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Abstract

The object of the present paper is to introduce a class of p—valent uniformly
functions UCV},. We deduce a criteria for functions to lie in the class UCV), and
derive several interesting properties such as distortion inequalities and coeffi-
cients estimates. We confirm our results using the Mathematica program by
drawing diagrams of extremal functions of this class.
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Denote byA(p, n) the class of normalized functions

(1.1) F(2) =27+ apay1 2P
k=2

regular in the unit diskD = {z : |z| < 1} andp € N, consider also its
subclasse€’(p), S*(p) consisting ofp—valent convex and starlike functions
respectively, wher€'(1) = C, S*(1) = S*, the classes of univalent convex and SO R e
starlike functions . Family of Uniformly Convex
It is well known that for anyf € C, not only f(D) but the images of all =EIE FmETon:

circles centered at 0 and lying inare convex arcs. B. Pinchuk posed a question H.A. Al-Kharsani and S.S.
whether this property is still valid for circles centered at other poinfs.of.W. Al-Hajiry
Goodman i] gave a negative answer to this question and introduced the class
UCV of univalent uniformly convex functions; € C such that any circular Title Page
arc+ lying in D, having the cente¢ € D is carried byf into a convex arc.

C
A.W.Goodman [] stated the criterion ontents
f//(z) ‘4 }b
(1.2) Re[1+(z—§)f/(z) >0, Vz,(eD<«< feUCV. < >
Later F. Ronning (and independently W. Ma and D. Mindg)dbtained a Go Back
more suitable form of the criterion , namely
, , Close
13)  Re|1+ L@ ZE e p s revew Quit
f'(z) f'(z)
Page 3 of 22

This criterion was used to find some sharp coefficients estimates and distor-
tion theorems for functions in the cla8<'V.
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We now introduce a subfamily? AR, of P. Let

2

(2.1) Q:{w:,u—i—iv:v—<2,u—p}
p

(2.2) = {w:Rew > |w —pl}.

Note that () is the interior of a parabola in the right half-plane which is
symmetric about the real axis and has vertefp@a2, 0). The following diagram
shows 2 whenp = 3:

Let

(2.3) PAR, ={h € p: h(D) C Q}.
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Example 2.1. It is known that: = — tan? (w”%\/ﬁ) maps

2
{w:u+iuzg<p—2,u}

conformally ontoD. Hence,z = — tan? (2\%\/19 — w) mapsS2 conformally

ontoD. Letw = Q(z) be the inverse function. Theép(z) is a Riemann map-
ping function fromD to 2 which satisfieg)(0) = p; more explicitly,

(2.4) Q) = p+2—(log(if*f)) -35,
(2.5) _p+@z+@ > 1890,

32 4572

Obviously,Q(z) belongs to the clasBAR,. Geometrically,P AR, consists
of those holomorphic functions(z) (h(0) = p) defined onD which are subor-
dinate toQ(z), writtenh(z) < Q(z2).

The analytic characterization of the claBst R, is shown in the following
relation:

(2.6) h(z) € PAR, < Re{h(z)} > |h(2) — p|

“+ ..

such thati(z) is ap—valent analytic function om.
Now, we can derive the following definition.

Definition 2.1. Let f(z) € A(p,n). Thenf(z) € UCV, if f(2) € C(p) and
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We present the nessesary and sufficient condition to belong to thelolalgs
in the following theorem:

Theorem 3.1.Let f(z) € A(p,n). Then

PN LI
(3.1) f(z)GUC%@l—i—Re{zf/(Z)}Z‘ 702) (p—1)

Proof. Let f(z) € UCV, andh(z) =1+ z’;/,/((j)). Thenh(z) € PAR,, that s,
Re{h(z)} > |h(z) — p|. Then

fm{1+zf%d}22%f%d—%p—lﬂ.

, z€D.

f'(2) f'(2)

Example 3.1. We now specify a holomorphic functiéfiz) in D by

KII(Z)
K'(z)

(3.2) 1+ 2 = Q(2),

whereQ(z) is the conformal mapping ont@ given in Example.1. Then it is
clear from Theoren3.1that K(z) isin UC'V,,.
Let

(3.3) K(z) = 2"+ Z Ay 2L

k=2
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From the relationship between the functiagpéz) and K (=), we obtain

-1

(3.4) (p+n—1)mn-1A,=> (k+p—1)A4B. 4.

=1

3

Ed

Since all the coefficient8,, are positive, it follows that all of the coefficierds
are also positive. In particular,

8p?
3.5 Ay = ————
( ) 2 7T2(p—|- 1)a
and
2
P 16 64p
) As = i I
(3.6) 3 2(p+ 2) (37T2 + 4 >
Note that
(3.7) / Q) =Py

By computing some coefficients &fz) whenp =
following diagram

3, we can obtain the
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In this section, we first derive some subordination results from Thedr&éms

corollaries we obtain sharp distortion, growth, covering and rotation theorems

from the familyUC'V,.

Theorem 4.1. Assume thatf (z) € UCV,,. Thenl + 2472 < 1 4 247E) and
f'z)  K'(2)
—_7 _< —_—

zp—1 zp—1 "

Proof. Let f(z) € UCV,. Thenh(z) = 1+ 258 <1+ 2478 is the same
as h(z) < Q(z). Note that Q(z) — p is a convex univalent function i. By

using a result of Goluzin, we may conclude that
!/ _ 1 K/
(4.1) logf(z):/ DS 72 g </ QU =Py g K
Zp—l 0 Zp—l

Equivalently, L&) < X¢), O

lpl

Corollary 4.2 (Distortion Theorem). Assumef(z) € UCV,and |z| =r < 1.
ThenK'(—r) < |f'(2)| < K'(r).

Equality holds for some # 0 if and only if f(z) is a rotation ofK'(z).

Proof. Since@(z) — p is convex univalent inD, it follows that log K'(z) is
also convex univalent id. In fact, the power series faog K'(z) has positive
coefficients, so the image @ under this convex function is symmetric about
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the real axis. Asog - LE) S og & = K= the subordination principle shows that
4.2)  K'(-r) =l = {m‘“ Reflo ()}

< e{RelogK/(z)} _ | ( )‘ < e{glaiRe{logK'(Z)}}

_ e{logK’(r)} _ K/(T).
Note that for|z,| = r, either

Re{log f'(z0)} = |H‘11_nRe{log K'(2)}
or

Re{log f'(20)} = llfnnge{logK’( z)}

for somez, # 0 if and only if log f/(z) = log K'(e%
Theorem 4.3.Let f(z) € UCV,. Then

z)forsomed € R. O

(4.3) /()] < |71 e <@ = |21 1P
for |z| < 1. (L =~ 5.502,¢(t) is the Riemann Zeta function.

Proof. Let ¢(z) = 2%, whereg(z

means tha(z) < p + 2 <log (”‘[) Moreover ,

;
ot [ (£22)e

z2f'(z). Then¢(z) < Q(z) which
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and therefore, it = re® and|z| = 1,

g(z) ! 0 dt Qp/rl 1+t
AN [ _ )L < 2 Z
log o i Re(p(te™) p)t =z tlog T dt
2p (1 1+t 2p
< £ Z l
<Z [ e (T2 = 2o,
where . Vi
1 14+t
-1 — | dt = 7¢(3 .
/Otog(l_\/%) <3[4

Then we find that )
zf'(2)

zp

< o 25(76(3)

]

The following diagram shows the boundaryfz)’s dervative wherp = 2
in a circle has the radiu$.5)*:
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Corollary 4.4 (Growth Theorem). Let f(z) € UCV, and |z| =r < 1. Then
—K(=r) < |f(2)| < K(r).
Equality holds for some # 0 if and only if f(z) is a rotation of/{(z).

Corollary 4.5 (Covering Theorem). Supposef(z) € UCV,,. Then eitherf(z)
is a rotation of K (z) or {w: |w| < —K(—1)} C f(D).

Corollary 4.6 (Rotation Theorem). Let f(z) € UCV, and |z| = r < 1.
Then

(4.4) |Arg{f'(20)}] < rlgl‘ifArg{K’(Z)-

Equality holds for some # 0 if and only if f(z) is a rotation of/{(z).

Theorem 4.7.Let f(2) = 2P + > o0, arp—12°P~ 1 and f(z) € UCV,, and let

A, 1= max |ani,—1|. Then
n+p—1 f(z)eUCVp| n+p 1‘

8p?

(4.5) Ap1 = m

The result is sharp. Further, we get

2 n

8p 8—p
@e) A= e L ()

Proof. Let f(z) = 2P + > 1, ak+p_1zk+p‘1 andf(z) € UCYV,, and define

o(z) =1+ f” —p+Zc PRl
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Theng¢(z) < Q(z). Q(z) is univalent inD andQ(D) is a convex region, so
Rogosinski's theorem applies.
8p 16p , 184p 4
Q() p—i——Z—i-ﬁz RZ + -

so we havec,| < |B;| = % := B. Now, from the relationship between func-
tions f(z) andQ(z), we obtain

n—1
(n+p—1)(n—1anip1 = Z(k +p = 1)akp-1Cn—k-
k=1
From this we gefa, 1| = ;’fl) = W If we choosef (=) to be that function

which

for whichQ(z) = 1+ 2 then f(z2) € UCV, with a1 =
shows that this result i |s sharp Now, when we put= B, then

8p2
72 (p+1)’

a payca + (p+ 1)ayyic
e 2(p+2)
pB(1+ Bp)
2(p+2)

|ap+2| <

Whenn =3
o PaCs + (p+ Dapiica + (p + 2)api20
P+ 3(p+3)
1pB(1 + Bp)(2+ Bp)
|ap+3‘ >
2 3(p+3)

1 Bp
— mpB(l + Bp) (1 + 7) :
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We now proceed by induction. Assume we have

1 Bp Bp
< B(l+ B 4+ =—=... +
[pn—a| < (n—l)(p+n—1)p (1 P) <1 2 ) (1 n—2>

n

= (n—1)£aB+n—1)H(”%)'

k=3

Corollary 4.8. Let f(z) = 22 + > 2, arp—12°P~1 and f(z) € UCV,,. Then
|apin—1] = O (n%) :

]
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Theorem 5.1.Let f(z) = 2P + > po, arp-12°P71 and f(z) € UCYV,. Then
f(z) is ap—valently convex function of ordetin |z| < r, = r(p, 3), where
r1(p, B) is the largest value of for which

(51) kal < (p - 5)(’C ; 1) —
(k+p—ﬁ—1ﬁﬂLﬂ<1+£3)
Proof. It is sufficient to show that fof (z) € UCYV,,

2f"(z
b+ {<)—4§p—67|4<m@ﬁ% 0<3<p,

f(2)
wherer (p, 3) is the largest value of for which the inequality§.1) holds true.
Observe that

‘1 LAG) P‘ _ | Ezelh +p = Dk = Vagrya 2

f'(2) P+ sk +p—1)ap 125t

Then we hav%l + Z}C(S) - p‘ < p— 3 ifand only if

Yiea(k+p = 1)k = 1) |arpa|
P =2k +p = 1) [arpalri!

=Y (k+p—1)(k+p—1=P)|anp|r*" <p*—ps.
k=2

<p-p
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Then from Theoremd.7 sincef(z) € UCV,,, we have

pp : Bp
el < Gy (1+52%)

and we may set

k

|ak+p—1| =

{k eN- {1},2%,,_1 < 1}.

Now, for each fixed, we choose a positive integks = kq(r) for which

(k"‘P—l_ﬁ)rkq
(k—1)

is maximal. Then

D (ktp=1)(k+p—B-—1)|awpalr*
k=2

(ko +p—08-1) ;. Bp
< (ho — 1) T 1H<1+.—

(k +p —1) H (1 + _> Chtp—1, Chyp—1 = 0,
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Consequently, the functiofi(z) is ap—valently convex function of ordef in
|z| <71 =r1(p, 5) provided that

k

(ko+p—0B—1) r,_1 Bp
RS }l(”m)ﬁp@‘m

We find the value, = r,(p, 5) and the corresponding integey(r) so that

k

Then this value is the radius op—valent convexity of ordep for functions
f(z) €e UCV,,. O
Theorem 5.2. h(z) = 2 + b,4,—12" P~ 1 isin UCYV,, if and only if

2

r < b ,
(p+n—-1)(p+2n—2)

where|b,.,_1| = r andb,,, 12" = re®.

Proof. Letw(z) = 1+ 22&) Thenh(z) e UCV,ifandonlyifw(z) € PAR,

b (2)
which means thaiRe{w(z)} > |w(z) — p|. On the other side we have

e )2 )
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then

Re{1+ Z:(S)} - Re{(p— 1) +

p+ (n+p—1)nre?
p+ (n+p—1)re? }

PP pn+p—1)(n+2p—1)rcosf + (n+p—1)*?
B Ip+ (n+p— red|? '

The right-hand side is seen to have a minimuntfer = and this minimal value

IS
pP+pn+p—1)(n+2p—1)r+ (n+p—1)%?

p+ (n+p—1)re?f?
Now, by computation we see that
zh"(z) |
h'(z)

_ n+p—1)(n—1)r
lp+ (n+p—1)re?|

‘1+

Then

P+pn+p—1Dn+2p—1r+(n+p—1)>3
p—(n+p—1)r

(n+p—1n—-1r<

?

which leads to
n+p—1Dn—-1r<p’ —n+p—1).

Hence,
2

r< P .
“(n+p—-1)2n+p-2)
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Theorem 5.3.Let f(z) € UCV, then(f(z))? € UCYV,,.
Proof. Letw(z) = (f(z))?, then

WE L TG
M) TR T Dy
Then we find
w'z)| [z
Re 145}~ ~ 0 )
= Re zf”(z) — z@
- {” o) T f(Z)}
| (R)
7o) VTG
Sincef(z) € UCV, therefore we have
PE L P
Re{l”f’(zﬁ“’ D f(Z)}
LI e
EER e )

f(z) e UCV, thenf(z) € SP [/] which means that

Re{z

['(2)
f(2)

b-l:

f'(2)
f(2)

~1z0

f(2)

Fz)
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Then

w”(Z) w//<2)

Re{l—l—zw/(z)} Zw’(z)

The following diagram shows the extermal functibfx) of the clasg/C'V/
when(k(z))P,p = 2:

—(p—1| =0
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And the following diagram shows thék(2))? < K(z):

Takingp = 1 in Theorem3.1, we obtain the corresponding Theorem 1 gf [

Takingp = 1 in Theorem4.1, we obtain the corresponding Theorem 3 of
[3].

Takingp = 1 ininequality @.3), we obtain Theorem 6 of], and in inequal-
ities (4.9, (4.6), we obtain Theorem 5 of/].

Takingp = 1 in Theoremb.2, we obtain Theorem 2 of/].
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