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ABSTRACT. We consider the problem of numerical inversion of Fredholm integral equations of
the first kind via piecewise interpolation. One of the most important aspects of this technique
is the choice of grid and collocation points. Theoretical results are developed which identify an
optimal strategy for the distribution of collocation points for piecewise constant interpolation.
The method, as outlined, can be readily extended to higher order schemes.
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1. I NTRODUCTION

In this paper we will consider the problem of inverting Fredholm integral equations of the
first kind, viz

(1.1) g(y) =

∫
Γ

K(x − y)f(x ) dΓ(x ),

whereg represents some known data at the pointy ∈ Γ andK is some integrable kernel.
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2 G. HANNA , J. ROUMELIOTIS, AND A. K UCERA

The integral equation (1.1) is inherently ill-posed. That is, it can be shown that a small
perturbation ong can give rise to an arbitrarily large perturbation inf . To explore this point,
consider the singular integral

(1.2)
∫ 1

0

ln |x− y|nαeinx dx = inα−1
(
ln y − ein ln(1− y)

)
− πnα−1einy + O

(
nα−2

)
.

For0 < α < 1 andn large, then infinitely small changes for the integral correspond to infinitely
large changes in the integrand. For this reason, numerical methods for solving such equations
are often ill-fated and the simple illustration here shows this is often manifested in attempting
to find the high frequency terms in the unknown. For example, a spectral expansion method
would encounter problems as shown in (1.2) and this has been explored in [14].

Consider the one dimensional symmetric integral equation

(1.3) g(y) =

∫ b

a

K|x− y|f(x) dx, a ≤ y ≤ b,

where bothK > 0 andg are known andf is the unknown function we wish to find. We assume
thatg is bounded but not necessarily analytic. To begin, define a grid

(1.4) a = x0 < x1 < · · · < xn−1 < xn = b,

and the interpolation scheme

(1.5) f(x) =

fi−1, x ∈ [xi−1, ξi)

fi, x ∈ [ξi, xi)
, ξi ∈ [xi−1, xi], i = 1, 2, . . . , n.

Thus, we may write (1.3) as

(1.6) g(y) = f0

∫ ξ1

x0

K|x− y| dx +
n−1∑
i=1

fj

∫ ξi+1

ξi

K|x− y| dx + fn

∫ xn

ξn

K|x− y| dx.

To obtain a solution we need to find then + 1 unknownsf0, f1, f2, . . . , fn. Thus we can formu-
late a linear system by evaluating (1.6) atn + 1 collocation points.

To obtain a stable system, the distribution of collocation points must be considered as a
function of both polynomial interpolation order and kernel singularity. Much work has been
done where a convergence theory for piecewise constant and linear interpolants was developed
[2, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22]. For an excellent review see [1]. Convergence of
the numerical solution is guaranteed if one collocates evenly between the node points [1, 2, 9,
16, 19], though not necessarily to the solution [1, 4, pp. 260-262]. Recently, [6] extended this
theory to include Hermite cubics.

In an effort to identify optimal collocation points, we will utilize a weighted Peano kernel
theory as developed in [3, 7, 13, 15] to approximate the integral equation (1.3) and provide
a-priori error bounds. The bounds are then minimized in order to produce an optimal grid as
well as furnish the desired distribution of collocation points. The method is useful in that it
can provide an abundance of error results in terms of desirable properties off (monotonicity,
p-norm, total bounded variation, Lipschitzian etc.)

2. M AIN RESULTS

We will assumeK(·, y) : [a, b] → (0,∞) to be integrable and positive, that isK(·, y) ∈
L1(a, b) andK(x, y) ≥ 0, ∀(x, y) ∈ [a, b] × [a, b]. In addition, we assume thatf : [a, b] → R
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has bounded first derivative and we approximate it using the constant functional

(2.1) f(x) ≈

f(a), a ≤ x ≤ ξ,

f(b), ξ < x ≤ b.

We seek to write down an explicit formula forf(a) and f(b) in terms ofg andK. The
following theorem will be utilized.

Theorem 2.1. [13, Theorem 7.21] Letf : [a, b] → R be a differentiable mapping on(a, b)
whose derivative is bounded on(a, b) and denote‖f ′‖∞ = supt∈(a,b) |f ′ (t)| < ∞. Further, let

w : (a, b) → [0,∞) be an integrable function so that
∫ b

a
w (t) dt < ∞. Then forx ∈ [a, b], the

following inequality holds

(2.2)

∣∣∣∣∫ b

a

w (t) f (t) dt−
[
m (a, x) f (a) + m (x, b) f (b)

]∣∣∣∣ ≤ I(x) ‖f ′‖∞ ,

where

I(x) =

∫ b

a

p (x, t) w (t) dt,(2.3)

p (x, t) =

{
t− a, t ∈ [a, x]

b− t, t ∈ (x, b]
, and m(a, b) =

∫ b

a

w(t) dt.

The boundI(x) is minimized at the midpointx = (a + b)/2.

Thus we can directly apply Theorem 2.1 to the integral equation (1.3) to establish that

(2.4) g(y) = m

(
a,

a + b

2
; y

)
f(a) + m

(
a + b

2
, b; y

)
f(b) + R(y),

where

(2.5) |R(y)| ≤ ‖f ′‖∞

(∫ (a+b)/2

a

(x− a)K|x− y| dx +

∫ b

(a+b)/2

(b− x)K|x− y| dx

)
,

andm has been redefined to

(2.6) m(a, b; y) =

∫ b

a

K|x− y| dx.

Since (2.4) is linear inf(a) andf(b), we can collocate at the two pointsa ≤ y1 < y2 ≤ b to
obtain

(2.7) f(a) =
1

m11m22 −m12m21

(
m22(g1 −R1)−m12(g2 −R2)

)
and

(2.8) f(b) =
1

m11m22 −m12m21

(
m11(g2 −R2)−m21(g1 −R1)

)
,

where

mi1 = m

(
a,

a + b

2
; yi

)
, mi2 = m

(
a + b

2
, b; yi

)
,(2.9)

gi = g(yi), andRi = R(yi), for i = 1, 2.

We can now write down an approximation for bothf(a) andf(b) and the associated error
bound in terms of‖f ′‖∞, y1 and y2. Optimal collocation points can then be identified by
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minimizing the error. This is established in the following theorem, where for simplicity we will
assume thaty2 = a + b− y1.

Theorem 2.2.The integral equation (1.3) has an approximate solution (2.1) in which∣∣∣∣f(a)−
(

M1g1 −M2g2

M2
1 −M2

2

)∣∣∣∣ ≤ ‖f ′‖∞E(y) and(2.10) ∣∣∣∣f(b)−
(

M1g2 −M2g1

M2
1 −M2

2

)∣∣∣∣ ≤ ‖f ′‖∞E(y)

where

M1 = m11, M2 = m12 and(2.11)

E(y) =

[∫ a+b
2

a
(x− a)K|x− y|dx +

∫ b
a+b
2

(b− x)K|x− y|dx
]

∣∣∣∫ a+b
2

a
K|x− y|dx−

∫ b
a+b
2

K|x− y|dx
∣∣∣ ,

for y = y1 ∈ [a, (a + b)/2) andy2 = b + a− y1.

Proof. With the conditiony2 = a + b− y1, it is a simple matter to show that

m11 = m22 and m12 = m21.

Furthermore, we can also establish that

|R(y1)| ≤ ‖f ′‖∞E(y) and |R(y2)| ≤ ‖f ′‖∞E(y).

Hence, rearranging (2.7) and (2.8), using the above simplifications and the triangle inequality
produces the result. �

Equation (2.10) provides explicit error bounds for functionsf of bounded first derivative
in terms of a collocation pointy ∈ [a, a+b

2
). Minimizing E(y) should produce an optimal

collocation strategy for this class. This is explored in the next section.

3. NUMERICAL EXPERIMENTS

In this section we apply the results of the previous section to the numerical solution of
Symm’s integral equation

(3.1) g(y) =

∫ 1

0

ln

(
1

|x− y|

)
f(x) dx, 0 ≤ y ≤ 1.

We choose an exact solutionf(x) = x3/2 + 1, so thatf ′ is bounded, but all higher derivatives
are unbounded. All of the algebraic calculations of the previous section have been performed
using Maple.

In this case, we have

(3.2) g(y) =
4

15
y − ln (y) y − 7

5
ln (1− y) + ln (1− y) y

+
4

5
y2 +

29

25
− 4

5
y5/2 Re

(
arctanh y−1/2

)
.
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Using Maple, the approximation forf(a) in equation (2.10) is

(3.3) f ∗(a) =

[(
− ln (y) y +

1

2
ln (2)− 1

2
ln (1− 2 y)− y ln (2) + y ln (1− 2 y) +

1

2

)
(

4

15
y − ln (y) y − 7

5
ln (1− y) + ln (1− y) y +

4

5
y2 +

29

25

− 4

5
y5/2 Re

(
arctanh y−1/2

))
−
(
− ln (1− y) + ln (1− y) y − 1

2
ln (2) + y ln (2)

+
1

2
ln (1− 2 y)− y ln (1− 2 y) +

1

2

)(
107

75
− 4

15
y − ln (1− y) (1− y)− 7

5
ln (y)

+ ln (y) (1− y) +
4

5
(1− y)2 − 4

5
(1− y)5/2 Re

(
arctanh (1− y)−1/2

))]
[(
− ln (y) y +

1

2
ln (2)− 1

2
ln (1− 2 y)− y ln (2) + y ln (1− 2 y) +

1

2

)2

−
(
− ln (1− y) + ln (1− y) y − 1

2
ln (2) + y ln (2)

+
1

2
ln (1− 2 y)− y ln (1− 2 y) +

1

2

)2
]−1

and from equation (2.11), the bound for the theoretical error is

(3.4) E(y) =

[
−1

2
ln (y) y2 − y2 ln (2) + ln (1− 2y)

(
y2 +

1

4

)
− 1

4
ln (2)

+
3

8
+ y ln (2)− y ln (1− 2y) + ln (1− y)

(
y − 1

2
− 1

2
y2

)]
/[

− ln (y) y + (1− 2y) ln (2)− (1− 2y) ln (1− 2y) + (1− y) ln (1− y)
]
.

In Figure 3.1 we plot the theoretical error inf(a). That is, a plot ofE(y) as a function of
collocation pointy. It is obvious that the error should increase asy → 1/2 since at this point
y1 = y2 and the linear system becomes singular.

In contrast to other results for interpolation of this order, the theoretical result shows that the
optimal collocation point is not at the boundaryy = 0 as would be expected but in the interior.
For this particular kernel, the optimal point occurs neary = 0.017.

In Figure 3.2 we plot the numerical error inf(a). That is, a plot of|f(0)−f ∗(0)| as a function
of collocation pointy. The optimal location of the collocation point is neary = 0.019. We can
see that the theoretical error is qualitatively similar to the numerical error and that the optimal
collocation point is close to that identified in the theoretical result.

4. CONCLUSION

The application of Peano kernel theory to first kind integral equations is a powerful technique.
The theory can account for general properties ofg, K andf . This contrasts with other methods
where, for example,g is assumed analytic. In addition, there are a number weighted Peano
kernel derived multi-point quadrature rules with error bounds in terms off ′, f ′′ andf (n) [13] as
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Figure 3.1: Theoretical error given by equation (3.4) as a function of collocation pointy. The zoomed graph
indicates an optimal collocation point neary = 0.017
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Figure 3.2: Numerical error,|f(a)− f∗(a)|, as a function of collocation pointy. The zoomed graph indicates an
optimal collocation point neary = 0.019

well as multiple dimensions [5]. The application of these may prove to be a fruitful source of
results in the study of collocation points for integral equations.
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