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ABSTRACT. Mixed arithmetic and geometric means, with and without weights, are both consid-
ered. Related to mixed arithmetic and geometric means, the following three types of inequalities
and their generalizations, from three variables to a gemevatiables, are studied. For arbitrary
x,y,z > 0 we have

1/2 1/3
rT+y+z 1/3 r4+y y+z z+z
zrgrte < . .
® TS yayt| s (R 222
1 1
(B) 3 (VoY + Vyz + Vzz) < 3 {x—kz;—kz + (xyz)l/g] ,
1/2 1/3
1 r+y y+z z+«x
- < . . .
(D) {3(ﬂcy+yz+zx)] ( . 5 5 )

The main results include generalizations of J.C. Burkill's inequalities (J.C. Burkill; The con-
cavity of discrepancies in inequalities of means and of Holdet,ondon Math. Soc(2), 7
(1974), 617-626), and a positive solution for the conjecture considered by B.C. Carlson, R.K.
Meany and S.A. Nelson (B.C. Carlson, R.K. Meany, S.A. Nelson; Mixed arithmetic and geomet-
ric meansPacific J. of Math.38(1971), 343-347).
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1. INTRODUCTION

In this paper, our inequalities concern generally arbitrary numbers of variables, however, the
simplest most meaningful case for us is the case of three variables. Thus our motivation in this
paper can be illustrated with three variables. ke, z be any three non-negative numbers.

By taking the arithmetic mean of two each ©f y, = we have three numbers?, ¥*= and

1
=2, Taking the geometric mean of these three numbers, we (fg#e 2= - =£2)3. If our
process of taking the arithmetic means and geometric means is reversed, first wgahave
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2 TAKASHI ITO

Vyz and/zz, then we have, (/zy + \/yz + /zz). The two numberg ;¥ - L= . ”TI)%

and: (,/zy + /yz + /zz) are called the mixed arithmetic and geometric means, or simply
the mixed means, of, y, z. Mixed arithmetic and geometric means appear in many branches
of mathematics. However in this paper our interest is stimulated by the following inequality
(©), which was proved by B.C. Carlson, R.K. Meany and S.A. Nelson, and simply referred to
as CMN, see [2] and [3],

r+y y+z z+«x

©) 3 (Va Vi vE) < (T R Y

Besides inequality] (C), our main concern in this paper is to study the following three types
of inequalities, which are all related to mixed arithmetic and geometric means:

A) x+y—|—z.($yz)% 2§ rT+y y+z z+x 3
3 2 2
1 1 1
(B) 3 (Vzy + Vyz + Vzz) < 3 [I+y+z (zy2 i]
1 2 Tty yt+z z+x 5
D - <
(D) [3(3:y+yz+zx)] _( 5 5 5 )

Because of the convexity of the square functioh;we have

2

T P

thus the inequality (P) is stronger than the inequality (C), thak is, (D) imgligs (C).

Except for [T), among the three inequalities (A)|, (B) (D) there is no such relationship that
one is stronger than another, namely they are independent of each other. One special relationship
between[(A) and (D) should be mentioned hdre, (A) aid (D) can be transformed into each other

through a transformation(z, v, z) — (lll>, z, y, z > 0. We add a few more remarks.

x, Y,z
The inequalities[ (A) and (B) are special cases of more general known inequalities, which were
proved by J.C. Burkilll[1]. Further generalizations of Burkill's inequalities will be discussed
later. The inequality{ (C) above is also the simplest case of the more general inequality proved
by CMN [3], which will be mentioned later.

2. DEFINITIONS AND NOTATIONS

Our main results in this paper are generalization§ of (A), (B) pid (D) from three variables to
n variables. The first step toward generalization must be the formulation of mixed arithmetic
and geometric means farvariables in general. This formulation, for the case of no weights,
was given already in CMN [3].

Letzy,...,z, > 0, n > 3 be arbitrary non-negative numbers and denote: {z,,...,z,}.
For any non empty subs¥&tof X, denotdY’| as the cardinal number &f, and denote&(Y') and
P(Y) as the sum of all numbers &f and the product of all numbers bfrespectively. Denote
further by A(Y) andG(Y") the arithmetic mean of” and geometric mean df respectively.
Namely we have

L s(v) and ¢(v)=P)™.
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For anyk with 1 < k < n, we define thek-th mixed arithmetic and geometric mean of
{z1,...,2,} = X as follows, and we will use the notations

(GoA),(x1,...,2,) = (GoA), (X)

and
(AoG)y (w1,...,2,) = (A0 G), (X)
throughout the paper, where

-

(%)
(k-thG o A mean) (GoA)(zr,...,z)=| [ A)
YCX,|Y|=k
and
(k-th A o G mean) (Ao G), (z1,...,2,) L Z G(Y)

) YCX,|Y|=k

k
In CMN [3], they prove the following inequality (C)([3, Theorem 2]), which is identical to
the previous[(€) ifv = 3 andk =1 = 2,

© (Ao G),(x1,...,2y) < (GoA), (z1,...,2,)
foranyzxy,...,z, > 0 and anyk and/ satisfyingl <k, [ <nandn+1 <k + 1.
Denote Py, (z1,...,x,) = P (X) the k-th elementary symmetric function af;, ..., x,,
namely
Pk('rla"'?xn): Z P<Y)
YCX,|Y|=k
We define th&-thelementary symmetric meanpf, . .., x,} = X, denoted by, (z1,...,x,)
= q (X), as
1

Gk (21, @) =

— Pu(xy-x,)|
o )]

By employing these notations, our generalizatior gf (A), (B) &and (D) from 3 variablesta
variables are as follows:

(A) Ay, )T -G (@, wa) T < (GoA), (21, 2),

(B) (Ao G), (x1,...,2,) < n_kA(:cl,...,a:n)—l—uG(:cl,...,xn),
“n—1 n—1

(D) @ (x1,...,2,) < (GoA) (1,...,20)

foranyk and/ satisfyingl <k, [ <nandn+1 <k + 1.
Because of the convexity of the functiari;for z > 0, we have

(Ao Q) (x1,...,20) < q(21,...,24).

Hence our inequality] (D) above is stronger than the inequality (C). Actually in CMN [3] the
inequality (D) is conjectured to be true.

The inequalities (A),[(B) and (D) will be proved in separate sections. In Sgdtion 3, the mixed
arithmetic and geometric meansth general weightsire considered. With respect to general
weights, our final formulation of the inequaliti€s](A) and (B) are given and they are proven
in Theorems$ 3]1 and 3.2, which give generalizations of J.C. Burkill's inequalities. In Section
[, the inequality[(ID) is proven in Theorgm }.1, and entire section consists of prgving (D) and
checking the equality condition df [D). In Section 5, the inequallily (C) with three variables and
general weights is formulated and proved in Thedrer 5.1.
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3. INEQUALITIES (A) AND WITH WEIGHTS

All inequalities mentioned in our introduction are with equal weights, one can say without
weights or no weights. For inequalities with weights, the order of given variables is very sig-
nificant. Thus inequalities with weights do not have symmetry with respect to variables. Here
we define one type of mixed arithmetic and geometric mean with weights, and we lose the
symmetry between variables in our inequalities.

Letty,...,t, be weights fom variables, that isty, ..., t, are all positive numbers artgl +
.-+ +t, = 1. For any non negative numberszy,...,z, > 0 we define the arithmetic mean
and the geometric mean %, ..., z,} = X with weights{¢,,...,¢,} as usual, denoted by

At (gjl)"'axn) :At (X) anth ('xlw"vzn) = Gt (X)'

At (xlu s 7xn) = Ztlxh
=1

n
Gy (xq,...,x,) = Hm’;
i=1

With respect to the weightg, . . . , t,,}, similarly for any non-empty subsgtof {z,,...,z,} =
X, we define the arithmetic meaty (Y) and the geometric mea#, (') as follows. LetY” be
{z4, ...,z } forinstance,

A Y) = ——— (o + -+ ly2s),
(V) ti1+---+tik( Ty e )

1
G, (Y) = (xZil, o 7$f;k) Ty
Next, the following numbet;- can be regarded as a weight 16y

1
tY:?@il—i_'”_‘_tik)v
(+1)
because we hawvg- > 0and > ty =1.
YCX,|Y|=k
Now we define thé&-th mixed arithmetic and geometric means with weights . . ., ¢, } for
anyk of 1 < k£ < n, denoted by

(GoA)y,(21,...,2,) = (Go A), (X)

and
(Ao Gy, (w1, 1) = (Ao @), (X),
as follows:
(k-thG o A mean) (GoA), (xr,...,zn)= [ A
YCX,|Y|=k
(k-th A o G mean) (Ao Gy (@1, m) = Y G (Y).
YCX,|Y|=k

It is apparent that we have
(GoA),,(X)=G:(X) and (AoG),,(X)=A,(X) for k=

and
(GoA),,(X)=4,(X) and (GoA),, (X)=G(X) for k=n.
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And it can be seen thati o A), , (X) is increasing with respect tofrom G, (X) to 4, (X).
On the other handA o ), , (X) is decreasing with respect kofrom 4, (X) to G, (X).

However, this property will not be used in the sequal, hence we omit the proof. The same
property is proved for the case of no weights, see CMN [3].

Now we can formulate our inequalitigs|(A) and (B) with weights and give our proof for them.
We first prove[(A).

Theorem 3.1. Supposeé andn are positive integers antl < £ < n, and suppose,, ..., t,
are weights. For any non-negative numbeys. . ., z, > 0 we have

L3 n—k
(A) Aj (g, 20) " Gy (21, .. x) 7t < (Go A)k,t (X1, ..., p) .
For k = 1 or k = n, (A) is a trivial identity of eitherG, (z1,...,z,) = G;(z1,...,2,) Of
A (1, x0) = Ap (21, ..., ). FOr2 < k < n — 1, the equality of) holds if and only if
xr, = --- = x, or the number of zeros among, . . ., z,, is equal tok or larger thank.

Proof. There is nothing to prove it = 1 or k = n. Thus we assumg < k£ < n — 1 and
3 < n. We assume also that our all variables. . ., x,, are positive until the last step of our
proof, because we want to avoid unnecessary confusion.

Let L (z1,...,x,) be the ratio of the right side versus the left sidg df (A), namely

(GoA), (@1, z0)

L(xy,....x,) = T k-
Ap(xy, oo xn) T Gy (2, .oy Tp) 0
It suffices to provel (z4,...,x,) > 1forall z;,...,z, > 0. Our proof is divided into two

steps of (i) and (ii), and step (i) is the main part of our proof.

(i) Choose arbitrary positive numbets, . . ., a,, > 0 which are not equal, and thesg .. . , a,
are fixed throughout step (i). By changing the ordef@ft;), 1 < i < n ifitis necessary, we
can assume

ap = min a; < a; = max a;.
1<i<n 1<i<n

Seta = tlitQ (tia1 + taas), then clearly we have; < a < as.
Definea; (\) andas (A) for all A of 0 < A < 1 such that

ag(AN)=(1=XNa+Xa and ay(A\) = (1— X as+ \a,

then we have foralhof 0 < A < 1:

(D a<ar(A) <a<ay(A) <ay,

(2) tia; (M) + taas (N) = thag + toas,

3) %al N =a—a and%QQ () =a — as.

If we regard(a; (A),as (N),as,...,a,) as a point inR™, we are considering here the line

segment joining two point&a;as, . .., a,) and(a, a, as, . .., a,) in R™. Our main purpose of
part (i) is to prove the following claim:

*) L(a; (N),as(N),as,...,a,) is strictly decreasing with respect to
at a neighbour ok = 0.

SetX) = {a1 (N\),a2(N),as,...,a,} for0 < X <1, henceXy = {ay,as,...,a,} for A = 0.
We have

A (V)Y
L(al()\),ag()\),ag,...,an): H ;S ) —
YCXy, Y=k Ap (X)) Gy (X))

Note thatL (z1, ..., z,) decreases if and only iég L (z1, . .., z,,) decreases.
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Set
d(N)=logL(a; (N\),azs(N),as,...,a,) for 0< A< 1.
Then we have
d(N= > tylogA(Y)-
YCX,, |Y|:k

Consider the derivative af (\), note here [ty log 4, (Y)] = 0if either ofa; (A) andas ()
belongs taY” or neither ofa; (\) anda, (A) belongs tay’, and

—1 —k
— log A; (X)) — — ] log G (X)) .

d tl (d—al) t2 ((_l—ag)
R P G I e PG

if a; (A\) belongs toY” but a, (A) does not ofa, (A) belongs toY” but a; (A\) does not. Thus,
denoteY by V' if a; (\) € Y butay (A) ¢ Y, and byW if a; (\) ¢ Y butas (\) € Y. Then we
have

i _ tl ((_z — al) t2 (C_L - a2)
AR ng (71 A (V) +W§Q (5o1) Ac (W)
-k [tl (@—a) t (a—aﬂ
n—1 aj (N) as ()

since

tl(a—a1)+t2(&—a2):0

) n—=k 1 1
_tl(a—al)lz T‘Z nl (W)_n_l(al(A)_az(A)>].

VCXA WCX)\ -

Thus, we have

d
o)

_ 1
“vio-o)| & et

> (njl)lAt(W) _Z:]f <ail_aiz>]

WCXo

A=0

Becausei; = 1mm a; anday = lmax a;, we haven; < A, (V) forall vV C X, andA, (W) <
<i<n

ay forall W c X, hence

VCcXo (Zj) Ac(V) — (zj) ai n—-1

and
1 ("2 n—-k 1
Z n—1 Z n—1 = T
WCXo (k—l) Ay (W) (k—l) az n—1 a
However, note that at least one of the above two has a strict inequality, because one can
observe thatl, (V') = a, forall V' C X, is equivalent tai3 = - - - = a,, = a; andA; (W) = ay
forall W C Xy is equivalenttaiz = - - - = a,, = as.

Thus we have

d
ﬁab(A)

B n—%k /1 1 n—=k (1 1
<t(a—ay) ——— | - ——— | =0.
220 n—1\a; as n—1\a; as
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Hence¢ (\) is strictly decreasing at a neighbour bf= 0. This completes the proof of the
claim (¥).

(i) For anye, 0 < & < 1, consider a bounded closed regiba = [¢, 1]" of R = (0,00)". It
is apparent that),_._, D. = R’.. RegardingL (z1,...,,) as a continuous function dr’,,
L (zy,...,z,) attains the minimum value over the regibn for everye, 0 < ¢ < 1. We claim
the following [**) for this minimum value.

(**) The minimum value of. (z1,...,x,) overD, is 1 for everye, 0 < e < 1 and
the minimum value is attained only at identical pointspt= 2o = - -+ = z,,.

Suppos€ay, as, . . ., a,) is any point ofD. which gives the minimum value df (x4, ..., z,)
over D.. Suppos€ay,...,a,) is not an identical point. Now, we can use the result proved in

part (i). Without loss of generality we assumg = lrgi<n a; anday = max a;. It is clear that

the whole line segmertt;; (A),as (A),as, ..., a,) for0 < X < 1, which is constructed in part
(i), belongs to the regio®.. Hence we have

L(ay,...,an) < L(a;(A\),a2(N),as,...,a,) forallA 0< A< 1.
On the other hand the clai|(*) guarantees
L(a1 ()\),&2()\),0,3,...,0,”)< L(al,...,an)

for A which is sufficiently close t®. Thus we have a contradiction. Hence we can conclude
thata; = a; = --- = a, and also the minimum value df (z4,...,x,) over D, must be 1,
becausd. (ay,as,...,a,) =1if ay = ay = --- = a,. Thus the claim) is proved.

We have proved so far that among positive variables. . , z,, > 0 the inequality[(A) holds
and the equality of (A) holds if and only if, = 25 = - - - = x,, > 0. By continuity, it is trivially
clear that our inequality (A) holds for any non-negative variables. ., z,, > 0. The only point
remaining unproven is the equality condition|of (A) for non-negative variahles . , z,, which
include 0. Suppose we have 0 amang. . ., z,, > 0, then we have clearlg, (z1,...,z,) =0,
thus the left side off (A) is 0. On the other hand, it is easy to see that the right sid¢ of (A) is
0 if and only if we havek or more thank many zeros among;, ..., x, > 0. Finally we can
conclude that the equality 9f {A) far, . .., z,, > Oholdsifandonly ifr; =z = --- =z, > 0
or we havek or more thark many zeros among,, ..., z, > 0. This completes the proof of
Theoreni3.11. O

Theorem 3.2. Supposé andn are positive integers and < k£ < n and suppose,, ... ,t, are
weights. For any non-negative numbesrs. . ., x,, > 0 we have

n—=k kE—1
At(xl,...,xn)+n_1

(B) (Ao G)y, (@1, an) < Gy (x1,..., 1) .

n—1
For k =1 or k = n, (B) is actually a trivial identity,
Ap(xy, o) = A (2, ..o x) OF Gy(ay,..o ) = G (x, ..o 2p) .

For2 < k < n — 1, the equality of[(B) holds if and onlyif, = --- = x,, or one ofzy,...,x,
is zero and the others are equal.

There is a certain similarity between our inequalitie (A) (B), although it may not be
clear what the essence of this similarity is. Thus, it is not a surprise that our prdof of (B) is
similar to the proof of[(A).

Proof. There is nothing to prove # = 1 ork = n. Thus we assum2< k < n —1and3 < n.
We assume also that all variables . . ., x,, are positive until indicated otherwise.
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Let L (z4,...,x,) be the difference of the right side and the left sidg df (B), namely

n—=k
L(xy,...,z,) = n_lAt(ajl,...,:z:n)
kE—1
+n_th(xl,...,xn)—(AOG)kvt(xl,...,xn).
It suffices to prove. (z1,...,z,) > 0forall zy,...,z, > 0. Our proof is divided into the three

parts of (i), (i) and (iii). The equality condition df {B) is discussed in (iii).

(i) Choose arbitrary positive numbets, . . ., a,, > 0 which are not equal, and thegg .. ., a,
are fixed through part (i). By changing the orderef, ¢;), 1 < i < nifitis necessary, we can

assumer, = min a; < ap = max a;.
1<i 1<i<n

Setq = (at;ag) tliv , then we have clearly; < a < as.
Definea; (\) anda, (A) forall \, 0 < A < 1suchthat, (\) = aj*a* anday () = a3 *a?,

then we have foralh, 0 < A < 1:
1) ar <a;(N) <a<as(N) <as,
(2) a1 (N as (N = ay'az,
(3) ka1 (\) = log (£) a1 () and ks (A) = log (£ ) a2 (A).
If we regard(a; (A\),as (N),as,...,a,) as apointinR™, we are considering a curve joining

two points of(ay, as, ..., a,) and(aas, as, ..., a,) in R™. The main purpose of part (i) is to
prove the following claim.

* L(ay (N),a2(N),as,...,a,) is strictly decreasing with respect to
at a neighbour of = 0.

SetX,\ = {a1 ()\),CZQ ()\),ag,...,an} for 0 <\ <1, thUSXO = {al,...,an} for A = 0. We
have

L(ai(N), a2 (M), as, ... a,) = Z:’fAt (X)) + stt X0 - Y Gy,

YCXy, Y=k

Denote simplyL (a; (A),as (A) , as, ..., a,) by ¢ () and consider the derivative of(\). Note
here

d ( a
ﬁAt (X)\) = tl IOg ( 1) aq ()\) + tg log (a—z) a9 ()\) s

d d
ﬁGt (X)\) 0 and ﬁtYGt (Y) =0

if either of a; (A) andas () belongs toY” or neither of them belongs t0;

%tyatoo—(kll)tllog()c;t( ) or (kll)mog(A)at( )

if a; (A\) belongs taY” buta, (\) does not ok, () belongs toY” buta, (\) does not.
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Thus, denot&” by V' if a; () € Y butas (A) ¢ Y and byW if a; (\) ¢ Y butay (M) € Y.
Then we have

%gb()\) - Z:? [tl log (%) a1 (\) + £ log (%) as (A)}

[Z t log( )Gt (V)+ > talog (aﬁ?) G, (W)

VX, WCXy

1
Thus, we have

n—=k
= |:t1 lOg < ) aq + tQ log ( > :|
o n-—1

1) [Ztllog( )Gt Ztglog( ) (W)],

VCXo

d
a¢ (M)

and sincé; log < ) + 9 log ( ) =0,

d
o)

A=0
( —k
:tllog(i){”_l(al— ZGt (V)= > G(W) }
4 ne (5- 1 VCXo WCXo

Sincea; = 1mm a; anday = max a;, we haven; < G, (V) forall V C Xy anday, > G, (W)

1<i<n

forall W c X,, hence

; Z G, (W) < (Z:?)% _n—- kag
n—1 — (n—1 - '
(kfl) WCXo (kfl) n—1
However, note that at least one of the above two has a strict inequality, because one can observe
Gy (V) = ay forall V C X, is equivalent tau = -+ = a, = a; andG, (W) = a, for all
W C Xy isequivalenttaig3 = - - - = a,, = as. Thus we have
d a n—=k n—=k n—=k
—o (A <tl — — — =0.
d)\qb( ))\:0 1Og(a1> [n—l(a1 a2) n—lal_l_n—la2

Hence¢ (\) is strictly decreasing at a neighbour bf= 0. This completes the proof of the
claim ().
(if) Based upon the clain [*) and exactly by the same arguments employed in part (ii) of our
proof of Theoren 3]1, one can see that the followjng (**) is true. We omit its details.
(**) The minimum value of (x4, ..., z,) overR} = (0,00)" is 0 and the minimum
value is attained only at identical pointsof = 2o = --- =z, > 0.

Now we have proved that among positive variabtes . ., z,, > 0 the inequality|[(BB) holds
and the equality ofl (B) holds if and only if; = --- = z,, > 0. By continuity, it is trivially
obvious that the inequality (B) holds for any non-negative variables. .z, > 0. The only

point left unproven is when the equality pf|(B) happens for non-negative variables which include
0. This is checked in the next step.
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(iif) Supposez;, ..., z, > 0 are given and at least one of them is 0, and suppose the number
of positivex; isl. Then we havd < [ < n — 1. Without loss of generality we can assume
Z1,...,x;>0andx; = =x, =0.

Then the right side ofB))
n—=k n—=k
= _1At($17"'ax’n):n_l(t1$1+"'+tl$l)>0-

On the other hand, if < k, then we have the left side dB) = 0, thus we have a strict
inequality of [B) for this case. If > k, letY; be{z1,...,z;}, then the left side ofB))

1

= ), G DY AN = ) = S(Y)
Y CYo,|Y|=k Y CYo,|Y|=k YCYy,|Y|=k (k—l)
(1) (i-t)

= oy (hir o+ hw) <
(i) (i)

n—=k
=1 (tiwy + -+ ty)

In the aboveyS; (Y) means the sum of all numbers¥fwith respect to weight$ty, . . . , ¢, }, for
Y ={x;,...,z;, } CYo={z1,...,2,}, forinstance, we havs; (Y) = t; z;, +--- + t; 2, -

Thus, from the above, the left side pf| (B) = the right sidg df (B) if and onty,ifY") = A, (V)
forallY C Y with |[Y| = k and (2=2) = (L=1), and this is equivalent to; = --- = z; and
I = n—1. Now we have proved that the equality pi (B) for, . . ., z, > 0 including O happens
if and only if only one ofz; is 0 and the others are equal. This completes the proof of Theorem

3.2. O

Inequalities [(A) and[(B) with weights can be considered as natural generalizations of J.C.
Burkill's inequalities [1], namely[(A) and (B) forn = 3 andk = 2 are identical to Burkill's
inequalities.

By employing the same notations aslin [1], we state Burkill's inequalities as a corollary of

(A) and [B).

Corollary 3.3 (Burkill). Leta,b,c > 0 anda + b+ ¢ = 1. For any non-negative three numbers
x,y,z > 0 we have:

ax + by ath by + cz e s 4 ax\ T
A b abc< . .
(A) (ax + y+cz)xyz_<a+b) e T a ,

(tixy + -+ + txy)

(B) (a+0b)(z*) + (b+c) (v'z°) ™ + (c+a) (z°2%) % < az + by + cz + 292",

The equality of[(A) holds if and onlyif = y = z or two ofz, y, z are 0. The equality of[ (B)
holds if and only ifr = y = z or one ofz, y, z is 0 and the other two are equal.

4. INEQUALITIES AND (C)

Before we start our proof of (D), our method of proof may be explained in a few lines.
Elementary symmetric meags(z1, .. ., z,) are decreasing with respectittor 1 <1 <n;

ql—l(xh"'vxn)qu(x17"'axn)> QSZSTL

This inequality is due to C. Maclaurin. Hardy, Littlewood and Pélya [4] give two kinds of proof
for the Maclaurin inequality. The second proof, which is given on page 53 of [4], suggests that
the inequality can be proven by examining the minimum valug gf(x4, . .., x,,) over certain
regions on whichy, (x4, ..., x,) stays constant. We employ this method here. In our case,
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@1 (x1,...,2,) is replaced byG o A), (z1,...,x,) and we examine the minimum value of
(GoA),(x,...,x,) Over certain regions on whiaf (z1, . .., x,,) stays unchanged. Another
small remark should be added here. Since the Maclaurin inequality is available, it is sufficient
for us to prove the inequality (D) for the casefof- | = n + 1 only. However our proof will be

done without the help of the Maclaurin inequality.

Theorem 4.1. Supposé;, [ andn are positive integers such that< £, < nandn+1 < k+1.
For any non-negative numbers, . .., z, > 0 we have

(D) @ (x1,...,20) < (GoA), (x1,...,2,).
For (k,1) = (n,1) or (1,n), (D) is a trivial identity,

A(xy, ... xn) = Az, .., x,) OF G(xg,...,x,) =G (21,...,2,) .
For (k,1) # (n,1) and(1,n), the equality condition of (D) is as follows,

1) ¢ (z1,...,2,) =(GoA) (z1,...,2,) > 0ifand only ifz; = --- =z, > 0,
(2) ¢ (z1,...,2,) = (GoA), (x1,...,2,) = 0if and only ifk or more thark manyz; are
Zero.

Proof. Our proof is divided into three parts. A preliminary lemma is given in part (i), part (ii)
contains the main arguments of our proof, and the equality conditign| of (D) is examined in part
(iii).

(i) The assumption of: + 1 < k + [ in our inequality [(D) is very crucial, namely [D) does
not hold without this assumption. The conditionwof- 1 < k + [ is needed only in the
following situation. Suppos€& is a set of cardinality:, then for any subsets andV of X,
whose cardinality ar¢ and!/ respectively, we have a non empty intersectiom V' # ¢ if
k+1> n+ 1. Throughout our proof of (D), the following preliminary lemma is the only place
where the condition of + 1 < k + [ is used.

Supposery, . . ., z, are positive numbers and s€t= {z;,...,x,}. As defined in the intro-
duction, P, (X)) stands for thd-th elementary symmetric function af;, ..., z,, S(V) stands
for the sum of all numbers belongingtoC X andP,_, (X) = By (X) for [ = 1 is defined as
the constant 1.

Lemma 4.2. Supposd < k,l < nandn + 1 < k + (. For any subset” of X with |V| = k,
we haveS (V) P_; (X) > P, (X). The equality holds if and only if = n and/ = 1.

Proof of Lemma 4]2Supposé = 1, then we havé: = n because of our assumptién [ >
n+1. Thuswe have’, (X) =S (X),V = X andF, (X) = 1, henceS (V) P, (X) = S (X).
We have the equality of (V') P_; (X) = B, (X). Supposé > 2 andV C X with |[V| =k is

given. One can assumé= {zy, ..., z;} without loss of generality. Then we have
k

(4.1) SVIPa(X)=>_ > xPW)
=1 WCX,|W|=l-1

and

(4.2) R(X)= ) P(V)

VCX,|V]=l

SinceUNV # ¢foral U c X with |U| = [, letz;, be the membero/ NV = U N
{z1, ...,z } which has the smallest suffix and I&f, be the subsét’\ {z;, }. Thenitis obvious
that the correspondencé: — (z;,,W,) is one to one and we have (U) = x;, P (W,) for
all U ¢ X with |U| = [. Compare the two summations of (4.1) ahd](4.2) above, and cancel
off equal terms which correspond to each other. Every terf&¥) of (4.2) can be cancelled by
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the corresponding termy,, P (W,,) of (4.1) and every termy; P (W) satisfyingz; € W of (4.1)
is not cancelled and left as it is. Hence we can concludedtiat) £, (X) > P, (X). This
completes the proof of Lemna 4.2. O

(il) There is nothing to prove ifk, 1) = (1,n) or (n, 1). Because of our assumption-1 < £+,
if & = 1thenl = n, thus we have

@ (X) =g (X)=G(X) and (GoA), (X)=(GoA) (X)=0G(X),

hence our inequalityf (D) turns into an identity 6f(X) = G (X). Similarly (D) turns into
AX) = AX)ifl =1. If n = 2andk = | = 2, then [D) turns into the inequality
G (X) < A(X), which holds. Thus we consider only the cas€of k,l < n, 3 < n and
n+1<k+1.

We suppose also that all variables . . . , z,, are positive throughout part (ii).

Choose fixed arbitrary variables, . . . , a,, > 0in what follows. Ifa4, ..., a, are equalg; =

- = a, = a, then our inequality] (D) holds trivially ag (a1, ...,a,) = a = (G o A), (a1,

.,a,). Thus we assume, ..., a, are not identical. The followingj]*) is what we have to
prove.

*) qlai,...,a,) < (GoA), (a,...,a,).
Depending of{ay, . . ., a,), consider a bounded closed regibp of R” = (0, 00)" as follows,

D, = {(ml,...,xn) | q (1, ..., 20) = q(a1,...,a,),

min a; < z; < max a; foralllgz'gn}.
1<i<n 1<i<n

Clearly the poin{a, . .., a,) belongs taD,.
Our second claim is as follows,

**) The minimum value of G o A), (z1,...,z,) over the regiorD, is equal to
q (ai,...,a,) and the minimum value is attained only at an identical poinbgef

Since an identical point which belongs 19, is only one point of(x, ..., z,) with z; =
@ (ai,...,a,) forall 1 < i < n, the second half of (}*) implies the first half of (}*). It is
also clear that the clain|(*) follows from the claiin (**). Thus we can concentrate on proving
the second half of (*). Now we employ the method of contradiction: reductio ad absurdum.
Suppose the minimum value ¢ o A), (z1,...,x,) over the regiornD, is attained at a non-
identical point(by,...,b,) of D,. We assume, without loss of generali}g;iign by = b <
bo= max b;.

1<i<n

Next, we are going to choose a suitable continuous curve () , bs, ..., b,) withb; <z <
b, within our regionD,. For this purpose the recurrence formulas on elementary symmetric
functions are useful.

The following recurrence formula is easily seen.

P = (z1,...,2,)
= Pl(n72) (1'3, Ce ,il?n) -+ ($1 + l’g) Pl(il;m (1‘3, e ,.Tn) + $1$2Pl(11;2) (mg, e ,xn) s

WherePl(”_Q) (x3,...,z,) denotes théth elementary symmetric function ¢f. — 2) variables
x3- -+ T,. More precisely, if = nthen the first and second terms of the right side of the formula
disappear, and if = n — 1 then the first term disappears. Thus, in the following arguments we
have to change our expressions a little bit for the cade-ofn or il = n — 1. However, since
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we are not losing generality, we will keep the recurrence formula above and omit details for the
caseoff =norn—1.
For anyz andy we have

P = (z,y,b3,...,b,)
— P (b, ... by) + (x4 ) PUT7 (b, .. by) + 2y P (b, .. by)
We simplify our notations by settin@,, Q;,_; and@,_» as
Qi =P"? (bs,....by), Qioy=P" " (bs,... by
and Q,_, = P" % (bs,....b,).
Then we have
(4.3) Py (b1,b,...,bp) = Qu+ (by +b2) Qi1 + b102Qy 2,

(4.4) P (w,y,b3,...,0,) = Qi+ (v +y) Qi1 + 2yQi—2.
Now we can solve the equation
Pl(b1>b27---7bn> :Pl<x7y7b37"'>bn)7

by solving [4.B) and[(4]4) above simultaneously. For any given 0 there is ay uniquely
denoted byp (x), such that

(4.5) y=p(z)= (b1 4+ b2 —x) Q_y + bibaQ—2

Qi1 +2Q_y 7

(46) P[(bl,bz,...,bn):Pl(ﬂ,',g&(flf),bg,...,bn).
From expressior] (4.5), it follows that(b;) = bs, ¢ (b2) = by andy () decreases frory,
to b, if x increases fronh, to b,. Thus, for allz with b; < z < b, we have

min a; <b; <z, ¢(r)<b < max a;.
1<i<n 1<i<n

From (4.6), we have also

ql(aba?a"'aan):q1(bla"'7bn)

. T
= |—PF(x,0(x),bs,...,b,
7 (2, ¢ (2) )]

L\

=q (z,0(x),bs,...,0,).
Hence, our continuous curve, ¢ (x), bs, ..., b,) for by < x < b, is located within our re-
gionD,. Since the minimum value ¢€+ o A), (z1,...,x,) overD, is attained atb, bo, . .. , b,),
we have for allz of b; < 2 < b, :

4.7) (GoA), (z,0(x),bs,...,b,) > (GoA), (b1,ba,...,0y)
Next, we will see thal{G o A), (z,¢ (x),bs,...,by,) is strictly decreasing at a neighbour of
T = bl-

Denote

¢(x) =log [(GoA), (x,p(x),bs,...,b,)]
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and calculate the derivativé ¢ (z) = ¢/ (z). SettingB = {bs, ...

¢ (z) = % [(% > log A (Y ]
)
o (x

0) Y C{ap(@),b3..nnibn )|V | =k

1 1 o' (x
R {S<V>+:c+ SV)+

VCB,|V|=k-1

( )

1 1+¢' (2)
REETY

(k) WCB,|2VV2|:I§—2S( W) +z+ep ()
Hence we have

/ 1 1 @' (b1)
925(61)—@ Z [s(v)+b1+S(V)+bJ

VCB,|V|=k—1

(%) S S (W) + by + by

Let L be the first summation and I&f be the second summation in the above, namely,

1 1 (b)
b (%) 2 {sw)m +S<V>+b2]’

VCB,|V|=k—1

1 1—|—90, (b1>
() WCB,%:;C_Q S (W) + by + by

Using the expression (4.5) ¢f(z), we get
(48) S0/ (bl) — _Ql—l + bQQl—Q

Qi1+ 01Q1—2
Thus, we have

1 L ¢ "(by) 1 _ Qi1+ b2Q 2
SV b SV b SOVt [SOV) + 03] [Qrs + 0 Qrs)
(ba = 01) [S (V) Q12 — Q11]

[S (V) 4+ b1] [S (V) + bo] [Qu1 + br1Qu2]

1 3 — (b2 = 01) [S (V) Q12 — Q11
(%) VB |VIek-1 [S(V) + 0] [S (V) + ba] [Qi1 + b1 Qi)

We apply our lemmats (V) Q> — Q;_1,

S(WV)YQia— Qs =S (V)P" P (bs, ..., by) — P2 (bs, ... b)),
VcB={bs,....b},|V|=k—1.

Since(k—1) + (I—1) > (n—2) + 1, by Lemmd 4. in part (i), we can conclude that
S(V)Q—2 — > =k — 1, henceL < 0. On the other hand, from
(4.8) we havel + ¢ (b)) < 0, henceM < 0. Finally, we havey’ (b)) = L+ M < 0. This
means thalog [(G o A), (z,¢ (), bs, ..., b,)] is strictly decreasing at a neighbourigf Now
we have for allz > b, sufficiently close td; :

(4.9) (GoA) (z,0(x),bs,....b,) <(GoA), (b1,bg,....b,).
Clearly [4.9) contradict$ (4.7). Thus we complete the proof of our claiin (**).

< -1

hence
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What we have proved so far is the following: With respect to positive variables, ineq{iglity (D)
holds for everyz,, ..., z, > 0 and the equality of (D) holds if and only if, = --- = z,, > 0.

By continuity, it is obvious that the inequalify (D) holds for all non-negative variables .,
x, > 0. The only remaining unproven point is when the equality[df (D) happens for non-
negative variables which include 0.

(iii) As mentioned at the beginning of part (ii], [D) is actually an identity4f/) = (1,n) or
(n,1). Hence the equality condition ¢f[D) should be examined for the ca®e<of, ! < n and
n+1<k+1.

Supposery, ..., z, > 0, which include 0, are given and suppose the number of positiise
m, then we havd < m < n — 1. Without loss of generality we can assume¢...,z,, > 0
andz,,,1 =--- =z, =0.

SetX = {zy,...,z,} and X, = {x,...,x,}. First, the following is easy to observe.
(4.10) If n—m >k, theng, (X)=0=(GoA),(X),

hence we have an equality f(P)).

As there is a subséf C X with |Y| = k such thafy” consists ofc many0, henceA (Y) = 0
and we havgG o A), (X) = 0.
On the other hand, sinde> n + 1 — k > m + 1, every subse¥ C Xwith |Z| = [ contains
0, henceP (Z) = 0, thus we have,; (X) = 0.
In our remaining arguments, we will show that (4.10) above is the only case for which the
equality of [D) holds. Namely we claim the following:

(***) If n—m <k, thenwe havey (X) < (Go A), (X).
Our proof of is completed as follows. Firstly, it — m < k& andm < [, then we have
g(X)=0<(GoA), (X).

Sincen — m < k, every subset” C X with |Y| = k contains a positive number, hence
A(Y) > 0, thus we haveG o A), (X) > 0. On the other hand, becauseof< [, every subset
Z C X with |Z| = [ contains 0, henc® (Z) = 0, and we have, (X) = 0.

In order to prove[(**1), we limit ourselvesto —m < kandn —k+1 <1 <m.

First we have

(4.11) @ (X) = [mﬂ)

(n) ] q (X+) )

since,

1
I_m > P2

[ |&7..5.m)] -]
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Next we examine a relationship betwegno A), (X) and(G o A), (X;). For any subset” C
X with |Y| = k, the cardinality oft” N X, is possibly betweek — (n — m) andmin {k, m},
namely
kE—(n—m)<|YNX; <min{k,m}.
Denoteky = k — (n — m) andk;= min {k, m}, thenky, < k; < k.
Now we have

412) (Go,(X)= [] (g)(;n)(z—;”)/(z)_ [T (GoA),(x,)BE/E),

since, o o
Goay(x)®) = T am)
YCX,|Y|=k
-] <%>(L")(ZI£”) I 4 (W>(’,3;")]
ko<p<ki | WCX,y,|W|=p
o\ )G ()G
- . (G0 4), (X P
1) |
- 10 (fé)(?)(w VT @oa), (x)EIED).
In (4.11) and[(4.12), by settinx;]l; =, =1 Weihgve
_ [
(4.13) q(l,...,1, 0,...,0)_[(?)} and
(GoA),(L,....1,0,....00= [] (%><”)(“’)/<’“).
Thus, [4.11) and (4.12) can be expressed as o
(414) QI(X):QZ(L"'717 O?"'ao)ql(X+)7

(4.15) (GoA), (X)=(GoA),(1,...,1,0,...,0)
[ (Goa),x,) )G/,
ko<p<k:
For anyp of ky < p <k, we have
p+l>ko+l=k—(mn—m)+l=k+l—n+m>1+m,
namelyp + [ > m + 1. Thus inequality[(D) forX_, , which was already proven in (ii), yields
(GoA),(Xy) = q(Xy) forallp kg <p <k.

5 () () |

And, since

Y

ko<p<ky ( Z )
we have from[(4.15)

(GoA), (X)>(GoA),(1,....1,0,...,0)q (X,).
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From (4.14) we have
(GoA),(1,...,1,0,...,0)
a(1,...,1,0,...,0)

(4.16) (GoA), (X)> q (X).

From [4.16), it is obvious that

(GoA),(1,...,1,0,...,0) > q(1,...,1,0,...,0)
yields

(GoA), (X)>q(X).

Thus our claim[(**) is reduced to proving

(GoA),(1,...,1,0,...,0) > ¢q(1,...,1,0,...,0).
Note that this is a very special case[of (}**).
(4.17) (GoA),(1,...,1,0,...,0) >q (1,...,1, 0,...,0).
Proof of (4.17).In (4.17), we replace 0 by non-negative variable 0, denote

L(z)=(GoA),(1,....1, z,....x) and M(z)=¢q(1,...,1, z,....2).

Then, from the inequality (D) we have(z)/M (z) > 1 for all z > 0. Thus, if we know that
L (z)/M (z) is strictly decreasing at = 0, we can concludé. (0)/M (0) > 1, which is the

same ag (4.17). S¢t(z) = log[L (z) /M (z)] and calculate the derivative gf(z) atz = 0.
According to the definitions ofG o A), (X') andg, (X)), we have

L(z)=(GoA),(1,...,1, z,...,x)

S [t )G/ )

ko<p<ki

and 1
M(x)=q((1,...,1, z,...,x) = [Z %IT] )
Now, we can calculatet [log L (z) — log M (2)]],_, = [’ (0),

ro- y G ey 1o e/

waen )P (7)/ ()
_y W)k wem
waen () po om—l+l
m n—m n k— — n—m
Notekogpjgk1 (p) <k_p>/ (7) =land®™r < ko — nom forall p of kg < p < ki.
The above expression ¢f (0) yields
, n-m n-m . n+l—(k+])
L gy B sl G 0 o prny b s
This completes the proof df (4.]17). O

Together with what we proved in (i), we have completed the proof of the equality condition
of (D) stated in Theorefn 4.1, namejy(z1, ..., z,) = (G o A), (z1,...,2,) > 0 if and only
ifxy =--- =2, >0andq (z1,...,2,) = (Go A), (21,...,2,) = 0ifand only if £ or more
thank manyz; are zero. This completes the proof of Theofen 4.1. OJ

J. Inequal. Pure and Appl. Matt9(3) (2008), Art. 65, 21 pp. http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

18 TAKASHI ITO

As mentioned in the introduction, the inequality (C) can be regarded as corollary of Theorem
[4.1. And it is easy to see that the equality conditior] df (C) is the same as the equality condition

of (D).

Corollary 4.3 (Carlson, Meany and Nelsanpupposé:, [ andn are positive integers such that
1 <k, l<nandn+ 1< k+ [. Forany non-negative numbers, ...z, > 0 we have

(© (Ao G),(x1,...,2y) < (GoA) (z1,...,2,).
The equality condition of (C) is the same as the equality conditign]of (D).

5. INEQUALITY (C) WiTH WEIGHTS (THREE VARIABLES )

The process of making the mixed means involves two stages. We can consider weights dif-
ferently at each stage, that is, our weights at the second stage may be unrelated to the weights at
the first stage. Suppose . ..,t, > 0 are weights for variables,, ...z, > 0andl < k < n.

For any subset” C X = {zy,...,x,} with |Y| =k, A, (V) andG, (Y) are defined as before.
At the second stage, Ist, be weights fory” with |Y| =k, namely we havey, > 0 for all Y’

with |[Y|=kand > sy = 1. Here this second weight, } can be chosen independently
YCX,|[Y|=k
of the first weight{¢,}. Now, consider

Y syG(Y) and [ AT

YCX,|Y|=k YCX,|Y|=k

These two numbers, denoted @y o G), , , (X) and(G o A), , . (X), can be regarded as the
k-th mixed arithmetic and geometric means with weights in the most general sense.

In relation to @), one can ask the following question. Suppose the first wéightand
2 <k,l <nwithn+1 < k+[ are given. Do there exist second weights } (Y C X, |Y|=k)
and{sz} (Z C X, Z =I) such that

(Ao G)yy (1, wn) S (GoA)y (21,00, 1)

holds for allzy, ..., z, > 0? If the answer is yes, it means that we can have the inequality (C)
with weights. The author does not have the answer in general. However, there is one positive
answer for the simplest casewf= 3 (three variables) ankl = [ = 2.

Our notation goes back to the three variables case. Supppse> 0 are non-negative three
variables andi,b,¢ > 0 with a + b + ¢ = 1 are the first weights. If we choose the second
weightssy as

ab be ca

and —
ab+bc+ca’  ab+ bc+ ca ab + be + ca

forY = {z,y}, {y,2} and{z,z} respectively, then we can generalize our inequdlily (C) of
three variables from without weights to with weights.

Theorem 5.1. Suppose, b, ¢ are positive numbers withh + b + ¢ = 1. For any non-negative
numbersz, y, 2 > 0, we have, denoted b = ab + bc + ca,

(5.1) azb (x“yb)“%b + % (ybzc)ﬁ + % (zcxa)c%a

< azr + by by + cz £y cz+ax\*
“\a+bd b+c c+a '

The equality holds if and only if = y = =z > 0 or two ofz, y, z are 0.

2=
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Proof. Our proof can be done using an idea which is almost the same, but slightly general, as the
idea used in CMN[3]. We assume all variableg, >~ are positive until the equality condition
of (5.7) is discussed. With respect to our first weights, ¢ > 0, the arithmetic mean and the
geometric mean of any subsgtC X = {z,y,z}, Y # ¢, are simply denoted byl (V) and

1

G (Y), for instance A (Y) = “5% andG (Y) = (2°y") = for Y = {z,y}. To make sure,

our second weights, are4, % and< for Y = {z,y}, {y,z}and{z,z} respectively. Using

these notations, our inequalify (b.1) above is expressed equivalently as

(C) doosG)< Y AT

YCX,|Y|=2 YCX,|Y|=2

We will use this expression df (5.1).

First, as in CMN [[8], a variational form of Hélder’s inequality will be used. Suppase
1 <i<nandl <j <m,aren x m many positive numbers and suppasel < i < n and
s;, 1 < j < m aren + m many positve numbers satisfying+ - - - + ¢, = 1.

Then we have

n n m ti

(H) Z Sj (H aﬁfj) < H (Z Sj(li,j)
j=1 i=1 i=1 \j=1
The equality holds if and only if; ; = b;c; forall 1 <: <nandl < j < m for someb; > 0,
1 <i<nandc; > 0,1 <7 <m.(We will not need this equality condition here).

A proof of (H) can be given simply by applying the inequality between the arithmetic means
and the geometric means to the ratio of the left side divided by the right sifie of (H).

Next, we have the following identities 1) and 2).

Foralll < j < mwith |Y| = 2 we have

DAY)= >  szAY NZ),

ZCX,|Z|=2
2G(Y)= J] G nZz)»”.

Z2CX,|Z)=2
Proof of 1). Suppose” = {z,y} ,, then

Y. syAYNZ) = s Az, y}) +spaA () + spad ({2}

ZCX,|Z|=2

a_b ax—l—by_i_@ +%

Aoty AYTAT

abar +by ¢

— — (b

A avp Talytan

ar+by ([ ab azr + by

A (a+b+c) a+b ¥)

Proof of 2). This can be done exactly the same as 1) above. O
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(H)
Now, our proof of ’) goes as follows, note that our notatic—%and < mean the equality
= follows from 1) and the inequality follows from (H).

3 sy G (V)2 S s [ ¢vnzy
YCX,|Y|=2 YCX,|V|=2 ZCX,|Z|=2
Sz
(H)

< JI Y sG(YnZ)

ZCX,|Z|=2 | YcX,|Y|=2
Sz

< ] Y syA(YN2)

ZCX,|Z|=2 | YCX,|Y|=2

o | I

ZCX,|Z|=2

Thus, we have proved (C’) for positive y, = > 0. And one can see that the equality [of|(C’)
holds if and only if we have the equality §f|(H) adéd(Y N Z) = A(Y n Z) for all Y and Z
with |Y| =2 and|Z| =2. However, the latter is equivalent to= y = z and the latter yields
the equality of|[(H). Hence we can conclude that the equality df (C')fat = > 0 holds if and
onlyifz =y =2>0.

By continuity again, it is obvious that the inequality (C’) holds for any non-negatiyez >
0. The only point we have to check is the equality conditionsfoy, z > 0 which include 0. If
two of z, y, z > 0 are0, it is clear that both sides df (C’) afe Suppose only one af,y, z > 0
is 0, then forall Z with |Z| =2 we have

0< > sGYNnZ)< > syA(YN2Z)
YCX,|Y|=2 YCX,|Y|=2
and forsomeZ with |Z| =2 we have
Yo o sGYnZ)< Y syAYN2Z).
YCX,|Y|=2 YCX,|Y|=2

Thus, we have

- 1 sz

o< ] Y &G NnZ)

ZCX,|Z|=2 | YCX,|Y|=2

< 11 Y syA(YN2)

ZCX,|Z|=2 | YCX,|Y|=2

957

This means that the last inequality of the previous arguments prdving (C’) is strict. Hence we

have a strict inequality of (C’). This completes the proof of Thedrerm 5.1. O
Finally a question is left open. It is verified easily that the inequalifies (A) gnd (D) of three
variables are transformed into each other by the transformdtion; =) — 9‘107 i, % . It seems

natural to ask whether there is a reasonable relationship betyvéen (A) and (D) of general
variables, which extends the relationship for three variables.
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