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ABSTRACT. The object of the present paper is to introduce a class ofp−valent uniformly func-
tions UCVp. We deduce a criteria for functions to lie in the classUCVp and derive several
interesting properties such as distortion inequalities and coefficients estimates. We confirm our
results using the Mathematica program by drawing diagrams of extremal functions of this class.
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1. I NTRODUCTION

Denote byA(p, n) the class of normalized functions

(1.1) f(z) = zp +
∞∑

k=2

ak+p−1z
k+p−1

regular in the unit diskD = {z : |z| < 1} andp ∈ N, consider also its subclassesC(p), S∗(p)
consisting ofp−valent convex and starlike functions respectively, whereC(1) ≡ C, S∗(1) ≡
S∗, the classes of univalent convex and starlike functions .

It is well known that for anyf ∈ C, not onlyf(D) but the images of all circles centered at
0 and lying inD are convex arcs. B. Pinchuk posed a question whether this property is still
valid for circles centered at other points ofD. A.W. Goodman [1] gave a negative answer to
this question and introduced the classUCV of univalent uniformly convex functions,f ∈ C
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such that any circular arcγ lying in D, having the centerζ ∈ D is carried byf into a convex
arc. A.W.Goodman [1] stated the criterion

(1.2) Re

[
1 + (z − ζ)

f ′′(z)

f ′(z)

]
> 0, ∀z, ζ ∈ D ⇐⇒ f ∈ UCV.

Later F. Ronning (and independently W. Ma and D. Minda) [7] obtained a more suitable
form of the criterion , namely

(1.3) Re

[
1 +

zf ′′(z)

f ′(z)

]
>

∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ , ∀z ∈ D ⇐⇒ f ∈ UCV.

This criterion was used to find some sharp coefficients estimates and distortion theorems for
functions in the classUCV .

2. THE CLASS PARp

We now introduce a subfamilyPARp of P . Let

Ω =

{
w = µ + iυ :

υ2

p
< 2µ− p

}
(2.1)

= {w : Re w > |w − p|}.(2.2)

Note thatΩ is the interior of a parabola in the right half-plane which is symmetric about the
real axis and has vertex at(p/2, 0). The following diagram showsΩ whenp = 3:

Let

(2.3) PARp = {h ∈ p : h(D) ⊆ Ω}.

Example 2.1. It is known thatz = − tan2
(

π
2
√

2p

√
w

)
maps

{
w = µ + iν : ν2

p
< p− 2µ

}
conformally ontoD. Hence,z = − tan2

(
π

2
√

2p

√
p− w

)
mapsΩ conformally ontoD. Let

w = Q(z) be the inverse function. ThenQ(z) is a Riemann mapping function fromD to Ω
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SUBORDINATION RESULTS 3

which satisfiesQ(0) = p; more explicitly,

Q(z) = p +
2p

π2

(
log

(
1 +

√
z

1−
√

z

))2

=
∞∑

n=0

Bnz
n(2.4)

= p +
8p

π2
z +

16p

3π2
z2 +

184p

45π2
z3 + · · ·(2.5)

Obviously,Q(z) belongs to the classPARp. Geometrically,PARp consists of those holo-
morphic functionsh(z) (h(0) = p) defined onD which are subordinate toQ(z), written
h(z) ≺ Q(z).

The analytic characterization of the classPARp is shown in the following relation:

(2.6) h(z) ∈ PARp ⇔ Re{h(z)} ≥ |h(z)− p|
such thath(z) is ap−valent analytic function onD.

Now, we can derive the following definition.

Definition 2.1. Letf(z) ∈ A(p, n). Thenf(z) ∈ UCVp if f(z) ∈ C(p) and1+z f ′′(z)
f ′(z)

∈ PARp.

3. CHARACTERIZATION OF UCVp

We present the nessesary and sufficient condition to belong to the classUCVp in the following
theorem:

Theorem 3.1.Letf(z) ∈ A(p, n). Then

(3.1) f(z) ∈ UCVp ⇔ 1 + Re

{
z
f ′′(z)

f ′(z)

}
≥

∣∣∣∣z f ′′(z)

f ′(z)
− (p− 1)

∣∣∣∣ , z ∈ D.

Proof. Let f(z) ∈ UCVp andh(z) = 1 + z f ′′(z)
f ′(z)

. Thenh(z) ∈ PARp, that is,Re{h(z)} ≥
|h(z)− p|. Then

Re

{
1 + z

f ′′(z)

f ′(z)

}
≥

∣∣∣∣z f ′′(z)

f ′(z)
− (p− 1)

∣∣∣∣ .

�

Example 3.1.We now specify a holomorphic functionK(z) in D by

(3.2) 1 + z
K ′′(z)

K ′(z)
= Q(z),

whereQ(z) is the conformal mapping ontoΩ given in Example 2.1. Then it is clear from
Theorem 3.1 thatK(z) is in UCVp.

Let

(3.3) K(z) = zp +
∞∑

k=2

Akz
k+p−1.

From the relationship between the functionsQ(z) andK(z), we obtain

(3.4) (p + n− 1)(n− 1)An =
n−1∑
k=1

(k + p− 1)AkBn−k.

Since all the coefficientsBn are positive, it follows that all of the coefficientsAn are also
positive. In particular,

(3.5) A2 =
8p2

π2(p + 1)
,
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and

(3.6) A3 =
p2

2(p + 2)

(
16

3π2
+

64p

π4

)
.

Note that

(3.7) log
k′(z)

zp−1
=

∫ z

0

Q(ς)− p

ς
dς.

By computing some coefficients ofK(z) whenp = 3, we can obtain the following diagram

-2
-1

0
1

2

-2

0

2

-1
-0.5

0
0.5
1

-2
-1

0
1

2  

4. SUBORDINATION THEOREM AND CONSEQUENCES

In this section, we first derive some subordination results from Theorem 4.1; as corollaries
we obtain sharp distortion, growth, covering and rotation theorems from the familyUCVp.

Theorem 4.1.Assume thatf(z) ∈ UCVp. Then1 + z f ′′(z)
f ′(z)

≺ 1 + z K′′(z)
K′(z)

and f ′(z)
zp−1 ≺ K′(z)

zp−1 .

Proof. Let f(z) ∈ UCVp. Thenh(z) = 1 + z f ′′(z)
f ′(z)

≺ 1 + z K′′(z)
K′(z)

is the same ash(z) ≺ Q(z).
Note that Q(z)− p is a convex univalent function inD. By using a result of Goluzin, we may
conclude that

(4.1) log
f ′(z)

zp−1
=

∫ z

0

h(ς)− 1

ς
dς ≺

∫ z

0

Q(ς)− p

ς
dς = log

K ′(z)

zp−1
.

Equivalently, f ′(z)
zp−1 ≺ K′(z)

zp−1 . �

Corollary 4.2 (Distortion Theorem). Assumef(z) ∈ UCVp and |z| = r < 1. ThenK ′(−r) ≤
|f ′(z)| ≤ K ′(r).

Equality holds for somez 6= 0 if and only if f(z) is a rotation ofK(z).

Proof. SinceQ(z) − p is convex univalent inD, it follows that log K ′(z) is also convex
univalent inD. In fact, the power series forlog K ′(z) has positive coefficients, so the image
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of D under this convex function is symmetric about the real axis. Aslog f ′(z)
zp−1 ≺ log K′(z)

zp−1 , the
subordination principle shows that

K ′(−r) = e{ log K′(−r)} = e

{
min
|z|=r

Re{log K′(z)}
}

(4.2)

≤ e{Re log K′(z)} = |f ′(z)| ≤ e

{
max
|z|=r

Re{log K′(z)}
}

= e{log K′(r)} = K ′(r).

Note that for|z0| = r, either

Re{log f ′(z0)} = min
|z|=r

Re{log K ′(z)}

or

Re{log f ′(z0)} = max
|z|=r

Re{log K ′(z)}

for somez0 6= 0 if and only if log f ′(z) = log K ′(eiθz) for someθ ∈ R. �

Theorem 4.3.Let f(z) ∈ UCVp. Then

(4.3) |f ′(z)| ≤
∣∣zp−1

∣∣ e
14p

π2 ς(3) =
∣∣zp−1

∣∣ Lp

for |z| < 1. (L ≈ 5.502, ς(t) is the Riemann Zeta function.)

Proof. Let φ(z) = zg′(z)
g(z)

, whereg(z) = zf ′(z). Thenφ(z) ≺ Q(z) which means thatφ(z) ≺

p + 2p
π2

(
log

(
1+

√
z

1−
√

z

))
. Moreover ,

log
g(z)

zp
=

∫ z

0

(
φ(s)− p

s

)
ds

and therefore, ifz = reiθ and|z| = 1,

log

∣∣∣∣g(z)

zp

∣∣∣∣ =

∫ r

0

<e(φ(teiθ)− p)
dt

t

≤ 2p

π2

∫ r

0

1

t
log

(
1 +

√
t

1−
√

t

)
dt

≤ 2p

π2

∫ 1

0

1

t
log

(
1 +

√
t

1−
√

t

)
dt

=
2p

π2
(7ς(3)),

where ∫ 1

0

1

t
log

(
1 +

√
t

1−
√

t

)
dt = 7ς(3) [8].

Then we find that ∣∣∣∣zf ′(z)

zp

∣∣∣∣ ≤ e
2p

π2 (7ς(3)).

�

J. Inequal. Pure and Appl. Math., 7(1) Art. 20, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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The following diagram shows the boundary ofK(z)’s dervative whenp = 2 in a circle has
the radius(5.5)2:

-20

0

20

-20

0

20

-1-0.500.51

-20

0

20  

Corollary 4.4 (Growth Theorem). Let f(z) ∈ UCVp and |z| = r < 1. Then−K(−r) ≤
|f(z)| ≤ K(r).

Equality holds for somez 6= 0 if and only if f(z) is a rotation ofK(z).

Corollary 4.5 (Covering Theorem). Supposef(z) ∈ UCVp. Then eitherf(z) is a rotation of
K(z) or {w : |w| ≤ −K(−1)} ⊆ f(D).

Corollary 4.6 (Rotation Theorem). Letf(z) ∈ UCVp and |z0| = r < 1. Then

(4.4) |Arg{f ′(z0)}| ≤ max
|z|=r

Arg{K ′(z).

Equality holds for somez 6= 0 if and only if f(z) is a rotation ofK(z).

Theorem 4.7. Let f(z) = zp +
∑∞

k=2 ak+p−1z
k+p−1 and f(z) ∈ UCVp, and letAn+p−1 =

max
f(z)∈UCVp

|an+p−1|. Then

(4.5) Ap+1 =
8p2

π2(p + 1)
.

The result is sharp. Further, we get

(4.6) An+p−1 ≤
8p2

(n + p− 1)(n− 1)π2

n∏
k=3

(
1 +

8p

(k − 2)π2

)
.

Proof. Let f(z) = zp +
∑∞

k=2 ak+p−1z
k+p−1 andf(z) ∈ UCVp, and define

φ(z) = 1 +
zf ′′(z)

f ′(z)
= p +

∞∑
k=2

ckz
k+p−1.

Then φ(z) ≺ Q(z). Q(z) is univalent inD and Q(D) is a convex region, so Rogosinski’s
theorem applies.

Q(z) = p +
8p

π2
z +

16p

3π2
z2 +

184p

45π2
z3 + · · · ,

so we have|cn| ≤ |B1| = 8p
π2 := B. Now, from the relationship between functionsf(z) and

Q(z), we obtain

(n + p− 1)(n− 1)an+p−1 =
n−1∑
k=1

(k + p− 1)ak+p−1cn−k.
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From this we get|ap+1| = pB
(p+1)

= 8p2

π2(p+1)
. If we choosef(z) to be that function for which

Q(z) = 1 + zf ′′(z)
f ′(z)

, thenf(z) ∈ UCVp with ap+1 = 8p2

π2(p+1)
, which shows that this result is

sharp. Now, when we put|c1| = B, then

ap+2 =
papc2 + (p + 1)ap+1c1

2(p + 2)

|ap+2| ≤
pB(1 + Bp)

2(p + 2)
.

Whenn = 3

ap+3 =
papc3 + (p + 1)ap+1c2 + (p + 2)ap+2c1

3(p + 3)

|ap+3| ≤
1

2

pB(1 + Bp)(2 + Bp)

3(p + 3)

=
1

3(p + 3)
pB(1 + Bp)

(
1 +

Bp

2

)
.

We now proceed by induction. Assume we have

|ap+n−1| ≤
1

(n− 1)(p + n− 1)
pB(1 + Bp)

(
1 +

Bp

2

)
· · ·

(
1 +

Bp

n− 2

)
=

pB

(n− 1)(p + n− 1)

n∏
k=3

(
1 +

Bp

k − 2

)
.

Corollary 4.8. Let f(z) = zp +
∑∞

k=2 ak+p−1z
k+p−1 and f(z) ∈ UCVp. Then |ap+n−1| =

O
(

1
n2

)
.

�

5. GENERAL PROPERTIES OF FUNCTIONS IN UCVp

Theorem 5.1. Let f(z) = zp +
∑∞

k=2 ak+p−1z
k+p−1 and f(z) ∈ UCVp. Then f(z) is a

p−valently convex function of orderβ in |z| < r1 = r1(p, β), wherer1(p, β) is the largest
value ofr for which

(5.1) rk−1 ≤ (p− β)(k − 1)

(k + p− β − 1)B
∏k

j=3

(
1 + pB

j−2

) , (k ∈ N− {1}, 0 ≤ β < p).

Proof. It is sufficient to show that forf(z) ∈ UCVp,∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p

∣∣∣∣ ≤ p− β, |z| < r1(p, β), 0 ≤ β < p,

wherer1(p, β) is the largest value ofr for which the inequality (5.1) holds true. Observe that∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p

∣∣∣∣ =

∣∣∣∣∑∞
k=2(k + p− 1)(k − 1)ak+p−1z

k−1

p +
∑∞

k=2(k + p− 1)ak+p−1zk−1

∣∣∣∣ .
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Then we have
∣∣∣1 + zf ′′(z)

f ′(z)
− p

∣∣∣ ≤ p− β if and only if∑∞
k=2(k + p− 1)(k − 1) |ak+p−1| rk−1

p−
∑∞

k=2(k + p− 1) |ak+p−1| rk−1
≤ p− β

⇒
∞∑

k=2

(k + p− 1)(k + p− 1− β) |ak+p−1| rk−1 ≤ p2 − pβ.

Then from Theorem 4.7 sincef(z) ∈ UCVp, we have

|ak+p−1| ≤
pβ

(k + p− 1)(k − 1)

k∏
j=3

(
1 +

Bp

j − 2

)
and we may set

|ak+p−1| =
pβ

(k + p− 1)(k − 1)

k∏
j=3

(
1 +

Bp

j − 2

)
ck+p−1, ck+p−1 ≥ 0,{

k ∈ N− {1},
∞∑

k=1

ck+p−1 ≤ 1

}
.

Now, for each fixedr, we choose a positive integerk0 = k0(r) for which

(k + p− 1− β)

(k − 1)
rk−1

is maximal. Then
∞∑

k=2

(k + p− 1)(k + p− β − 1) |ak+p−1| rk−1 ≤ (k0 + p− β − 1)

(k0 − 1)
rk0−1

k∏
j=3

(
1 +

Bp

j − 2

)
.

Consequently, the functionf(z) is a p−valently convex function of orderβ in |z| < r1 =
r1(p, β) provided that

(k0 + p− β − 1)

(k0 − 1)
rk0−1

k∏
j=3

(
1 +

Bp

j − 2

)
≤ p(p− β).

We find the valuer0 = r0(p, β) and the corresponding integerk0(r0) so that

(k0 + p− β − 1)

(k0 − 1)
rk0−1

k∏
j=3

(
1 +

Bp

j − 2

)
= p(p− β), (0 ≤ β < p).

Then this valuer0 is the radius ofp−valent convexity of orderβ for functionsf(z) ∈ UCVp.
�

Theorem 5.2.h(z) = zp + bn+p−1z
n+p−1 is in UCVp if and only if

r ≤ p2

(p + n− 1)(p + 2n− 2)
,

where|bn+p−1| = r andbn+p−1z
n−1 = reiθ.
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SUBORDINATION RESULTS 9

Proof. Let w(z) = 1 + zh′′(z)
h′(z)

. Thenh(z) ∈ UCVp if and only if w(z) ∈ PARp which means
thatRe{w(z)} ≥ |w(z)− p| . On the other side we have

Re

{
1 +

zh′′(z)

h′(z)

}
≥

∣∣∣∣1 +
zh′′(z)

h′(z)
− p

∣∣∣∣ ,

then

Re

{
1 +

zh′′(z)

h′(z)

}
= Re

{
(p− 1) +

p + (n + p− 1)nreiθ

p + (n + p− 1)reiθ

}
=

p3 + p(n + p− 1)(n + 2p− 1)r cos θ + (n + p− 1)3r2

|p + (n + p− 1)reiθ|2
.

The right-hand side is seen to have a minimum forθ = π and this minimal value is

p3 + p(n + p− 1)(n + 2p− 1)r + (n + p− 1)3r2

|p + (n + p− 1)reiθ|2
.

Now, by computation we see that∣∣∣∣1 +
zh′′(z)

h′(z)
− p

∣∣∣∣ =
(n + p− 1)(n− 1)r

|p + (n + p− 1)reiθ|
.

Then

(n + p− 1)(n− 1)r ≤ p3 + p(n + p− 1)(n + 2p− 1)r + (n + p− 1)3r2

p− (n + p− 1)r
,

which leads to
(n + p− 1)(n− 1)r ≤ p2 − (n + p− 1)2r.

Hence,

r ≤ p2

(n + p− 1)(2n + p− 2)
.

�

Theorem 5.3.Letf(z) ∈ UCV, then(f(z))p ∈ UCVp.

Proof. Let w(z) = (f(z))p, then

1 + z
w′′(z)

w′(z)
= 1 + z

f ′′(z)

f ′(z)
+ (p− 1)z

f ′(z)

f(z)
.

Then we find

Re

{
1 + z

w′′(z)

w′(z)

}
−

∣∣∣∣zw′′(z)

w′(z)
− (p− 1)

∣∣∣∣
= Re

{
1 + z

f ′′(z)

f ′(z)
+ (p− 1)z

f ′(z)

f(z)

}
−

∣∣∣∣z f ′′(z)

f ′(z)
+ (p− 1)z

f ′(z)

f(z)
− (p− 1)

∣∣∣∣ .

Sincef(z) ∈ UCV , therefore we have

Re

{
1 + z

f ′′(z)

f ′(z)
+ (p− 1)z

f ′(z)

f(z)

}
−

∣∣∣∣z f ′′(z)

f ′(z)
+ (p− 1)z

f ′(z)

f(z)
− (p− 1)

∣∣∣∣
≥ (p− 1)Re

{
z
f ′(z)

f(z)

}
−

∣∣∣∣z f ′(z)

f(z)
− 1

∣∣∣∣
J. Inequal. Pure and Appl. Math., 7(1) Art. 20, 2006 http://jipam.vu.edu.au/
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10 H.A. AL-KHARSANI AND S.S. AL-HAJIRY

f(z) ∈ UCV , thenf(z) ∈ SP [7] which means that

Re

{
z
f ′(z)

f(z)

}
−

∣∣∣∣z f ′(z)

f(z)
− 1

∣∣∣∣ ≥ 0.

Then

Re

{
1 + z

w′′(z)

w′(z)

}
−

∣∣∣∣zw′′(z)

w′(z)
− (p− 1)

∣∣∣∣ ≥ 0.

The following diagram shows the extermal functionk(z) of the classUCV when(k(z))p, p =
2:

The following diagram shows the extermal functionK(z) of the classUCVp whenp = 2:

And the following diagram shows that(k(z))p ≺ K(z):

 
�
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5.1. Remarks. Takingp = 1 in Theorem 3.1, we obtain the corresponding Theorem 1 of [7].
Takingp = 1 in Theorem 4.1, we obtain the corresponding Theorem 3 of [3].
Takingp = 1 in inequality (4.3), we obtain Theorem 6 of [7], and in inequalities (4.5), (4.6),

we obtain Theorem 5 of [7].
Takingp = 1 in Theorem 5.2, we obtain Theorem 2 of [4].
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