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ABSTRACT. The object of the present paper is to introduce a clags-@flent uniformly func-

tions UCYV,. We deduce a criteria for functions to lie in the cld$6’V,, and derive several
interesting properties such as distortion inequalities and coefficients estimates. We confirm our
results using the Mathematica program by drawing diagrams of extremal functions of this class.
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1. INTRODUCTION

Denote byA(p, n) the class of normalized functions
(1.1) flz) =2+ Z Apyp 12T
k=2

regular in the unit diskD = {z : |z] < 1} andp € N, consider also its subclass€$p), S*(p)
consisting ofp—valent convex and starlike functions respectively, whéfe¢) = C, S*(1) =
S*, the classes of univalent convex and starlike functions .

It is well known that for anyf € C, not only f(D) but the images of all circles centered at
0 and lying inD are convex arcs. B. Pinchuk posed a question whether this property is still
valid for circles centered at other points bf A.W. Goodmanl[1] gave a negative answer to
this question and introduced the cld$€'V of univalent uniformly convex functiong; € C'
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2 H.A. AL-KHARSANI AND S.S. AL.-HAJIRY

such that any circular arg lying in D, having the cente¢ € D is carried byf into a convex
arc. AW.Goodman |[1] stated the criterion

f"(z)
f'(2)

Later F. Ronning (and independently W. Ma and D. Minda) [7] obtained a more suitable
form of the criterion , namely

Zf”(Z) Zf//(Z)
F) } ")

This criterion was used to find some sharp coefficients estimates and distortion theorems for
functions in the clas&’C'V'.

1.2) Re[1+(z—§) }>0, Vz, (€D <= feUCV.

(1.3) Re[1+ , VzeD<+— feUCV.

2. THE CLASS PAR,

We now introduce a subfamil{? AR, of P. Let

2
(2.1) Q:{w:u+z’vzv—<2u—p}
p
(2.2) ={w:Rew > |w —pl}.

Note that(2 is the interior of a parabola in the right half-plane which is symmetric about the
real axis and has vertex gi/2, 0). The following diagram shows2 whenp = 3:
Let

(2.3) PAR,={h ep:h(D)CQ}.
. . 2
Example 2.1. It is known thatz = — tan? (2&’%\/6) maps{w =p+iv: <p-— ZM}

conformally ontoD. Hence,z = — tan? (2\7/7%\/]) — w) mapsS2 conformally ontoD. Let

w = @Q(z) be the inverse function. Thef(z) is a Riemann mapping function froi to ¢
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which satisfies)(0) = p; more explicitly,

2p 1+ 2

(2.4) Q(z) :p—l—p (log( >) ZB 2"
8p 16p , 184p ,

2. = O Wl o 't

(2:5) p+7r22+37rzz +457r2

Obviously, Q(z) belongs to the clasB AR,. Geometrically,P AR, consists of those holo-
morphic functionsh(z) (h(0) = p) defined onD which are subordinate t@)(z), written

h(z) < Q(z).
The analytic characterization of the cladg R, is shown in the following relation:
(2.6) h(z) € PAR, < Re{h(z)} > |h(z) — p|

such thati(z) is ap—valent analytic function o.
Now, we can derive the following definition.

Definition 2.1. Let f(z) € A(p,n). Thenf(z) € UCV, if f(z) € C(p)

3. CHARACTERIZATION OF UCYV,

We present the nessesary and sufficient condition to belong to théldgsin the following
theorem:

Theorem 3.1.Let f(z) € A(p,n). Then

(3.1) f(z) e UCY, ®1+Re{ /(= } fﬁ (p—l)', z€eD.
Proof. Let f(z) € UCV, andh(z) = ( ) € PAR,, thatis,Re{h(z)} >
|h(2) — p|. Then
f”(Z) f//(z)
Refi+s f(Z)}Z‘Zf’(Z) Sl
0
Example 3.1. We now specify a holomorphic functiafi(z) in D by
K”(Z) B

(3.2) 1+2 K(2) ~ Q(z),

whereQ(z) is the conformal mapping ont@ given in Examplg 2]1. Then it is clear from
Theorenj 31 thak'(z) is in UC'V,,.
Let

(3.3) K(z) =27+ A2,

From the relationship between the functigps:) and K (z), we obtain
n—1
(3.4) (p+n—1)(n-1A, = (k+p—1)AB. 4.
k=1
Since all the coefficient$s,, are positive, it follows that all of the coefficient$, are also

positive. In particular,

8p?

(3.5) Ay = m»
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and

2

P 16 64p
3.6 A= —— [ — + — .
(3.6) ST o(p+2) <3W2+7T4)
Note that
(3.7) / Qs pdg

By computing some coefficients oﬁsf(z) Whenp = 3, we can obtain the following diagram

4, SUBORDINATION THEOREM AND CONSEQUENCES

In this section, we first derive some subordination results from Theprém 4.1; as corollaries
we obtain sharp distortion, growth, covering and rotation theorems from the famng,.

K'(z)
zp—1

Theorem 4.1. Assume thatf(z) € UCV,. Thenl + 25 < 1 4 2576 and £ <

f'(z) ()

Proof. Let f(z) € UCV,. Thenh(z) =1+ =z ((Z)) <1 +zK ((Z) is the same a%i(z) < Q(z).

Note that Q)(z) — p is a convex univalent functlon iv. By using a result of Goluzin, we may
conclude that

!/ _ 1 K/
(4.2) log fp(_z) / ——dg </ Qs dg = log (Z)

z
Equivalently, 22 < XG), O
Corollary 4.2 (Distortion Theorem)Assumef(z) € UCV, and |z| =r < 1. ThenK'(—r) <

[f'(2)] < K7(r).
Equality holds for some # 0 if and only if f(z) is a rotation ofK'(z).

Proof. SinceQ(z) — p is convex univalent inD, it follows that log K'(z) is also convex
univalent inD. In fact, the power series fdog K'(z) has positive coefficients, so the image

J. Inequal. Pure and Appl. Math?(1) Art. 20, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SUBORDINATION RESULTS 5

of D under this convex function is symmetric about the real aXISlogS—Z) < log fp—ﬁ‘? the
subordination principle shows that

mm Re{log K'(2)}

(4.2) K'(—r) = el log K'(=r)} _ e{\ = }
< iRelog K'(2)} 1f/(2)] < e{rglax Re{log K'(z )}}
= (e K0} = K(r).
Note that for|z,| = r, either
Re{log f'(z0)} = min Re{log K'(2)}
or
Re{log f'(z0)} = max Re{log K'(2)}
for somez, # 0 if and only if log f/(2) = log K'(¢% 2) for somed) € R. O
Theorem 4.3.Let f(z) € UCV,. Then
(4.3) /()] < |71 e <@ = |21 1P
for |z| < 1. (L = 5.502,¢(t) is the Riemann Zeta functign.

Proof. Let ¢(z) = 222 whereg(z) = zf'(z). Theng(z) < Q(z) which means thap(z) <

9(z)
p+ 2 <log ( )) Moreover ,

log%:/j (@) ds

and therefore, it = re? and|z| = 1,

g(Z) _ 19 dt
log o —/ Re (o )7
_ 11 <1+\/'>
_7T2 o t 11—Vt
1
S2p 1 <1+\/Z)dt
7 Jo t 11—t
_2p
= S(7<(3)),
where
1 1+t
—1 dt = 7¢(3 8
[ (i) m
Then we find that
ARG P TC)
zPp
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The following diagram shows the boundary /8 z)’s dervative wherp = 2 in a circle has
the radiug(5.5):

Corollary 4.4 (Growth Theorem)Let f(z) € UCV, and |z| = r < 1. Then—K(—r) <
f(2)] < K(r).

Equality holds for some # 0 if and only if f(z) is a rotation ofK (z).

Corollary 4.5 (Covering Theorem)Suppose(z) € UCYV,. Then eitherf(z) is a rotation of
K(z) or{w: |w| < —-K(-1)} C f(D).

Corollary 4.6 (Rotation Theorem)Let f(z) € UCV,, and |z| =r < 1. Then

(4.4) |Arg{ f'(20)}] < max Arg{K'(z).

Equality holds for some # 0 if and only if f(z) is a rotation ofK'(z).

Theorem 4.7.Let f(z) = 22 + > 2, arp12"P~ 1 and f(z) € UCV,, and letA,,-1 =

max |a Then
f2)eucy, p| =il

8
(4.5) Apy1 = m

The result is sharp. Further, we get

8p? n 8p
(4.6) Antp-1 < (n+p—1)(n—1)r2 kl;[g (1 - m> ‘

Proof. Let f(z) = 2P + > o0, apip12"P7" andf(z) e UCYV,, and define
$(z) =1+ f p—i—Zc 2l

Theng¢(z) < Q(z). Q(z) is univalent inD and Q(D) is a convex region, so Rogosinski’'s
theorem applies.

8p 16p .2 184p .3

Q) =p+ G2+ g52"+ o524,
so we havec,| < |Bi| = % := B. Now, from the relationship between functiofiéz) and
Q(z), we obtain
n—1
(n+p—1)(n—1Dapsp1 = Z(k + P — 1)kip-1Cnrk-
k=1
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From this we geta, 1| = (;fl) = ﬂigil). If we choosef(z) to be that function for which

Q(z) = 1+ FL then f(2) € UCV, with a,, =

sharp. Now, when we puit;| = B, then

—,72?511), which shows that this result is
Apiog = Papcs + (p+ Dapicr

p+2 2(p n 2)
pB{ + Bp)

20p+2)

|ap+2’ <

Whenn =3

s — PWCs + (p+ 1)apric2 + (p + 2)api201
P 3(p +3)

1 pB(1+ Bp)(2+ Bp)

2 3(p+3)

1 Bp
:3(p+3>p3(”3p)<”7)'

‘ap+3’ <

We now proceed by induction. Assume we have

|apin-1| < = 1)(;+n_ 1)pB(lJer) (14—%) <1+ nB_p2)
— (n—1>éB+n_1),g<H%)'

Corollary 4.8. Let f(z) = 2P + Y 10, apyp—12"Pt and f(z) € UCV,. Then|ayin_1| =
O (52)-

O

5. GENERAL PROPERTIES OF FUNCTIONS IN UCV;,

Theorem 5.1. Let f(z) = 2P + > 0, arp-12°P71 and f(z) € UCV,. Then f(z) is a
p—valently convex function of ordet in |z| < r; = ri(p, 5), wherer,(p, 3) is the largest
value ofr for which

(51) Tk_l < (p - ﬁ)(k _ 1)
~(k+p-B-1)BIl, (1+;’%)

Proof. It is sufficient to show that fof (z) € UCYV,,

, (keN—=A{1},0< 3 <p).

zf"(z
f'(2)
wherer; (p, 3) is the largest value of for which the inequality[(5]1) holds true. Observe that
IIEC IR e e Doy 12!
f'(2) PH+ Yo+ p = Dagyp12871
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Then we hav%l

Yook +p—1)(k—1) |agspa|r*!
= ook +p—1)|aggp_r|r*?

<p-8
= Z(k: +p—1D(k+p—1-0)|appa|r™ ' <p*—pp.

k=2
Then from Theorerp 4]7 sincgz) € UC'V,, we have

pp . Bp
ol < gy (1 575)

and we may set

k
|ak+p—1| (k’ +p H (1 + —) Cltp—15 Ck4+p—1 > 07

J=3

{keN—ﬂLE:%ﬂqgl}.

Now, for each fixed-, we choose a positive integks = k() for which

(k+p—1 _ﬁ)rk—l
(k—1)

is maximal. Then

o0 k

—B—1 B
Sk p— 1)k 4p— 1) oy < B0t 20 %%*||(1+fli>.
k=2 .

(ko — 1)
Consequently, the functiofi(z) is a p—valently convex function of ordef in |z| < r; =
r1(p, ) provided that

k

Fotp—B-1) 4 4 B
T j[lg(”%z)ﬁp@‘@'

We find the value, = r,(p, 5) and the corresponding integey(r) so that

k

Then this value, is the radius op—valent convexity of ordep for functionsf(z) € UCV,,.
0

Theorem 5.2. h(z) = 2P + by, 12" P Lis in UCYV, if and only if

p?
r < ,
“(p+n—-1)(p+2n-—2)

where|b, 1, 1| = randb,, 12" = re?.
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Proof. Letw(z) = 1+ ZZ,(S). Thenh(z) € UCYV, if and only if w(z) € PAR, which means

thatRe{w(z)} > |w(z) — p|. On the other side we have

SEFORE T

Y

=
D
—N—
—_
+
N
%
—
Il

p+ (n+p— 1)nre®
R —1 :
e{(p )+p+(n+p—1)re“9

_pPP+pn+p—1)(n+2p—1)rcosfd+ (n+p—1)>r?
- p+ (n+p— e[
The right-hand side is seen to have a minimumdfes = and this minimal value is
PP+pn+p—1)n+2p—1r+(n+p—1)>%"
p+ (n+p— Dre?| '
Now, by computation we see that
2h/(2) (n+p—1)(n—1)r
W(z) ‘ T lp+(+p—1yre?|

1+

Then
P4pn+p—1Dn+2p—1r+n+p—1)>32

m+p—1n-1r< p—mntp—Dr

which leads to
m+p—1)n—1)r <p*— (n+p—1)2r

Hence,
r < p2
“(n+p-1)2n+p—-2)
O
Theorem 5.3.Let f(z) € UCV, then(f(z))? € UCV,,.
Proof. Letw(z) = (f(z))?, then
i ”(Z) Zf//(z> B Z&
M) TR e Dy
Then we find
e ZL(Z) — Zw”(z)_ —
Re {1+ |~ 7y~ 0
N G /'(2)
=re{ 1+ + 00
OO N
g o0 )
Sincef(z) € UCV/, therefore we have
I S O BN (O 8 W G DRRPNG { C P
Re {1+ + 0D |~ [ + 0 D~ 0 D)
Cire SN LFG)
2 0 ore {73} - [5G
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f(z) e UCV, thenf(z) € SP [{] which means that

Then Red 1. W@ e
Ui ) | - )2

The following diagram shows the extermal functiaiz) of the clas€/CV when(k(z))?,p =
2

The following diagram shows the extermal functiitiz) of the clasg/C'V,, whenp = 2:

And the following diagram shows thékt(z))? < K (z):
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5.1. Remarks. Takingp = 1 in Theorenj 3.1, we obtain the corresponding Theorem Tl of [7].
Takingp = 1 in Theorenj 4.]1, we obtain the corresponding Theorem 3| of [3].

Takingp = 1 in inequality [4.B), we obtain Theorem 6 6f [7], and in inequalitjes|(4[5)] (4.6),
we obtain Theorem 5 of [7].

Takingp = 1 in Theorem 5.2, we obtain Theorem 2 of [4].
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