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ABSTRACT. We consider the problem of numerical inversion of Fredholm integral equations of
the first kind via piecewise interpolation. One of the most important aspects of this technique
is the choice of grid and collocation points. Theoretical results are developed which identify an
optimal strategy for the distribution of collocation points for piecewise constant interpolation.
The method, as outlined, can be readily extended to higher order schemes.
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1. INTRODUCTION

In this paper we will consider the problem of inverting Fredholm integral equations of the
first kind, viz

(L.1) o) = [ K@ )f(@)dr),
r
whereg represents some known data at the pgiret I' and K is some integrable kernel.
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2 G. HANNA, J. ROUMELIOTIS, AND A. KUCERA

The integral equatior (1.1) is inherently ill-posed. That is, it can be shown that a small
perturbation ory can give rise to an arbitrarily large perturbationfin To explore this point,
consider the singular integral

1
(1.2) / In|z —y|n®e™ de = in®" (Iny — ™ In(1 — y)) — '™ + O (n*7?) .
0

For0 < a < 1 andn large, then infinitely small changes for the integral correspond to infinitely
large changes in the integrand. For this reason, numerical methods for solving such equations
are often ill-fated and the simple illustration here shows this is often manifested in attempting
to find the high frequency terms in the unknown. For example, a spectral expansion method
would encounter problems as shown[in[1.2) and this has been explored in [14].

Consider the one dimensional symmetric integral equation

b
(1.3) o(y) = / Kl —ylf(x)ds, a<y<b,

where bothK" > 0 andg are known and is the unknown function we wish to find. We assume
thatg is bounded but not necessarily analytic. To begin, define a grid

(1.4) a=x90<11 < <Tp_1 <T,=0>0,

and the interpolation scheme

fic1, T € [7i21,§)
(1.5) f(z) = , & € (v, 2], i=1,2,...,n.

fi7 YIS [é.’wxz)
Thus, we may writef (1]3) as

it Tn
K|x—y|dx—|—fn/ K|z —y| dz.
én

i

&1 n—1
16)  gly)=fo / Kle—ylar+ 31, |
o i=1

To obtain a solution we need to find the+ 1 unknownsfy, fi1, fo, ..., f.. Thus we can formu-
late a linear system by evaluatirig (1.6)=at 1 collocation points.

To obtain a stable system, the distribution of collocation points must be considered as a
function of both polynomial interpolation order and kernel singularity. Much work has been
done where a convergence theory for piecewise constant and linear interpolants was developed
[2,18,9,10] 11/, 12, 16, 17, 18,119,120/ 21} 22]. For an excellent review see [1]. Convergence of
the numerical solution is guaranteed if one collocates evenly between the nodelgaints [1, 2, 9,
16,/19], though not necessarily to the solution[ 1, 4, pp. 260-262]. Receritly, [6] extended this
theory to include Hermite cubics.

In an effort to identify optimal collocation points, we will utilize a weighted Peano kernel
theory as developed inl[3] 7, 113,/15] to approximate the integral equatidn (1.3) and provide
a-priori error bounds. The bounds are then minimized in order to produce an optimal grid as
well as furnish the desired distribution of collocation points. The method is useful in that it
can provide an abundance of error results in terms of desirable propertfegrufnotonicity,
p-norm, total bounded variation, Lipschitzian etc.)

2. MAIN RESULTS

We will assumeK

(,y) : la,b] — (0,00) to be integrable and positive, thatis(-,y) €
Li(a,b) and K (z,y) > 0

, Y(x,y) € [a,b] X [a,b]. In addition, we assume thdt: [a,b] — R
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has bounded first derivative and we approximate it using the constant functional
fla), a<z<E,
f®), &<x<b.

We seek to write down an explicit formula fgi(a) and f(b) in terms ofg and K. The
following theorem will be utilized.

Theorem 2.1.[13, Theorem 7.21] Lef : [a,b] — R be a differentiable mapping ofu, b)
whose derivative is bounded om, b) and denotd)| f'|| , = sup;c(ap [f' (t)] < co. Further, let

w : (a,b) — [0,00) be an integrable function so thjfw (t)dt < co. Then forz € [a, b], the
following inequality holds

(2.1) f(z) ~

(2.2) ]/ 1U(t)f(t)dt——[ﬂl(awf)f(a)-%7n($7b)f(b)}‘fif(x)HfWLmy
where
2.3) I(z) = / (@ t)w (b) dt,

t—a, te€la,z] b
p(w,t):{b_t7 L (o , and m(a,b):/aw(t)dt.

The bound/ () is minimized at the midpoint = (a + b) /2.
Thus we can directly apply Theorém .1 to the integral equdtioh (1.3) to establish that

2.4 o) =m (0.5 0) sl (520w 100+ RO
where
(a+b)/2 b
2.5 R < 1 oo x—a)K|r —y|dr + b—2)K|x —yldx |,
@5 IR < |f] (/ (z — a)Klz — | /(m)/z( K|z —y )

andm has been redefined to
b
(2.6) m(a,b;y) = / K|z — y|dx.

Since [(2.4) is linear iry () and f(b), we can collocate at the two poinis< y; < y» < b to
obtain

1
2.7 a) = m —Ry)—m —R
(2.7) f(a) 11y — m12m21< 22(91 1) 12(92 2))
and

1
2.8 b) = m —Ry)—m — Ry)),
(2.8) f(b) P p—— ( 11(92 2) 21(91 1))
where
(2.9) mﬂ:m(a,a;b;yz‘) ) m¢2=m<aT+b,b;yz‘) )

g = g(y:), andR; = R(y;), fori =1,2.

We can now write down an approximation for botfxr) and f(b) and the associated error
bound in terms of| ||, y1 andy,. Optimal collocation points can then be identified by
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minimizing the error. This is established in the following theorem, where for simplicity we will
assume thaj, = a + b — ;.

Theorem 2.2. The integral equatior] (1]3) has an approximate solutjon|(2.1) in which

Mg, — M-
210 @~ (A1) | < 17 1B ) and
Mg — M-
10~ (BB < 17 es)
where
(211) M, = miq, My = myq and

a+b

£0) [fGQ (x—a)K\x—y\dm#—f%(b—x)Ku—y|dx}
Yy) = a )
‘fﬁ) K|z — yldz — [aw le—y|dl’)
2

fory =y, € [a,(a+b)/2) andys = b+ a — y;.

Proof. With the conditiony, = a + b — v, it is a simple matter to show that
mip = Moy and mis = moy.

Furthermore, we can also establish that

[R(y)| < [/l E(y)  and |R(y2)| < [|f [l E(y)-

Hence, rearranging (4.7) ar[d (2.8), using the above simplifications and the triangle inequality
produces the result. O

Equation [(2.1I0) provides explicit error bounds for functighsf bounded first derivative
in terms of a collocation poing € [a, “T“’). Minimizing E(y) should produce an optimal
collocation strategy for this class. This is explored in the next section.

3. NUMERICAL EXPERIMENTS

In this section we apply the results of the previous section to the numerical solution of
Symm’s integral equation

(3.1) 9(y) :/Olln(|xiy|>f(x)dx, 0<y<l1.

We choose an exact solutigifz) = 22 + 1, so thatf’ is bounded, but all higher derivatives
are unbounded. All of the algebraic calculations of the previous section have been performed
using Maple.

In this case, we have

4 7
(3.2) 9W) =y -y -l -y)+l-yy
4, 29 4, 12
+5y —1—25 Y Re(arctanhy )
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Using Maple, the approximation fgf(a) in equation|(2.10) is
. 1 1 1
(3.3) f*(a) = [(—ln(y)y+ §ln(2) — éln(l —2y)—yn2)+yn(l-2y)+ 5)

4 7 4, 29
(Ey—ln(y)y—gln(l— )+1n(1—y)y+5y + o

4 1
— gy5/2 Re (arctanh yl/z)) — <—ln l1—y)+In(l-y)y— 5111(2) +y In(2)

(ﬂ__y 1n(1—y)(1—y)—zln(y)

1
1 1—-2¢y)—yIn(l—2 -
n ( y) —y In( y) 2) 5
4
5

+In(y) (1—y)+ ;1 (1-y)* = = (1 — )" Re (arctanh (1 y)—1/2))]

(—ln(y)y+%ln(2)—%ln(l—2y)—y1n(2)—|—yln(1—2y)+%)

_ (_1n(1_y)+1n(1—y)y—%ln(2)+yln(2)

1 1\
+§ln(1—2y)—y1n(1—2y)+§

and from equatiorj (2.11), the bound for the theoretical error is

@4) B) = |3y~ @ -2 (4 7) - @

+2 4y -y (- 29+ (1-y) <y_1_1y2>}

Sl m@y+a-2mn@ - 0= 2n-2)+ 0 -]

In Figure[3.1 we plot the theoretical error fifa). That is, a plot ofE(y) as a function of
collocation pointy. It is obvious that the error should increaseyas- 1/2 since at this point
11 = y2 and the linear system becomes singular.

In contrast to other results for interpolation of this order, the theoretical result shows that the
optimal collocation point is not at the boundary= 0 as would be expected but in the interior.
For this particular kernel, the optimal point occurs ngaf 0.017.

In Figure 3.2 we plot the numerical error jifa). Thatis, a plot of f(0)— f*(0)| as a function
of collocation pointy. The optimal location of the collocation point is nea& 0.019. We can
see that the theoretical error is qualitatively similar to the numerical error and that the optimal
collocation point is close to that identified in the theoretical result.

4., CONCLUSION

The application of Peano kernel theory to first kind integral equations is a powerful technique.
The theory can account for general propertieg,of andf. This contrasts with other methods
where, for exampley is assumed analytic. In addition, there are a number weighted Peano
kernel derived multi-point quadrature rules with error bounds in ternf$, g’ and f [13] as

J. Inequal. Pure and Appl. Math6(5) Art. 131, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

6 G. HANNA, J. ROUMELIOTIS, AND A. KUCERA
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Figure 3.1: Theoretical error given by equation (B.4) as a function of collocation ppinThe zoomed graph
indicates an optimal collocation point negr= 0.017
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Figure 3.2: Numerical error| f(a) — f*(a)|, as a function of collocation point. The zoomed graph indicates an
optimal collocation point neay = 0.019

well as multiple dimensions [5]. The application of these may prove to be a fruitful source of
results in the study of collocation points for integral equations.
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