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ABSTRACT. The main objective of this paper is to obtain explicit estimates on some integral
inequalities on time scale. The obtained inequalities can be used as tools in the study of certain
classes of dynamic equations on time scale.
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1. I NTRODUCTION

In 1988 Stefan Hilger [4] first introduced in the literature calculus on time scales, which
unifies continuous and discrete analysis. Motivated by the above paper [4], many authors have
extended some fundamental inequalities used in analysis on time scales, see [1] – [3], [5], [9],
[10]. In [3], [4], [9], [10] the authors have extended some fundamental integral inequalities
used in the theory of differential and integral equations on time scales. The main purpose of
this paper is to obtain time scale versions of some more fundamental integral inequalities used
in the theory of differential and integral equations. The obtained inequalities can be used as
tools in the study of certain properties of dynamic equations on time scales. Some applications
are also given to illustrate the usefulness of some of our results.

2. PRELIMINARIES

Let T be a time scale andσ andρ be two jump operators asσ, ρ : T → R satisfying

σ(t) = inf{s ∈ T|s > t} and ρ(t) = sup{s ∈ T|s < t}.

A function f : T → R is said to be rd-continuous if it is continuous at each right dense point
and if the left sided limit exists at every left dense point. The set of all rd-continuous functions
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2 DEEPAK B. PACHPATTE

is denoted byCrd[T, R]. Let

Tk :=

{
T−m if T has left scattered point in M

T otherwise

Let f : T → R andt ∈ Tk then we definef∆(t) as: forε > 0 there exists a neighbourhoodN
of t with ∣∣f (σ (t))− f (s)− f∆ (t) (σ (t)− s)

∣∣ ≤ ε |σ (t)− s|
for all s ∈ N andf is called delta-differentiable onT. A function F : T → R is called an
antiderivative off : T → R providedF∆ = f (t) holds for allt ∈ Tk. In this case we define
the integral off by ∫ t

s

f (τ) ∆τ = F (t)− F (s) wheres, t ∈ T.

We need the following two lemmas proved in [3].

Lemma 2.1. Letu, g ∈ Crd(T, R) andf ∈ R+. If

(2.1) u∆ (t) ≤ f (t) u (t) + g (t)

for all t ∈ Tk, then

(2.2) u (t) ≤ u (a) ef (t, a) +

∫ t

a

ef (t, σ (s)) g (t) ∆s,

for all t ∈ Tk, whereef (t, a) is a solution of the initial value problem (IVP)

(2.3) u∆ (t) = f (t) u (t) , u (a) = 1

Lemma 2.2. Letu, f, g, p ∈ Crd(T, R) and assumeg, p ≥ 0 andf is nondecreasing onT

(2.4) u (t) ≤ f (t) + p (t)

∫ t

a

g (τ)u (τ) ∆τ,

for all t ∈ Tk then

(2.5) u (t) ≤ f (t)

[
1 + p (t)

∫ t

a

g (τ) egp (t, σ (τ)) ∆τ

]
for all t ∈ Tk whereegp (t, ·) is a solution of IVP (2.3) whenf is replaced bygp.

3. STATEMENT OF RESULTS

Our main results are given in the following theorems.

Theorem 3.1.Letu, n, f ∈ Crd(T, R+) andn be a nondecreasing function onT. If

(3.1) u (t) ≤ n (t) +

∫ t

a

f (s)u (s) ∆s

for all t ∈ Tk, then

(3.2) u (t) ≤ n (t) ef (t, a)

for all t ∈ Tk, whereef (t, a) is the solution of the initial value problem (2.2).

Remark 3.2. We note that Theorem 3.1 is a further extension of the inequality first given by
Bellman see [6, p. 12]. In the special case ifn(t) is a constant sayu0, then the bound obtained
in (3.2) reduces to the bound obtained in Corollary 2.10 given by Bohner, Bohner and Akin in
[3].
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We next establish the following generalization of the inequality given in Corollary 2.10 of [3]
which may be useful in certain new applications.

Theorem 3.3.Letu, f, p, q ∈ Crd(T, R+) andc ≥ 0 be a constant. If

(3.3) u (t) ≤ c +

∫ t

a

f (s) [p (s) u (s) + q (s)] ∆s,

for all t ∈ Tk, then

(3.4) u (t) ≤
[
c +

∫ t

a

f (s)q (s) ∆s

]
epf (t, a) ,

for all t ∈ Tk, whereepf (t, a) is the solution of IVP (2.3) whenf(t) is replaced bypf .

Remark 3.4. By takingq = 0 in Theorem 3.3, it is easy to observe that the bound obtained in
(3.4) reduces to the bound obtained in Corrollary 2.10 given in [3].

The next theorem deals with the time scale version of the inequality due to Sansone and
Conti, see [6, p. 86].

Theorem 3.5.Letu, f, p ∈ Crd(T, R+) andf be delta-differentiable onT andf∆ (t) ≥ 0. If

(3.5) u (t) ≤ f (t) +

∫ t

a

p (s) u (s) ∆s

for all t ∈ Tk, then

(3.6) u (t) ≤ f (a) ep (t, a) +

∫ t

a

f∆ (s)ep (t, σ (s)) ∆s

for all t ∈ Tk, whereep (t, a) is a solution of the IVP (2.3) whenf is replaced byp.

The following theorem combines both Gronwall and Bihari’s inequalities and can be used in
more general situations.

Theorem 3.6. Let u, g, f, h ∈ Crd(T, R+), u0 ≥ 0 is a constant. LetW (u) be a continous,
non-decreasing and submultiplicative function defined onR+ andW (u) > 0 for u > 0. If

(3.7) u (t) ≤ u0 + g (t)

∫ t

a

f (s) u (s) ∆s +

∫ t

a

h (s) W (u (s)) ∆s,

for all t ∈ Tk, then

(3.8) u (t) ≤ a (t) G−1

[
G (u0) +

∫ t

a

h (s) W (a (s)) ∆s

]
,

for t ∈ Tk, where

(3.9) a (t) = 1 + g (t)

∫ t

a

f (s)efg (t, σ (s)) ∆s,

for t ∈ Tk andG is a solution of

(3.10) G∆ (u (t)) =
u∆ (t)

W (u (t))
,

G−1 is the inverse function ofG andG (u0) +
∫ t

a
h (s) W (a (s))∆s is in the domain ofG−1 for

t ∈ Tk.

The following theorem deals with a time scale version of the inequality recently established
by Pachpatte in [8].

J. Inequal. Pure and Appl. Math., 7(4) Art. 143, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Theorem 3.7.Letu, f ∈ Crd(T, R+) andh(t, s) : T×T → R+ for 0 ≤ s ≤ t < ∞ andc ≥ 0,
p > 1 are real constants. Letg(u) be a continuous nondecreasing function ofR+ andg(u) > 0
for u > 0. If

(3.11) up (t) ≤ c +

∫ t

a

[
f (s) g (u (s)) +

∫ s

a

h (s, τ) g (u (τ)) ∆τ

]
∆s,

for t ∈ Tk, then

(3.12) u (t) ≤
[
G−1 [G (c) + A (t)]

] 1
p ,

where

(3.13) A (t) =

∫ t

a

[
f (s) +

∫ s

a

h (s, τ) ∆τ

]
∆s,

for t ∈ Tk, G is a solution of

(3.14) G∆ (u (t)) =
u∆ (t)

g (u (t))
1
p

,

andG−1 is the inverse function onG with G(c) + A(t) in the domain ofG−1 for t ∈ Tk.

4. PROOFS OF THEOREMS 3.1 – 3.5

Let ε > 0 be a small constant. From (3.1) we observe that

(4.1) u (t) ≤ (n (t) + ε) +

∫ t

a

f (s) u (s)∆s.

Define a functionz(t) by

z (t) =
u (t)

n (t) + ε
.

From (4.1) we have

z (t) ≤ 1 +

∫ t

a

(
f (s)

u (s)

n (t) + ε

)
∆s

≤ 1 +

∫ t

a

f (s)
1

n (s) + ε
u (s) ∆s

i.e

(4.2) z (t) ≤ 1 +

∫ t

a

f (s)z (s) ∆s.

Definem (t) = 1 +
∫ t

a
f (s)z (s) ∆s, thenm(a) = 1, z(t) ≤ m(t) and

m∆ (t) = f (t) z (t)(4.3)

≤ f (t) m (t) .

Now a suitable application of Lemma 2.1 to (4.3) yields

(4.4) m (t) ≤ ef (t, a) .

Using the fact thatz(t) ≤ m(t) we get

u (t)

n (t) + ε
≤ ef (t, a) ,

(4.5) i.e u (t) ≤ (n (t) + ε) ef (t, a) .
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Letting ε → 0 in (4.5), we get the required inequality in (3.2).
In order to prove Theorem 3.3, we rewrite (3.3) as

(4.6) u (t) ≤
[
c +

∫ t

a

f (s) q (s) ∆s

]
+

∫ t

a

f (s)p (s) u (s) ∆s.

Definen (t) = c +
∫ t

a
f (s)q (s) ∆s, then (4.6) can be restated as

(4.7) u (t) ≤ n (t) +

∫ t

a

f (s)p (s) u (s) ∆s.

Clearly n ∈ Crd (T, R+), n(t) is nonnegative and nondecreasing . Now an application of
Theorem 3.1 yields the required inequality in (3.4). This completes the proof of Theorem 3.3.

In order to prove Theorem 3.5, define a functionz(t) by

(4.8) z (t) = f (t) +

∫ t

a

p (s)u (s) ∆s,

thenz(a) = f(a), u(t) ≤ z(t) for t ∈ Tk and

z∆ (t) = f∆ (t) + p (t) u (t)(4.9)

≤ f∆ (t) + p (t) z (t) .(4.10)

Now a suitable application of Lemma 2.1 to (4.8) yields

(4.11) z (t) ≤ z (a) ep (t, a) +

∫ t

a

ep (t, σ (s))f∆ (s) ∆s

for t ∈ Tk. Using (4.11) inu(t) ≤ z(t) we get the desired inequality in (3.6).

5. PROOFS OF THEOREMS 3.6 AND 3.7

To prove Theorem 3.6, we define

(5.1) n (t) = u0 +

∫ t

a

h (s)W (u (s)) ∆s.

Then (3.7) can be restated as

(5.2) u (t) ≤ n (t) + g (t)

∫ t

a

f (s)u (s) ∆s.

Clearlyn(t) is a nondecreasing function onT. Applying Lemma 2.2 to (5.2) we have

(5.3) u (t) ≤ a (t) n (t) ,

for t ∈ Tk, wherea(t) is given by (3.9). From (5.1), (5.3) and using the assumptions onW , we
have

n∆ (t) = h (t) W (u (t))(5.4)

≤ h (t) W (a (t) n (t))

≤ h (t) W (a (t) W (n (t))) .

From (3.10) and (5.4) we have

(5.5) G∆ (n (t)) =
n∆ (t)

W (n (t))
≤ h (t) W (a (t)) .
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Integrating (5.5) froma to t ∈ Tk we obtain

(5.6) G (n (t))−G (u0) ≤
∫ t

a

h (t)W (a (t)) ∆s,

from (5.6) we observe that

(5.7) n (t) ≤ G−1

[
G (u0) +

∫ t

a

h (t)W (a (t)) ∆s

]
.

Using (5.7) in (5.3) we get the desired inequality in (3.8).
In order to prove Theorem 3.7, we first assume thatc > 0 and define a functionz(t) by the

right side of (3.11) . Thenz(t) > 0, z(a) = c, u (t) ≤ (z(t))
1
p and

z∆ (t) = f (t) g (u (t)) +

∫ t

a

h (t, τ)g (u (τ)) ∆τ(5.8)

≤ f (t) g
(
(z (t))

1
p

)
+

∫ t

a

h (t, τ) g
(
(z (t))

1
p

)
∆τ

≤ g
(
(z (t))

1
p

) [
f (t) +

∫ t

a

h (t, τ) ∆τ

]
.

From (3.14) and (5.8) we have

G∆ (z (t)) =
z∆ (t)

g
(
(z (t))

1
p

)
≤

[
f (t) +

∫ t

a

h (t, τ) ∆τ

]
.(5.9)

Integrating (5.9) froma to t ∈ Tk we have

(5.10) G (z (t)) ≤ G (c) + A (t) .

From (5.10) we get

(5.11) z (t) ≤ G−1 [G (c) + A (t)] .

Using (5.11) inu (t) ≤
(
(z (t))

1
p

)
we have the desired inequality in (3.12). Ifc is nonnegative

we carry out the above procedure withc + ε instead ofc, whereε > 0 is an arbitrary small
constant and by lettingε → 0 we obtain (3.12).

6. APPLICATIONS

In this section we present some applications of Theorems 3.5 and 3.7 to obtain the explicit
estimates on the solutions of certain dynamic equations.

First we consider the following intial value problem

(6.1) x∆∆(t) = f (t, x (t)) , x (a) = A, x∆ (a) = B,

wheref ∈ Crd (T× R, R) andA, B are given constants.
The following result gives the bound on the solution of IVP (6.1).

Theorem 6.1.Suppose that the functionf satisfies

(6.2) |(t− s) f (s, x (s))| ≤ p (s) |x (s)| ,
wherep ∈ Crd

(
Tk, R+

)
, and assume that

(6.3) |A + B (t− a)| ≤ m (t) ,
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m ∈ Crd (T, R+), m is delta differentiable onTk andm∆ (t) ≥ 0. Then

(6.4) |x (t)| ≤ m (a) ep (t, a) +

∫ t

a

m∆ (s)ep (t, σ (s)) ∆s,

for t ∈ Tk, whereep (t, a) is as in Theorem 3.5.

Proof. Let x(t) be a solution of the IVP (6.1). Then it is easy to see thatx(t) satisfies the
equivalent integral equation

(6.5) x (t) = A + B(t− a) +

∫ t

a

(t− s)f (s, x (s)) ∆s.

From (6.5) and using (6.2), (6.3), we have

|x (t)| ≤ |A + B(t− a)|+
∫ t

a

|(t− s) f (s, a (s))|∆s(6.6)

≤ m (t) +

∫ t

a

g (t) p (s) |x (s)|∆s.

Now applying Theorem 3.5 to (6.6) we get

|x (t)| ≤ m (a) ep (t, a) +

∫ t

a

m∆ (s)ep (t, σ (s)) ∆s.

This is the required estimate in (6.4). �

Next we consider the following intial value problem

(6.7) (r (t) xp (t))∆ = f (t, x (t)) , x(a) = c,

wherer(t) > 0 is rd-continous fort ∈ Tk, f ∈ Crd(T× R, R) andc, p > 1 are constants.
As an application of the special version of Theorem 3.7 we have the following.

Theorem 6.2.Suppose that the functionf satisfies

(6.8) |f (t, x (t))| ≤ q (t) g (|x (t)|) ,

whereq ∈ Crd (T, R+) andg is as in Theorem 3.7 and assume that

(6.9)

∣∣∣∣ 1

r (t)

∣∣∣∣ ≤ d,

whered ≥ 0 is a constant. Then

(6.10) |x (t)| ≤
[
G−1

[
G (|r (a) c| d) +

∫ t

a

q (s) ∆s

]] 1
p

,

whereG, G−1 are as in Theorem 3.7.

Proof. Let x(t) be a solution of IVP (6.7). It is easy to see thatx(t) satisfies the equivalent
integral equation

(6.11) xp (t) =
r (a)

r (t)
c +

1

r (t)

∫ t

a

f (s, x (s))∆s.

From (6.11) and using (6.8), (6.9) we get

(6.12) |x (t)|p ≤ |r (a) c| d +

∫ t

a

dq (s)g (|x (s)|) ∆s.

Now by applying Theorem 3.7 whenh = 0 to (6.12) we get the required estimates in (6.10)�
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