerful signal thanr does, in the sense that∫ d

c

ρ(x)2 |d ln |g(x)|| ≥
∫ d

c

r(x)2 |d ln |g(x)||.

Remark 5.12. Note that each monotonicity pattern ofr in Tables 1.1 and 1.2 does actually
occur, for each set of conditions onρ andgg′. Here let us provide a rather general description
of how this can happen, suggested by the weighted-average representation ofr given in Re-
mark 5.9. For instance, consider the first line of Table 1.1, where it is assumed thatρ ↗ and
gg′ > 0 on (a, b). Suppose here also thatg > 0, f = f0 +C for some constantC, f0(a+) ∈ R,
g(a+) ∈ (0,∞), ρ(a+) ∈ R, andρ(b−) = ∞ (for example, one can takea = 0, b = ∞,
g(x) = 1 + x, andf0(x) = ex for all x > 0). LetC0 := ρ(a+) g(a+) − f0(a+). If C > C0,
thenρ(a+) < r(a+), so that, in view of identity (1.1),r′ < 0 and hencer ↘ in a right neigh-
borhood ofa. Now the first line of Table 1.1 implies thatr ↘ or↘↗ on(a, b). Moreover, since
ρ ↗ andρ(b−) = ∞, the patternr ↘ on (a, b) would imply that in a left neighborhood ofb
one hasρ > r and hence, by (1.1),r ↗, which is a contradiction. This leaves the patternr ↘↗
on (a, b) as the only possibility; that is,r ↘ on (a, c) andr ↗ on (c, b), for somec ∈ (a, b), so
that each of the patterns↘↗,↘, and↗ does occur forr.

J. Inequal. Pure and Appl. Math., 7(2) Art. 40, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


14 IOSIF PINELIS

6. APPLICATIONS AND I LLUSTRATIONS

6.1. Monotonicity properties of a ratio considered by Borwein, Borwein and Rooin. Bor-
weinet al. [9] showed that the ratio

(6.1)
ax − bx

cx − dx
,

x 6= 0 (extended tox = 0 by continuity), is convex inx ∈ R provided that

(6.2) a > b ≥ c > d > 0.

They also determined the values ofa, b, c, andd for which ratio (6.1) is log-convex.
Moreover, it was shown in [9] that ratio (6.1) is increasing inx ∈ R under condition (6.2).

Here the monotonicity pattern of ratio (6.1) will be determined for any positive values ofa, b,
c, andd, whether condition (6.2) holds or not. Dividing both the numerator and denominator of
ratio (6.1) bydx, one may assume without loss of generality thatd = 1. Denoting thencx by y,
one rewrites ratio (6.1) as

(6.3) r(y) :=
yβ − yα

y − 1

for y ∈ (0, 1)∪(1,∞) andr(1) := limy→1 r(y) = β−α, whereα := ln b
ln c

andβ := ln a
ln c

. Without
loss of generality, it will be assumed that

β > α.

Proposition 6.1. The monotonicity pattern of ratior in (6.3) is given by Table 6.1, where the
trivial case withα = 0 andβ = 1 must be excluded.

Case r

I. α ≤ 0, β ≤ 1 ↘
II. α < 0, β > 1 ↘↗
III. α > 0, β < 1 ↗↘
IV. α ≥ 0, β ≥ 1 ↗

Table 6.1: The monotonicity pattern of ratior in (6.3).

Note that condition (6.2) corresponds to the case whenβ > α ≥ 1, which is a subcase of
Case IV of Table 6.1.

Proof of Proposition 6.1.Let f(y) := yβ − yα andg(y) := y − 1, so thatf/g equals the ratio
r in (6.3). Then

ρ(y) = f ′(y)/g′(y) = βyβ−1 − αyα−1 and

ρ′(y) =
(
β(β − 1)yβ−α − α(α− 1)

)
yα−2.

Hence,

y∗ :=

(
α(α− 1)

β(β − 1)

) 1
β−α

is the only root ofρ′ in (0,∞) provided thatα(α − 1)β(β − 1) > 0; otherwise,ρ′ has no root
in (0,∞).

For each of the Cases I and IV in Table 6.1, two subcases will be considered. At that, remem-
ber the assumptionβ > α.
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Subcase I.1:α ≤ 0 andβ ≤ 0, so thatα < β ≤ 0. Hereα(α − 1) > 0 andβ(β − 1) ≥ 0.
Hence, for ally > 0, one hasρ′(y) < 0 iff y < y∗ (lettingy∗ := ∞ if β = 0). Therefore,ρ↘↗
on (0,∞) (ρ ↘ on (0,∞) if β = 0). It follows by Proposition 4.5 thatr ↗ or↘ or↘↗ on
(0,∞). Also, r(∞−) = 0 while r > 0 on (1,∞), so thatr ↘ in a left neighborhood of∞.
Thus,r ↘ on (0,∞) in Subcase I.1.
Subcase I.2:α ≤ 0 and0 < β ≤ 1, so thatα ≤ 0 < β ≤ 1 (but (α, β) 6= (0, 1)). Hereρ′ < 0
and henceρ↘ on (0,∞). Thus, by Proposition 4.5,r ↘ on (0,∞) in Subcase I.2 as well.
Case II.α < 0 andβ > 1. Here, for ally > 0, one hasρ′(y) < 0 iff y < y∗. Therefore,
ρ ↘↗ on (0,∞). It follows by Proposition 4.5 thatr ↗ or↘ or↘↗ on (0,∞). Also, here
r(0+) = r(∞−) = ∞. Thus,r ↘↗ on (0,∞) in Case II.
Case III.α > 0 andβ < 1, so that0 < α < β < 1. Here, for ally > 0, one hasρ′(y) > 0 iff
y < y∗. Therefore,ρ ↗↘ on (0,∞). It follows by Proposition 4.5 thatr ↗ or↘ or↗↘ on
(0,∞). Also, herer(0+) = r(∞−) = 0 andr > 0 on (0,∞). Thus,r ↗↘ on (0,∞) in Case
III.
Subcase IV.1:0 ≤ α < 1 andβ ≥ 1, so that0 ≤ α < 1 ≤ β (but (α, β) 6= (0, 1)). Here
ρ′ > 0 and henceρ↗ on (0,∞). Thus, by Proposition 4.5,r ↗ on (0,∞) in Subcase IV.1.
Subcase IV.2:α ≥ 1 andβ ≥ 1, so that1 ≤ α < β. Here, for ally > 0, one hasρ′(y) < 0 iff
y < y∗. Therefore,ρ ↘↗ on (0,∞) (ρ ↗ on (0,∞) if α = 1). It follows by Proposition 4.5
thatr ↗ or↘ or↘↗ on (0,∞). Also, herer(0+) = 0 andr > 0 on (0,∞). Thus,r ↗ on
(0,∞) in Subcase IV.2 as well. �

The matter of the convexity of ratio (6.1) without condition (6.2) is more complicated and
will not be pursued here.

6.2. Monotonicity and log-concavity properties of the partial sum of the Maclaurin series
for ex. Forx ∈ R andk ∈ {0, 1, . . . }, consider

Sk(x) :=
k−1∑
j=0

xj

j!
,

the kth partial sum for the Maclaurin series forex, where00 := 1 andS0 := 0. For all k ∈
{1, 2, . . . }, one hasS ′k = Sk−1 andSk(x) > 0 if x ≥ 0.

Consider the ratio

sk :=
Sk+1

Sk

on (0,∞). Applying Proposition 4.1 to this ratiok times and observing thats1(x) = 1 + x is
increasing inx, one obtains

Proposition 6.2. For eachk ∈ {1, 2, . . . }, one hass′k > 0 and hencesk ↗ on (0,∞).

Sinces′k = 1− Sk+1Sk−1/S
2
k , one obtains

Corollary 6.3. For eachx > 0, the partial sumSk(x) is strictly log-concave ink ∈ {1, 2, . . . }.

Corollary 6.3 also follows from results of [20].

6.3. Monotonicity and log-concavity properties of the remainder in the Maclaurin series
for ex. Forx ∈ R andk ∈ {0, 1, . . . }, consider

Rk(x) := ex −
k−1∑
j=0

xj

j!
,
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thekth remainder for the Maclaurin series forex. For allk ∈ {1, 2, . . . }, one hasR′k = Rk−1

andRk(0) = 0; also,R0(x) = ex > 0, so thatsignRk(x) = 1 if x > 0 andsignRk(x) = (−1)k

if x < 0.
Consider the ratio

rk :=
Rk+1

Rk

,

extended fromR \ {0} to R by continuity. Applying Proposition 4.5 to this ratiok times and
observing thatr0(x) = 1− e−x is increasing inx ∈ R, one obtains

Proposition 6.4. For eachk ∈ {0, 1, . . . }, the ratiork is increasing onR.

Sincer′k = 1−Rk+1Rk−1/R
2
k, one has

Corollary 6.5. For eachx 6= 0, the remainder|Rk(x)| is log-concave ink ∈ {0, 1, . . . }.

Following along the lines of the proof of Proposition 4.5, one can show that|Rk(x)| is actually
strictly log-concave ink ∈ {0, 1, . . . } for each realx 6= 0. Corollary 6.5 also follows from
results of [14, 20].

6.4. Becker-Stark and Anderson-Vamanamurthy-Vuorinen inequalities and related mono-
tonicity properties. Using series expansions based on complex analysis, Becker and Stark [8]
obtained the inequalities

(6.4)
4

π

x

1− x2
< tan

(πx
2

)
<
π

2

x

1− x2
for x ∈ (0, 1)

as a two-sided rational approximation to the tangent function. This approximation is rather
tight, since the ratio of the upper and lower bounds in (6.4) isπ

2
/ 4

π
= 1.233 . . .. Moreover, as

noted in [8], the constant factors4
π

and π
2

in (6.4) are the best possible ones.
Anderson, Vamanamurthy and Vuorinen [5] obtained another nice inequality:

(6.5)

(
sin x

x

)3

> cosx for x ∈ (0, π/2),

whose hyperbolic counterpart,

(6.6)

(
sinh x

x

)3

> coshx for x > 0,

was implicit in [5].
Here we provide monotonicity properties for appropriate ratios, which imply inequalities

(6.4), (6.5), and (6.6) in a quite elementary way. As will be seen from our proof, inequalities
(6.4) turn out to be indirectly related with (6.5) and (6.6).

Let us begin with the monotonicity properties pertaining to inequalities (6.5) and (6.6).

Proposition 6.6. The ratio (
sin x

x

)3

cosx
increases from1 to∞ asx increases from0 to π/2.

Proof. The cubic root of this ratio is the ratior(x) := sin x cos−1/3 x
x

, whose derivative ratio
ρ(x) = 2

3
cos2/3 x+ 1

3
cos−4/3 x is increasing inx ∈ (0, π/2). It remains to refer to the special-

case rule for monotonicity (Proposition 4.1). �

Quite similarly one can prove

J. Inequal. Pure and Appl. Math., 7(2) Art. 40, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


L’H OSPITAL RULES FORMONOTONICITY 17

Proposition 6.7. The ratio (
sinh x

x

)3

coshx

increases from1 to∞ asx increases from0 to∞.

Clearly, inequalities (6.5) and (6.6) immediately follow from Propositions 6.6 and 6.7, re-
spectively.

Now one is prepared to consider the monotonicity property pertaining to inequalities (6.4).

Proposition 6.8. The ratio

r(x) :=
x

1−x2

tan(πx/2)

increases from2/π to π/4 asx increases from0 to π/2. Hence, one has inequalities(6.4)and
also the mentioned fact that the constant factors4

π
and π

2
in (6.4)are the best possible ones.

Proof. Let f(x) := cot(πx/2) andg(x) := (1− x2)/x for x ∈ (0, 1), so thatf/g = r. Let

r1(x) := ρ(x) =
f ′(x)

g′(x)
=
f1(x)

g1(x)
,

wheref1(x) := π sin−2(πx/2) andg1(x) := 2 + 2x−2, x ∈ (0, 1). Consider also

ρ̃ = g2 r′

|g′|
, ρ̃1 := g2

1

r′1
|g′1|

, and ρ1(x) :=
f ′1(x)

g′1(x)
=

2

π

cos t(
sin t

t

)3 ,

wherex ∈ (0, 1) andt := πx/2, so thatρ1 ↘ on (0, 1), by Proposition 6.6. Also,̃ρ1(0+) =
π
3
− 4

π
< 0 andρ̃1(1−) = π > 0. Hence, by Corollary 3.2 (Table 3.1, line 3),r1 ↘↗ on (0, 1);

that is,ρ ↘↗ on (0, 1). Next, ρ̃(0+) = 0. Therefore, by Proposition 4.4 (Table 4.2, line 7),
r ↗ on (0, 1). �

This proof of Proposition 6.8 provides a good illustration of the monotonicity rules developed
in Sections 3 and 4.

6.5. A monotonicity property of right-angled triangles in hyperbolic geometry. The Pythago-
ras theorem for the Poincaré model of hyperbolic geometry (see e.g. [7, Theorem 7.11.1]) states
that for any right-angled (geodesic) triangle with a hypotenuse (of geodesic length)c and catheti
a andb one has

cosh c = cosh a cosh b.

Proposition 6.9. For the isosceles (witha = b) right-angled hyperbolic triangle, the ratioc/a
increases from

√
2 to 2 asa increases from0 to∞.

Proof. Fora > 0, let f(a) := arccosh(cosh2 a) andg(a) := a, so that

c

a
=
f(a)

g(a)
= r(a) and hence ρ(a) =

f ′(a)

g′(a)
=

2 cosh a√
1 + cosh2 a

.

Therefore,ρ(a) increases from
√

2 to 2 asa increases from0 to∞. The same holds forr(a),
by the special-case rule for monotonicity (Proposition 4.1) and l’Hospital’s rules for limits.�
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