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ABSTRACT. For a givend-dimensional Minkowski space (finite dimensional Banach space)
with unit ball B, one can define the concept of surface area in different ways whend ≥ 3.
There exist two well-known definitions of surface area: the Busemann definition and Holmes-
Thompson definition of surface area. The purpose of this paper is to establish lower bounds
for the surface area of the unit ball in ad-dimensional Minkowski space in case of Busemann’s
definition, whend ≥ 3.
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1. I NTRODUCTION

It was shown by Goła̧b (see [11] for details of this theorem) that in a two-dimensional
Minkowski space the surface area of the the unit ball lies between 6 and 8 where the extreme
values are attained if and only if the unit ball is a regular hexagon and a parallelogram, respec-
tively. Recall that in a two-dimensional Minkowski space the surface area is defined by the
induced norm of this space. One can also raise the following question: “What are the extremal
values of the surface area of the unit ball in ad-dimensional Minkowski space, whend ≥ 3?”
To answer this question, first the notion of surface area needs to be defined, since the norm is
no longer sufficient to define the surface area, whend ≥ 3. Various definitions of surface area
were explored in higher dimensional Minkowski spaces (see [2, 3, 4, 12, 13]).

One of the definitions of surface area was given by Busemann in his papers [1, 2, 3]. In
[4], Busemann and Petty investigated thisBusemann definition of surface areafor the unit ball
whend ≥ 3. They proved that ifB is the unit ball of ad-dimensional Minkowski spaceMd =
(Rd, || · ||), then its Busemann surface areaνB(∂B) is at most2dεd−1, and is equal to2dεd−1

if and only if B is a parallelotope. Hereεd stands for the volume of the standardd-dimensional
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Euclidean unit ball. They also raised the following question: “What is the extremum value
for the lower bounds of this surface area?” There have been obtained some lower bounds (not
sharp) for this surface area of the unit ball ind−dimensional Minkowski spaces. In [12] (see

also [13]), Thompson showed thatνB(∂B) ≥ 2εd−1, andνB(∂B) ≥ (dεd)
(

md

ε2d

)1/d

, where

md := min{λ(B)λ(B◦) : B a centered symmetric convex body inRd}. In [12], Thompson
also conjectured that ford > 3 the quantityνB(∂B) is minimal for an ellipsoid.

One goal of this paper is to establish some lower bounds onνB(∂B) whend ≥ 3. We will
also prove that Thompson’s conjecture is valid when the unit ball possesses a certain property.

Furthermore, we shall show that in general Busemann’s intersection inequality cannot be
strengthened to

λd−1(K)λ((IK)◦) ≥
(

εd

εd−1

)d

in Rd. Namely, we present a counterexample to this inequality inR3. This result shows that the
“duality” resemblance between projection and intersection inequalities does not always hold
(cf. Petty’s projection inequality in Section 2).

We shall also show the relationship between the Busemann definition of surface area and
cross-section measures.

2. DEFINITIONS AND NOTATIONS

One can find all these notions in the books of Gardner [5] and Thompson [13].
Recall that aconvex bodyK is a compact, convex set with nonempty interior, and thatK

is said to becenteredif it is centrally symmetric with respect to the origin0 of Rd. As usual,
we denote bySd−1 the standard Euclidean unit sphere inRd. We writeλi for ani-dimensional
Lebesgue measurein Rd, where1 ≤ i ≤ d, and instead ofλd we simply writeλ. If u ∈ Sd−1,
we denote byu⊥ the(d − 1)-dimensional subspace orthogonal tou, and bylu the line through
the origin parallel tou.

For a convex bodyK in Rd, we define thepolar bodyK◦ of K by

K◦ = {y ∈ Rd : 〈x, y〉 ≤ 1, x ∈ K}.

We identifyRd and itsdual spaceRd∗ by using the standard basis. In that case,λi andλ∗i
coincide inRd.

If K1 andK2 are convex bodies inX, andαi ≥ 0, i = 1, 2, then thelinear combination(for
α1 = α2 = 1 theMinkowski sum) of these convex bodies is defined by

α1K1 + α2K2 := {x : x = α1x1 + α2x2, xi ∈ Ki}.

It is easy to show that the linear combination of convex bodies is itself a convex body.
If K is a convex body inRd, then thesupport functionhK of K is defined by

hK(u) = sup{〈u, y〉 : y ∈ K}, u ∈ Sd−1,

giving the distance from 0 to the supporting hyperplane ofK with the outward normalu. Note
thatK1 ⊂ K2 if and only if hK1 ≤ hK2 for anyu ∈ Sd−1.

It turns out that every support function is sublinear, and conversely that every sublinear func-
tion is the support function of some convex set (see [13, p. 52]).

If 0 ∈ K, then theradial functionof K, ρK(u), is defined by

ρK(u) = max{α ≥ 0 : αu ∈ K}, u ∈ Sd−1 ,
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giving the distance from 0 tolu ∩ ∂K in the directionu. Note thatK1 ⊂ K2 if and only if
ρK1 ≤ ρK2 for anyu ∈ Sd−1. Both functions have the property that forα1, α2 ≥ 0

hα1K1+α2K2(u) = α1hK1(u) + α2hK2(u) ,

ρα1K1+α2K2(u) ≥ α1ρK1(u) + α2ρK2(u)

for any directionu.
We mention the relation

(2.1) ρK◦(u) =
1

hK(u)
, u ∈ Sd−1 ,

between the support function of a convex bodyK and the inverse of the radial function ofK◦.
For convex bodiesK1, ...,Kn−1, Kn in Rd we denote byV (K1, . . . , Kn) theirmixed volume,

defined by

V (K1, ..., Kn) =
1

d

∫
Sd−1

hKndS(K1, ..., Kn−1, u)

with dS(K1, ..., Kn−1, ·) as themixed surface area elementof K1,...,Kn−1.
Note that we haveV (K1, K2, ..., Kn) ≤ V (L1, K2, ..., Kn) if K1 ⊂ L1, thatV (αK1, ..., Kn) =

αV (K1, ..., Kn), if α ≥ 0 and thatV (K, K, ..., K) = λ(K). Furthermore, we will write
V (K[d− 1], L) instead ofV (K, K, ..., K︸ ︷︷ ︸

d−1

, L).

Minkowski’s inequality for mixed volumesstates that ifK1 andK2 are convex bodies inRd,
then

V d(K1[d− 1], K2) ≥ λd−1(K1)λ(K2)

with equality if and only ifK1 andK2 are homothetic.
If K2 is the standard unit ball inRd, then this inequality becomes the standard isoperimetric

inequality.
One of the fundamental theorems on convex bodies refers to theBlaschke-Santalo inequality

and states that ifK is a symmetric convex body inRd, then

λ(K)λ(K◦) ≤ ε2
d

with equality if and only ifK is an ellipsoid.
The sharp lower bound is known only for zonoids. It is called theMahler-Reisner Theorem

which states that ifK is a zonoid inRd, then

4d

d!
≤ λ(K)λ∗(K◦)

with equality if and only ifK is a parallelotope.
Recall thatzonoidsare the limits of zonotopes with respect to the Hausdorff metric, and

zonotopesare finite Minkowski sums of centered line segments.
For a convex bodyK in Rd andu ∈ Sd−1 we denote byλd−1(K|u⊥) the(d−1)-dimensional

volume of the projection ofK onto a hyperplane orthogonal tou. Recall thatλd−1(K|u⊥) is
called the(d− 1)-dimensionalouter cross-section measureor brightnessof K atu.

The projection bodyΠK of a convex bodyK in Rd is defined as the body whose support
function is given by

hΠK(u) = lim
ε→0

λ(K + ε[u])− λ(K)

ε
= λd−1(K | u⊥),

where[u] is the line segment joining−u
2

to u
2
.

Note thatΠK = Π(−K), and that a projection body is a centered zonoid. IfK1 andK2 are
centered convex bodies inRd andΠK1 = ΠK2, thenK1 = K2.
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If K is a convex body inRd, then(
2d

d

)
d−d ≤ λd−1(K)λ((ΠK)◦) ≤

(
εd

εd−1

)d

with equality on the right side if and only ifK is an ellipsoid, and with equality on the left side
if and only if K is a simplex.

The right side of this inequality is called thePetty projection inequality, and the left side was
established by Zhang (see [5]).

3. SURFACE AREA AND I SOPERIMETRIX

Let (Rd, || · ||) = Md be ad-dimensional real normed linear space, i.e., aMinkowski space
with unit ball B which is a centered convex body. Theunit sphereof Md is the boundary of the
unit ball and denoted by∂B.

A Minkowski spaceMd possesses a Haar measureν (or νB if we need to emphasize the
norm), and this measure is unique up to multiplication of the Lebesgue measure by a constant,
i.e.,

ν = σBλ.

It turns out that it is not as easy a problem to choose a right multipleσ as it seems. These two
measuresν andλ have to coincide in the standard Euclidean space.

Definition 3.1. If K is a convex body inRd, then thed-dimensional Busemann volumeof K is
defined by

νB(K) =
εd

λ(B)
λ(K), i.e., σB =

εd

λ(B)
.

Note that these definitions coincide with the standard notion of volume if the space is Eu-
clidean, and thatνB(B) = εd.

Let M be a surface inRd with the property that at each pointx of M there is a unique tangent
hyperplane, and thatux is the unit normal vector to this hyperplane atx. Then theMinkowski
surface areaof M is defined by

νB(M) :=

∫
M

σB(ux)dS(x).

For theBusemann surface area, σB(u) is defined by

σB(u) =
εd−1

λ(B ∩ u⊥)
.

The functionσ(u) can be extended homogeneously to the whole ofMd, and it turns out that
this extended function is convex (see [4], or [5]). Thus, this extended functionσ is the support
function of some convex body inRd. We denote this convex body byTB, therefore ifK is a
convex body inMd, then Minkowski’s surface area ofK can also be defined by

(3.1) νB(∂K) = dV (K[d− 1], TB).

We deduce thatνB(∂TB) = dλ(TB).
From Minkowski’s inequality for mixed volumes one can see thatTB plays a central role

regarding the solution of theisoperimetric problemin Minkowski spaces.
Among the homothetic images ofTB we want to specify a unique one, called theisoperimetrix

T̂B, determined byνB(∂T̂B) = dνB(T̂B).

Proposition 3.1. If B is the unit ball ofMd andT̂B = λ(B)
εd

TB, then

νB(∂T̂B) = dνB(T̂B).
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Proof. We use properties of the surface area, and straight calculation to obtain

νB(∂T̂B) =
λd−1(B)

εd−1
d

νB(∂TB)

= d
λd−1(B)

εd−1
d

λ(TB)

= d
εd

λ(B)
λ(T̂B) = dνB(T̂B).

�

Now we define the inner and outer radius of a convex body in a Minkowski space. Note that
in Minkowski geometry these two notions are used with different meanings (see [11], [13]). As
in [13], here these notions are defined by using the isoperimetrix.

Definition 3.2. If K is a convex body inRd, theinner radiusof K, r(K), is defined by

r(K) = max{α : ∃x ∈ MdwithαT̂B ⊆ K + x},

and theouter radiusof K, R(K), is defined by

R(K) = min{α : ∃x ∈ MdwithαT̂B ⊇ K + x}.

4. THE I NTERSECTION BODY

We know thatσB(f) = εd−1

λ(B∩u⊥)
is a convex function and the support function ofTB. Since

the support function is the inverse of the radial function, we have that

ρ(u) = σ−1
B (u) = ε−1

d−1λ(B ∩ u⊥)

is the radial function ofT ◦B.
The intersection bodyof K is a convex body whose radial function isλ(K ∩ u⊥) in a given

directionu, and we denote it byIK (see [7] for more about intersection bodies). We can also
rewrite the solution of the isoperimetric problemTB as

(4.1) TB = εd−1(IB)◦.

One can see thatTαB = α1−dTB for α ≥ 0.
There is an important relationship between the volume of a convex body and the volume of

its intersection body. It is calledBusemann’s intersection inequalitywhich states that ifK is a
convex body inRd, then

λ(IK) ≤
(

εd−1

εd

)d

ε2
dλ

d−1(K)

with equality if and only ifK is a centered ellipsoid (see [5]).
SettingK = B in Busemann’s intersection inequality and using (4.1), we can rewrite this

inequality as

(4.2) λ(T ◦B)εd
d ≤ ε2

dλ
d−1(B).

It turns out that ifK is a convex body inX with 0 as an interior point, then

(4.3) IK ⊆ ΠK,

with equality if and only ifK is a centered ellipsoid (see [8]).
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Recall that the intersection body of a centeredd-dimensional ellipsoidE is a centered ellip-
soid, i.e., more precisely we have

IE =
εd−1λ(E)

εd

E.

5. SOME L OWER BOUNDS ON THE SURFACE AREA OF THE UNIT BALL

As we mentioned in the introduction, the reasonable question is to ask how large and how
small the surface area of the unit ball ofMd for the Busemann definition can be. In [4] Buse-
mann and Petty showed that ifB is the unit ball of ad-dimentional Minkowski spaceMd,
then

νB(∂B) ≤ 2dεd−1

with equality if and only ifB is a parallelotope.
In this section we establish lower bounds for the Busemann surface area of the unit ball in a

d-dimensional Minkowski space whend ≥ 3.

Theorem 5.1. If B is the unit ball of ad−dimensional Minkowski spaceMd, then

νB(∂B) ≥ εd−1

(
2d

d

) 1
d

.

Proof. SinceTB = εd−1(IB)◦ ⊇ εd−1(ΠB)◦, we get by Zhang’s inequality

λ(TB) ≥ εd
d−1λ((ΠB)◦) ≥

(
2d

d

)
d−dεd

d−1λ
1−d(B).

Therefore

ddλd−1(B)λ(TB) ≥
(

2d

d

)
εd
d−1.

From Minkowski’s inequality it follows thatνd
B(∂B) ≥ ddλd−1(B)λ(TB). Hence the result

follows. �

We note that
(
2d
d

)
≥ 2d.

Theorem 5.2. If B is the unit ball of ad-dimensional Minkowski spaceMd, then

νB(∂B) ≥ dεd

(
λ(TB)λ(T ◦B)

ε2
d

) 1
d

with equality if and only ifB is an ellipsoid.

Proof. It follows from Busemann’s intersection inequality that

λ(T ◦B) ≤ (ε2
d/ε

d
d)λ

d−1(B).

Therefore
λ(TB)λ(T ◦B) ≤ (ε2

d/ε
d
d)λ

d−1(B)λ(TB).

Using Minkowski’s inequality we get

νd
B(∂B)

ddεd
d

ε2
d ≥ λ(TB)λ(T ◦B).

Hence the inequality follows, and one can also see that equality holds if and only ifB is an
ellipsoid. �
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Let us defineµTB
(TB) =

λ(TB)λ(T ◦B)

εd
, i.e., the Holmes-Thompson definition of volume forTB

(see [6] or [13]) in ad-dimensional Minkowski space(Rd, TB).
It follows from the Blaschke-Santalo inequality that

εd

(
λ(TB)λ(T ◦B)

ε2
d

) 1
d

≥ µTB
(TB)

with equality if and only ifB is an ellipsoid.
We obtain the following.

Corollary 5.3. If B is the unit ball of ad-dimensional Minkowski spaceMd, then

νB(∂B) ≥ dµTB
(TB),

with equality if and only ifB is an ellipsoid.

We show that Thompson’s conjecture is valid when the unit ball possesses a certain property.

Theorem 5.4. If B is the unit ball ofMd with an outer radius ofR(B), then

νB(∂B) ≥ dεd

R
,

with equality if and only ifB = R(B)T̂B.

Proof. SinceT̂B is the solution of the isoperimetric problem, we have

νd
B(∂B)

νd−1
B (B)

≥ νd
B(∂T̂B)

νd−1
B (T̂B)

= ddνB(T̂B) ≥ dd

Rd
νB(B).

Hence the result follows, sinceνB(B) = εd. Obviously, if equality holds, then we getB =

R(B)T̂B. If B = R(B)T̂B, then we have

νB(∂B) = Rd−1νB(∂T̂B) =
d

R
RdνB(T̂B) =

d

R
νB(B).

�

Corollary 5.5. If B is the unit ball of ad−dimensional Minkowski spaceMd such thatR(B) ≤
1, then

νB(∂B) ≥ dεd,

with equality if and only ifB = T̂B.

Proof. The inequality part and the implication follow from Theorem 5.4.
Now assume thatR(B) ≤ 1 andνB(∂B) = dεd. ThenB ⊆ T̂B, and

ddεd
d = ddV d(B[d− 1], TB) ≥ ddλd−1(B)λ(TB).

This gives us thatλ(B) ≥ λ(T̂B). Henceλ(B) = λ(T̂B), and this is the case whenB = T̂B. �

In [12], Thompson showed that if the unit ball is an affine regular rombic dodecahedron in
R3, thenνB(∂B) = dεd = 4π. Therefore, for a rombic dodecahedron inR3 eitherB = T̂B

or R(B) > 1. The first one cannot be the case, since ifB is a rombic dodecahedron, then the
facets of(IB)◦ become “round” (cf. [13, p. 153]).

Corollary 5.6. If R(B) is the outer radius of the unit ball ofB in a d-dimensional Minkowski
spaceMd, then

R(B) ≥ εd

2εd−1

.
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Proof. The result follows from the fact thatνB(∂B) ≤ 2dεd−1 and Theorem 5.4. �

In [9], it was proved thatR(B) ≤ dεd

2εd−1
with equality if and only ifB is a parallelotope.

Theorem 5.7. If B is the unit ball of ad-dimensional Minkowski spaceMd such thatλ(T̂B) ≥
λ(B), then

νB(∂B) ≥ dεd,

with equality if and only ifB = T̂B.

Proof. We can rewriteλ(T̂B) ≥ λ(B) as

λd−1(B)λ(TB) ≥ εd
d.

This gives us

νd
B(∂B) = ddV d(B[d− 1], TB) ≥ ddλd−1(B)λ(TB) ≥ ddεd

d.

Hence the result follows. Obviously, ifB = T̂B, thenνB(∂B) = dεd. If νB(∂B) = dεd,
then it follows from Minkowski’s inequality thatB andTB must be homothetic. Therefore
λ(T̂B) = λ(B), and this is the case whenB = T̂B. �

From Theorem 5.7 it follows that ifB is a rombic dodecahedron inMd, thenλ(T̂B) < λ(B).
In [10] it was conjectured that if̂IB is the isoperimetrix for the Holmes-Thompson definition

in ad-dimensional Minkowski spaceMd, then

λ(ÎB) ≥ λ(B)

with equality if and only ifB is an ellipsoid.
Therefore, ifB is a rombic dodecahedron inR3, thenλ(ÎB) > λ(T̂B).

Problem 5.1. If r(B) is the inner radius of the unit ballB for the isoperimetrixT̂B, is it then
true that

r(B) ≤ 1

with equality if and only ifB is an ellipsoid?

The answer of this question will tell us whether there exists a unit ball such thatT̂B ⊆ B. For
the Holmes-Thompson definition of the isoperimetrixÎB, r(B) ≤ 1 holds with equality if and
only if B is an ellipsoid (see [10] or [13]).

In [13] (Problem 7.4.3, or p. 245) A.C. Thompson asked whether Busemann’s intersection
inequality can be strengthened to

λd−1(K)λ((IK)◦) ≥
(

εd

εd−1

)d

.

It is easy to show that equality holds for an ellipsoid. SettingK = B, we get

λ(T̂B) ≥ λ(B).

As we have shown, the last inequality does not hold whenB is a rombic dodecahedron in
M3.

Now we show the relationship between cross-section measures and the Busemann definition
of surface area.
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Proposition 5.8. If the unit ballB of Md satisfies

λd−1(B ∩ u⊥)λ1(B|lu)
λ(B)

≤ 2εd−1

εd

for eachu ∈ Sd−1, then
νB(∂B) ≥ dεd.

Proof. It follows from the hypothesis of the proposition that for anyu ∈ Sd−1

ρIB(u)hB(u) ≤ εd−1

εd

λ(B).

Using (2.1), we getεdhB(u) ≤ λ(B)hTB
(u) for each direction, and therefore

εdB ⊆ TBλ(B).

Hence the result follows from properties of mixed volumes and (3.1). �

Problem 5.2.
a) Does there exist a centered convex bodyK in Rd such that

λd−1(K ∩ u⊥)λ1(K|lu)
λ(K)

>
2εd−1

εd

for eachu ∈ Sd−1?
b) Is it true that for a centered convex bodyK in Rd

λd−1(K ∩ u⊥)λ1(K|lu)
λ(K)

=
2εd−1

εd

holds for eachu ∈ Sd−1 only whenK is an ellipsoid?
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