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ABSTRACT. The theory of harmonic univalent mappings has become a very popular research
topic in recent years. The aim of this expository article is to present a guided tour of the planar
harmonic univalent and related mappings with emphasis on recent results and open problems
and, in particular, to look at the harmonic analogues of the theory of analytic univalent functions
in the unit disc.
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1. I NTRODUCTION

Planar harmonic univalent mappings have long been used in the representation of minimal
surfaces. For example, E. Heinz [34] in 1952 used such mappings in the study of the Gaussian
curvature of nonparametric minimal surfaces over the unit disc. For more recent results and
references, one may see [70]. Such mappings and related functions have applications in the
seemingly diverse fields of Engineering, Physics, Electronics, Medicine, Operations Research,
Aerodynamics, and other branches of applied mathematical sciences. For example, harmonic
and meromorphic functions are critical components in the solutions of numerous physical prob-
lems, such as the flow of water through an underground aquifer, steady-state temperature distri-
bution, electrostatic field intensity, the diffusion of, say, salt through a channel.

Harmonic univalent mappings can be considered as close relatives of conformal mappings.
But, in contrast to conformal mappings, harmonic univalent mappings are not at all determined
(up to normalizations) by their image domains. Another major difference is that a harmonic
univalent mapping can be constructed on an interval of the boundary of the open unit disc. On
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the other hand, because of the natural analogy to Fourier series, harmonic mappings have a two-
folded series structure consisting of an ‘analytic part’ which is a power series in the complex
variablez, and a ‘co-analytic part’ which is a power series in the complex conjugate ofz. In
view of such fascinating properties, a study of harmonic univalent mappings is promising and
important.

Harmonic univalent mappings have attracted the serious attention of complex analysts only
recently after the appearance of a basic paper by Clunie and Sheil-Small [22] in 1984. Hengart-
ner and Schober ([35], [37]) in 1986 made efforts to find an appropriate form of the Riemann
Mapping Theorem for harmonic mappings. Their theory is based on the model provided by the
theory of quasiconformal mappings. The works of these researchers and several others (e.g.
see [36], [51], [52], [63], [64], [67]) gave rise to several fascinating problems, conjectures, and
many tantalizing but perplexing questions. Though several researchers solved some of these
problems and conjectures, yet many perplexing questions are still unanswered and need to be
investigated.

The purpose of this expository article is to provide a guided tour of planar harmonic univalent
mappings with emphasis on recent results and open problems and, in particular, to look at the
harmonic analogues of the theory of analytic univalent functions in the unit disc. Since there
are several survey articles and books ([21], [23], [24], [27], [49]) on harmonic mappings and
related areas, we present only a selection of the results relevant to our precise objective. We
begin the next section with a quick review of the theory of analytic univalent functions.

2. THEORY OF ANALYTIC UNIVALENT FUNCTIONS (1851 – 1985)

Let D1 6= C be any given simply connected domain in thez-planeC. LetD2 be any given
simply connected domain in thew-plane. In 1851, G. Bernard Riemann showed that there
always exists an analytic functionf that mapsD1 ontoD2. This original version of theRiemann
mapping theoremgave rise to the birth ofgeometric function theory. But, this theorem was
incomplete and so it could not find many applications until the beginning of the 20th century.
It was Koebe [48] who, in 1907, discovered that the functions which are both analytic and
univalent in a simply connected domainD = D1 6= C have a nice property stated in Theorem
2.1. Hereunivalent functionor univalent mappingis the complex analyst’s term for “one-to-
one”: f(z1) 6= f(z2) unlessz1 6= z2.

Theorem 2.1. If z0 ∈ D, then there exists a unique functionf , analytic and univalent in
D which mapsD onto the open unit disc∆ := {z : |z| < 1} in such a way thatf(z0) =
0 andf ′(z0) > 0.

This powerful version of the Riemann mapping theorem allows pure and applied mathemati-
cians and engineers to reduce problems about simply connected domains to the special case of
the open unit disc∆ or half-plane. An analytic univalent function is also called aconformal
mappingbecause it preserves angles between curves.

The theory of univalent functions is so vast and complicated that certain simplifying assump-
tions are necessary. In view of the modified version of the Riemann Mapping Theorem 2.1, we
can replace the arbitrary simply connected domainD with ∆. We further assume the normal-
ization conditions:f(0) = 0, f ′(0) = 1. It is easy to show that these normalization conditions
are harmless. We letS denote thefamily of analytic, univalent and normalized functions defined
in ∆. Thus a functionf in S has the power series representation

(2.1) f(z) = z +
∞∑

n=2

anz
n, z ∈ ∆.
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PLANAR HARMONIC UNIVALENT AND RELATED MAPPINGS 3

The theory of univalent functions is largely related toS. It is well-known thatS is a compact
subset of the locally convex linear topological space of all analytic normalized functions defined
on∆ with respect to the topology of uniform convergence on compact subsets of∆. The Koebe
function

(2.2) k(z) = z/(1− z)2 = z +
∞∑

n=2

nzn

and its rotations are extremal for many problems inS. Note thatk(∆) is the entire complex
plane minus the slit along the negative real axis from−∞ to − 1/4. For the familyS, we have
the following powerful and fascinating result which was discovered in 1907 by Koebe [48]:

Theorem 2.2.There exists a positive constantc such that

∩
f∈S

f (∆) ⊃ {w : |w| ≤ c} .

But, this interesting result did not find many applications until Bieberbach [19] in 1916
proved thatc = 1/4. More precisely, he proved that that the open disc|w| < 1/4 is always
covered by the map of∆ of any functionf ∈ S. Interestingly, the one-quarter disc is the largest
disc that is contained ink(∆), wherek is the Koebe function given by (2.2). In the same paper,
Bieberbach also observed the following.

Conjecture 2.3 (Bieberbach [19]). If f ∈ S is any function given by (2.1), then|an| ≤ n,
n ≥ 2. Furthermore,|an| = n for all n for the Koebe functionk defined by (2.2) and its
rotations.

Failure to settle the Bieberbach conjecture until 1984 led to the introduction and investigation
of several subclasses ofS. An important subclass ofS, denoted byS∗, consists of the functions
that map∆ onto a domainstarshaped with respect to the origin. Another important subclass of
S is the familyK which maps∆ onto a convex domain. Note that the Koebe function and its
rotations do not belong toK. Furthermore, a functionf , analytic in∆, is said to beclose-to-
convexin ∆, f ∈ C, if f (∆) is a close-to-convex domain; that is, if the complement off (∆)
can be written as a union of non-crossing half-lines. It is well-known thatK ⊂ S∗ ⊂ C ⊂
S. We remark that various subclasses of these classes have been studied by many researchers
including the author in ([3], [17], [31], [32]).

Various attempts to prove or disprove the Bieberbach conjecture gave rise to eight major
conjectures which are related to each other by a chain of implications; see for example, [3].
Many powerful new methods were developed and a large number of related problems were
generated in attempts to prove these conjectures, which were finally settled in mid 1984 by
Louis de Branges [20]. For a historical development of the Bieberbach Conjecture and its
implications on univalent function theory, one may refer to the survey by the author [3].

3. HARMONIC UNIVALENT M APPINGS: BACKGROUND AND DEFINITIONS

A complex-valued continuous functionw = f(z) = u(z) + iv(z) defined on a domainD is
harmonicif u andv are real-valued harmonic functions onD, that isu, v satisfy, respectively,
the Laplace equations∆u = uxx+vyy = 0 and∆v = vxx+vyy = 0. A one-to-one mappingu =
u(z), v = v(z) from a regionD1 in thexy−plane to a regionD2 in theuv−plane is aharmonic
mappingif u andv are harmonic. It is well-known that iff = u + iv has continuous partial
derivatives, thenf is analytic if and only if the Cauchy-Riemann equationsux = vy anduy =
−vx are satisfied. It follows that every analytic function is a complex-valued harmonic function.
However, not every complex-valued harmonic function is analytic, since no two solutions of the
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Laplace equation can be taken as the componentsu andv of an analytic function inD, they must
be related by the Cauchy-Riemann equationsux = vy anduy = −vx.

An analytic function of a harmonic function may not be harmonic. For example,x is har-
monic butx2 is not. But, a product of any pair of analytic functions is analytic. On the other
hand, the harmonic function of an analytic function can be shown to be harmonic, but the com-
position of two harmonic functions may not be harmonic. Moreover, the inverse of a harmonic
function need not be harmonic. The simplest example of a harmonic univalent function which
need not be conformal is the linear mappingw = αz + βz̄ with |α| 6= |β|. Another simple
example isw = z + z̄2/2 which maps∆ harmonically onto a region inside a hypocycloid of
three cusps.

Theorem 3.1([22]). Most general harmonic mappings of the whole complex planeC onto itself
are the affine mappingsw = αz + βz̄ + γ (|α| 6= |β|) .

Let f = u + iv be a harmonic function in a simply connected domainD with f(0) = 0. Let
F andG be analytic inD so thatF (0) = G(0) = 0, ReF = Re f = u, ReG = Im f = v.
Write h = (F + iG) /2, g = (F − iG) /2. It is now a routine exercise to show thatf = h+ ḡ,
whereh andg are analytic functions inD. We callh the analytic partand ḡ the co-analytic
part of f. Moreover,

h′ = fz =
∂f/∂x− i∂f/∂y

2
, g′ = fz̄ =

∂f/∂x+ i∂f/∂y

2

are always (globally) analytic functions onD. For example,f(z) = z − 1/z̄ + 2 ln |z| is a
harmonic univalent function from the exterior of the unit disc∆ ontoC\ {0} , whereh(z) =
z + log z andg(z) = log z − 1/z.

A subject of considerable importance in harmonic mappings is theJacobianJf of a function
f = u+ iv, defined byJf (z) = ux(z)vy(z)− uy(z)vx(z). Or, in terms offz andfz̄, we have

Jf (z) = |fz (z)|2 − |fz̄ (z)|2 = |h′(z)|2 − |g′(z)|2 ,
wheref = h+ ḡ is the harmonic function∆. WhenJf is positive inD, the harmonic function
f is calledorientation–preservingor sense-preservingin D. An analytic univalent function is a
special case of an orientation-preserving harmonic univalent function. For analytic functionsf ,
it is well-known thatJf (z) 6= 0 if and only if f is locally univalent atz. For harmonic functions
we have the following useful result due to Lewy.

Theorem 3.2([50]). A harmonic mapping is locally univalent in a neighborhood of a pointz0

if and only if the JacobianJf (z) 6= 0 at z0.

The first key insight into harmonic univalent mappings came from Clunie and S. Small [22],
who observed thatf = h + ḡ is locally univalent and orientation-preserving if and only if
Jf (z) = |h′(z)|2 − |g′(z)|2 > 0 (z ∈ ∆). This is equivalent to

(3.1) |g′(z)| < |h′(z)| (z ∈ ∆) .

The functionw = g′/h′ is called thesecond dilationof f. Note that|w(z)| < 1. More
generally, we have

Theorem 3.3([22]). A non-constant complex-valued functionf is a harmonic and orientation-
preserving mapping onD if and only iff is a solution of the elliptic partial differential equation
fz̄(z) = w(z)fz(z).

A functionf = h+ ḡ harmonic in the open unit disc∆ can be expanded in a series

f(reiθ) =
∑∞

−∞
anr

|n|einθ (0 ≤ r < 1) ,
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PLANAR HARMONIC UNIVALENT AND RELATED MAPPINGS 5

whereh (z) =
∑∞

0 anz
n, g (z) =

∑∞
1 ā−nz

n. We may normalizef so thath (0) = 0 =
h′ (0) − 1. For the sake of simplicity, we may writebn = ā−n. We denote bySH the family
of all harmonic, complex-valued, orientation-preserving, normalized and univalent mappings
defined on∆. Thus a functionf in SH admits the representationf = h+ ḡ, where

(3.2) h(z) = z +
∞∑

n=2

anz
n and g(z) =

∞∑
n=1

bnz
n.

are analytic functions in∆. It follows from the orientation-preserving property that|b1| < 1.
Therefore,

(
f−b1f

) /(
1− |b1|2

)
∈ SH wheneverf ∈ SH . Thus we may restrict our attention

to the subclassS0
H defined byS0

H = {f ∈ SH : g′(0) = b1 = 0}.
We observe thatS ⊂ S0

H ⊂ SH . Both familiesSH andS0
H are normal families. That is every

sequence of functions inSH (or S0
H) has a subsequence that converges locally uniformly in∆.

Note thatS0
H is a compact family (with respect to the topology of locally uniform convergence)

[22]. However, in contrast to the familiesS andS0
H , the familySH is not compact because the

sequence of affine functionsfn (z) = (n/ (n+ 1)) z̄ + z is in SH but asn → ∞ it is apparent
that fn(z) → f(z) = 2x (wherez = x + iy) uniformly in ∆ and the limit functionf is not
univalent (nor is it constant).

Analogous to well-known subclasses of the familyS, one can define various subclasses of
the familiesSH andS0

H . A sense-preserving harmonic mappingf ∈ SH (f ∈ S0
H) is in the

classS∗H (S∗0H respectively) if the rangef(∆) is starlike with respect to the origin. A function
f ∈ S∗H (or f ∈ S∗0H ) is called aharmonic starlike mappingin ∆. Likewise a functionf defined
in ∆ belongs to the classKH (K0

H) if f ∈ SH (or f ∈ S0
H respectively) and iff(∆) is aconvex

domain. A function f ∈ KH (or f ∈ K0
H) is calledharmonic convexin ∆. Analytically, we

have

(3.3) f ∈ S∗H ⇔
∂

∂θ

(
arg f(reiθ)

)
> 0, (z ∈ ∆)

f ∈ KH ⇔
∂

∂θ

{
arg

(
∂

∂θ
arg f(reiθ)

)}
> 0,(3.4)

(z ∈ reiθ, 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1).

Similar to the subclassC of S, letCH andC0
H denote the subsets, respectively, ofSH andS0

H ,
such that for anyf ∈ CH orC0

H , f(∆) is aclose-to-convexdomain. Recall that a domainD is
close-to-convex if the complement ofD can be written as a union of non-crossing half-lines.

Comparable to the positive order defined in the subclassesS∗ andK of S, we can introduce
the orderα (0 ≤ α < 1) in S∗H andKH by replacing ‘0’ on the right sides of inequalities (3.3)
and (3.4) byα. Denote the corresponding subclasses of the functions which areharmonic star-
like of orderα andharmonic convex of orderα, respectively, byS∗H (α) andKH (α) . Note
thatS∗H (0) ≡ S∗H andKH (0) ≡ KH . Also, note that whenever the co-analytic parts of each
f = h + ḡ, that isg, is zero, thenS∗H (α) ≡ S∗ (α) andKH (α) ≡ K (α), whereS∗ (α) and
K (α) are the subclasses of the familyS which consist of functions, respectively, ofstarlike of
orderα andconvex of orderα.

The convolution of two complex-valued harmonic functions

fi(z) = z +
∞∑

n=2

ainz
n +

∞∑
n=1

b̄in z̄
n (i = 1, 2)
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is given by

(3.5) f1 (z) ∗ f2 (z) = (f1 ∗ f2) (z) = z +
∞∑

n=2

a1na2nz
n +

∞∑
n=1

b1nb2nz
n.

The above convolution formula reduces to the famous Hadamard product if the co-analytic
parts off1 andf2 are zero.

4. BIRTH OF THE THEORY OF HARMONIC UNIVALENT FUNCTIONS

After the discovery of the proof of the 69-year old Bieberbach conjecture for the familyS by
Louis de Branges [20] in 1984, it was natural to ask whether the classical collection of results
for the familyS and its various subclasses could be extended in any way to the familiesSH and
S0

H of harmonic univalent functions. In 1984, Clunie and Sheil-Small [22] gave an affirmative
answer. They discovered that though estimates for these families are not the same, yet with
suitable interpretations there are analogous estimates for harmonic mappings inSH andS0

H .
This gave rise to the theory of planar harmonic univalent functions. Since then, it has been
growing faster than any one could even imagine. We first state the following interesting result:

Theorem 4.1([22]). A harmonic functionh+ ḡ is univalent and convex in the direction of the
real axis (CRA) if and only if the analytic functionh− g is univalent and CRA. (Here a function
f defined inD is CRA if the intersection off(D) with each horizontal is connected).

Using Theorem 4.1, Clunie and Sheil-Small [22] discovered a result for the familyS0
H , anal-

ogous to the Koebe functionk ∈ S defined by (2.2). In fact, they constructed theharmonic
Koebe functionk0 = h+ ḡ ∈ S0

H defined by

(4.1) h(z) =
z − 1

2
z2 + 1

6
z3

(1− z)3
, g(z) =

1
2
z2 + 1

6
z3

(1− z)3
.

It can be shown thatk0 maps∆ univalently ontoC minus the real slit−∞ < t < −1/6.
Moreover,k0(z) = −1/6 for everyz on the unit circle exceptz = 1. Unlike for the family
S, there is no overall positive lower bound for|f(z)| depending on|z|, whenf ∈ SH . This
is because, for example,z + εz̄ ∈ SH for all ε with |ε| < 1. However, by using an extremal
length method, Clunie and Sheil-Small discovered the following interesting result analogous to
the distortion property for functions in the familyS.

Theorem 4.2([22]). If f ∈ S0
H , then

|f(z)| ≥ 1

4

|z|
(1 + |z|)2 (z ∈ ∆).

In particular, {w ∈ C : |w| < 1/16} ⊂ f(∆)∀f ∈ S0
H .

The result in Theorem 4.2 is non-sharp. However, the harmonic Koebe functionk0 suggests
that the 1/16 radius can be improved to 1/6.

Conjecture 4.3([22]). {w ∈ C : |w| < 1/6} ⊂ f(∆)∀f ∈ S0
H .

This conjecture is true for close-to-convex functions inC0
H([22], [64]). Clunie and Sheil-

Small [22] posed the following harmonic analogues of the Bieberbach conjecture (seeConjec-
ture 2.3) for the familyS0

H :
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PLANAR HARMONIC UNIVALENT AND RELATED MAPPINGS 7

Conjecture 4.4. If f = h+ ḡ ∈ S0
H is given by (3.2), then

||an| − |bn|| ≤ n (n = 2, 3, ...)

|an| ≤
(2n+ 1)(n+ 1)

6
,(4.2)

|bn| ≤
(2n− 1)(n− 1)

6
, (n = 2, 3, ...).

Equality occurs forf = k0.

Forf = h+ ḡ ∈ S0
H , applying Schwarz’s lemma to (3.1), we have|g′ (z)| ≤ |h′ (z)| (z ∈ ∆).

In particular, it follows that|b2| ≤ 1/2.Conjecture 4.4 was proved for functions in the classS∗0H ,
and whenf(∆)is convex in one direction([22], [64]). The results also hold if all the coefficients
of f in S∗0H are real ([22], [64]). It was proved in [69] that this conjecture is also true forf ∈ C0

H .
Later Sheil-Small [64] developed Conjecture 4.4 and proposed the following generalization

of the Bieberbach conjecture.

Conjecture 4.5. If

f(z) = z +
∞∑

n=2

anz
n +

∞∑
n=1

a−nzn ∈ SH ,

then

|an| <
2n2 + 1

3
(|n| = 2, 3, ...).

In [22], it was discovered that|a2 (f)| < 12, 173 for all f ∈ SH . This result was improved
to |a2(f)| < 57.05 for all f ∈ SH in [64]. These bounds were further improved in [62]. On
the other hand, Conjecture 4.5 was proved for the classC̃H , whereC̃Hdenotes the closure of
CH [22]. Wang [69] established the conjecture forf ∈ CH . He also proposed to rewrite the
generalization of Bieberbach conjecture as follows:

Conjecture 4.6. If

f(z) = z +
∞∑

n=2

anz
n +

∞∑
n=1

bnzn ∈ SH ,

then
(1) ||an| − |bn|| ≤ (1 + |b1|)n, (n = 2, 3, . . .) ,

(2) |an| ≤
(n+ 1) (2n+ 1)

6
+ |b1|

(n− 1) (2n− 1)

6
(n = 2, 3, . . .) ,

(3) |bn| ≤
(n− 1) (2n− 1)

6
+ |b1|

(n+ 1) (2n+ 1)

6
(n = 2, 3, . . .) .

Since|b1| < 1, the above conjecture may be rewritten as:

Conjecture 4.7. If

f(z) = z +
∞∑

n=2

anz
n +

∞∑
n=1

bnzn ∈ SH ,

then

(1) ||an| − |bn|| ≤ 2n, (n = 2, 3, . . .) ,

(2) |an| <
2n2 + 1

3
, (n = 2, 3, . . .) ,
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(3) |bn| <
2n2 + 1

3
, (n = 2, 3, . . .) .

Results of these types have been previously obtained only for functions in the special subclass
CH ; see [69]. However, necessary coefficient conditions for functions inCH were also found in
[22]. The next result provides a sufficient condition for the function to be inCH .

Theorem 4.8([44]). If f = h+ ḡ with
∞∑

n=2

n |an|+
∞∑

n=1

n |bn| ≤ 1,

thenf ∈ CH . The result is sharp.

Next we construct an example of a functionf0 in the familyK0
H . The function

f0 (z) = h (z) + g (z)

=
z − 1

2
z2

(1− z)2 −
( 1

2
z2

(1− z)2

)
= Re

(
z

1− z

)
+ i Im

(
z

(1− z)2

)
is in K0

Hand it maps∆ onto the half plane; see [22]. Moreover, parallel to a well-known
coefficient bound theorem in the case of univalent analytic mappings in∆, we have

Theorem 4.9([22]). If f ∈ K0
H , then forn = 1, 2, ... we have

||an| − |bn|| ≤ 1, |an| ≤
(n+ 1)

2
, |bn| ≤

(n− 1)

2
.

The results are sharp for the functionf = f0 as given above.

In view of the sharp coefficient bounds given for functions inK0
H in Theorem 4.9, we may

takef1, f2 ∈ K0
H and definef1 ∗ f2 by (3.5). Clunie and Sheil-Small [22] showed that ifϕ ∈ K

andf = h+ ḡ ∈ KH , thenf ∗ (ϕ+ αϕ̄) = h ∗ ϕ+ αg ∗ ϕ, |α| ≤ 1, is a univalent mapping of
∆ onto a close-to-convex domain. They raised the following problem.

Open Problem 1.Which complex-valued harmonic functions,ϕ have the property thatϕ∗f ∈
KH for all f ∈ KH?

A related open problem for the univalent analytic functions was proved by Ruscheweyh and
Sheil-Small in the following.

Lemma 4.10([61]).
(a) φ, ψ ∈ K ⇒ φ ∗ ψ ∈ K.
(b) φ ∈ K ⇒ (φ ∗ f) (z) ∈ C if f ∈ C.

Note that the first part of the above lemma is the famousPolya-Schoenberg conjecture. Anal-
ogous results for the harmonic mappings are the following:

Theorem 4.11([15]). If f ∈ KH andφ ∈ K, then
(
αφ̄+ φ

)
∗ f ∈ CH (|α| ≤ 1) .

Theorem 4.12([15]). If h andg are analytic in∆, then
(1) If h, φ ∈ K with |g′(z)| < |h′(z)| for eachz ∈ ∆, then for each|ε| ≤ 1 we have(

φ+ εφ̄
)
∗ (h+ ḡ) ∈ CH .

(2) If φ ∈ K, |g′(0)| < |h′(0)| and h + εg ∈ C for eachε (|ε| = 1), then
(
φ+ σ̄φ̄

)
∗

(h+ ḡ) ∈ CH , |σ| = 1.
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PLANAR HARMONIC UNIVALENT AND RELATED MAPPINGS 9

In this direction, one may also refer to articles in ([41], [42], [44], [62]). In the next theo-
rem we give necessary and sufficient convolution conditions for convex and starlike harmonic
functions.

Theorem 4.13([15]). Letf = h+ ḡ ∈ SH . Then

f ∈ S∗H ⇔ h(z) ∗ z + ((ς − 1) /2) z2

(1− z)2(i)

−g (z) ∗ ςz̄ − ((ς − 1) /2) z̄2

(1− z̄)2 6= 0, |ς| = 1, 0 < |z| < 1.

f ∈ KH ⇔ h(z) ∗ z + ςz2

(1− z)3 + g (z) ∗ ςz̄ + z̄2

(1− z̄)3 6= 0, |ς| = 1, 0 < |z| < 1.(ii)

The above theorem yields the following sufficient coefficient bounds for starlike and convex
harmonic functions.

Theorem 4.14([15], [38], [39], [65]). If f = h+ ḡ with h andg of the form (3.2), then
∞∑

n=2

n |an|+
∞∑

n=1

n |bn|≤ 1 ⇒f ∈ S∗H .(i)

∞∑
n=2

n2 |an|+
∞∑

n=1

n2 |bn| ≤ 1 ⇒ f ∈ KH .(ii)

In [29], the researcher constructed some examples in which the property of convexity is
preserved for convolution of certain convex harmonic mappings. On the other hand, the re-
searchers in [33] obtained the integral means of extreme points of the closures of univalent
harmonic mappings onto the right half plane{w : Rew > −1/2} and onto the one-slit plane
C\ (−∞, a] , a < 0.

It is of interest to determine the largest disc|z| < r in which all the members of one family
possess properties of those in another. For example, all functions inKH are convex in|z| <√

2− 1 [62]. It is known that{w : |w| < 1/2} ⊂ f(∆) for all f ∈ K0
H [22]. It is also a known

fact [64] that if f ∈ CH , thenf is convex for|z| < 3 −
√

8. However, analogous to the
radius problem for the familyS and its subclasses, nothing much is known forSH , S

0
H and their

subclasses. For example

Open Problem 2. Find the radius of starlikeness for starlike mappings inSH .

Another challenging area is the Riemann Mapping Theorem related to the harmonic univalent
mappings. The best possible Riemann Mapping Theorem was obtained by Hengartner and
Schober in [35]. But, the uniqueness problem of mappings in their theorem is still open.

The boundary behavior of a functionf ∈ SH along a closed subarc of boundary∂∆ of ∆ was
investigated in [2]. These authors gave a prime-end theory for univalent harmonic mappings.
Also, see ([1], [25], [71]). Corresponding to the neighborhood problem and duality techniques
for the familyS, Nezhmetdinov [54] studied problems related to the familyS0

H .

5. SUBCLASSES OF HARMONIC UNIVALENT AND RELATED M APPINGS

Since it is difficult to directly prove several results or obtain sharp estimates for the families
SH andS0

H , one usually attempts to investigate them for various subclasses of these families.
Denote bySRH , S0

RH , S∗RH , andKRH , respectively, the subclasses ofSH , S0
H , S∗H andKH
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consisting of functionsf = h+ g so thath andg are of the form

(5.1) h(z) = z −
∞∑

n=2

anz
n, g(z) =

∞∑
n=1

bnz
n, an ≥ 0, bn ≥ 0, b1 < 1.

Our next result shows that the coefficient bounds in Theorem 4.14 cannot be improved.

Theorem 5.1([38], [65], [66]). If f = h+ g is given by (5.1), then

f ∈ S∗RH ⇔
∞∑

n=2

nan+
∞∑

n=1

nbn ≤ 1,(i)

f ∈ KRH ⇔
∞∑

n=2

n2an+
∞∑

n=1

n2bn ≤ 1.(ii)

Jahangiri ([38], [39]) proved the following sufficient conditions, akin to Theorem 4.14, for
functions in the classesS∗H(α) andKH(α).

Theorem 5.2. If f = h+ ḡwhereh andg are given by (3.2), then
∞∑

n=2

n− α

1− α
|an|+

∞∑
n=1

n+ α

1− α
|bn|≤ 1, 0 ≤ α < 1 ⇒f ∈ S∗H(α).(a)

∞∑
n=2

n(n− α)

1− α
|an|+

∞∑
n=1

n(n+ α)

1− α
|bn|≤ 1, 0 ≤ α < 1 ⇒f ∈ KH(α).(b)

Let S∗RH (α) andKRH (α)denote, respectively, the subclasses ofS∗H (α) andKH (α), con-
sisting of functionsf = h + g whereh andg are given by (5.1). In ([38], [39]) it was discov-
ered that the above-mentioned inequalities in (a) and (b) are the necessary as well as sufficient
conditions, respectively, for the functions inS∗RH (α) andKRH (α). Using these characteriz-
ing conditions, he also found various extremal properties, extreme points, distortion bounds,
covering theorems, convolution properties, and others for the familiesS∗RH (α) andKRH (α).

In several other papers, including ([11], [13], [18], [28], [42], [46], [47], [56], [57]), the re-
searchers obtained the necessary and/or sufficient coefficient conditions for functions in various
subclasses ofS∗H andKH . In ([8], [43]), the researchers used an argument variation for the
coefficients ofh andg that contain several previously studied cases. LetVH denote the class of
functionsf = h+ ḡ for whichh andg are of the form (3.2) and there existsφ so that,mod 2π,

(5.2) αn + (n− 1)φ ≡ π, βn + (n− 1)φ ≡ 0, n ≥ 2,

whereαn = arg(an) andβn = arg(bn). We also letVH∗ = VH ∩ S∗H , VHP (α) = VH ∩PH (α) ,
andVHR(α) = VH ∩ RH (α) , 0 ≤ α < 1, wherePH (α) andRH (α) , 0 ≤ α < 1, are the
classes of functionsf = h+ ḡ ∈ SH which satisfy, respectively, the conditions

Re

(
(∂/∂θ)f(z)

(∂/∂θ)z

)
≥ α and Re

(
(∂2/∂θ2)f(z)

(∂2/∂θ2)z

)
≥ α, z = reiθ ∈ ∆.

Earlier the classesPH (α) andRH (α) were investigated, respectively, in [11] and [13]. We
remark that ifg ≡ 0 for f = h + ḡ, thenPH (α) andRH (α) reduce, respectively, to the
well-known classes

P (α) = {h : Re (h′(z)) ≥ α} and R(α) = {h : Re (h′(z) + zh′′(z)) ≥ α}
of analytic univalent functions. WhileVH andVH∗ were studied in [43],VHP (α) andVHR (α)
were investigated in [8]. In both these papers, the authors determined necessary and sufficient
conditions, distortion bounds, and extreme points.
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A functionF is said to be inS∗Hc
(α) for somec, 0 ≤ c < 1, if F can be expressed by

(5.3) F (z) =
f(cz)

c
=
h(cz)

c
+
g(cz)

c
for somef = h+ ḡ, whereh andg are functions of the form (3.2) andf satisfies the inequality
(a) in Theorem 5.2. Analogous toS∗Hc

(α) is the familyKHc(α) consisting of functionsF
that can be expressed as (5.2), wheref satisfies the condition (b) in Theorem 5.2. Also, let
S∗0Hc

(α) andK0
Hc

(α) be the corresponding classes whereb1 = 0. It is natural to ask whether
there existsc0 = c0 (α, β) , 0 ≤ α ≤ β < 1, such thatS∗0Hc

(α) ⊂ K0
H (β) for |c| ≤ c0. As it

turns out, the answer is affirmative. The researchers in [14] extended several known results to
the contractions of the mappings (5.3) inS∗0Hc

(α) andK0
Hc

(α).
There is a challenge in fixing the second coefficient in the power series representation of an

analytic univalent function in the classS. This challenge is even greater when it comes to a
family Fp

H ({cn} , {dn}) of harmonic functions with fixed second coefficient. For0 ≤ p ≤ 1, a
functionf = h+ ḡ where

(5.4) h(z) = z − p

c2
z2 −

∞∑
n=3

|an|zn, g(z) =
∞∑

n=1

|bn|zn

is said to be in the familyFp
H ({cn} , {dn}) if there exist sequences{cn} and{dn} of positive

real numbers such that

(5.5) p+
∞∑

n=3

cn |an|+
∞∑

n=1

dn |bn| ≤ 1, d1 |b1| < 1.

Also, let Fp
H0 ({cn} , {dn}) ≡ Fp

H ({cn} , {dn}) ∩ S0
H . The families Fp

H ({cn} , {dn}) and
Fp

H0 ({cn} , {dn}) incorporate many subfamilies, respectively, ofSRH andS0
RH consisting of

functions with a fixed second coefficient. For example, for functionsf = h + ḡ of the form
(5.4), we haveFp

RH ({n} , {n}) ≡ {f : f ∈ S∗RH} andFp
RH ({n2} , {n2}) ≡ {f : f ∈ KRH} .

It is known [12] that ifcn ≥ n anddn ≥ n for all n, thenFp
H ({cn} , {dn}) consists of starlike

sense-preserving harmonic mappings in∆. Additionally, each function inFp
H0 ({cn} , {dn})

maps the disc|z| = r < 1/2 onto a convex domain [12]. In the same paper, they also de-
termined extreme points, convolution conditions, and convex combinations for these types of
functions.

6. M ULTIVALENT HARMONIC FUNCTIONS

Passing from the harmonic univalent functions to the harmonic multivalent functions turns
out to be quite non-trivial. We need the following argument principle for harmonic functions
obtained by Duren, Hengartner, and Laugesen.

Theorem 6.1([26]). Let f be a harmonic function in a Jordan domainD with boundaryΓ.
Supposef is continuous inD̄ and f(z) 6= 0 on Γ. Supposef has no singular zeros inD,
and letm be the sum of the orders of the zeros inD. Then∆Γ arg(f(z)) = 2πm, where
∆Γ arg(f(z)) denotes the change of argument off(z) asz traversesΓ.

The above theorem motivated the author and Jahangiri [5] to introduce and study certain
subclasses of the familyH(m) ,m ≥ 1, of all multivalent harmonic and orientation-preserving
functions in∆. A functionf in H(m) can be expressed asf = h+ ḡ, whereh andg are of the
form

(6.1) h(z) = zm +
∞∑

n=2

an+m−1z
n+m−1, g(z) =

∞∑
n=1

bn+m−1z
n+m−1, |bm| < 1.
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Form ≥ 1, letSH(m) denote the subclass ofH(m) consisting of harmonic starlike functions
that map the unit disc∆ onto a closed curve that is starlike with respect to the origin. Observe
thatm−valent mappings need not be orientation-preserving. For example,f(z) = z + z̄2 is
4-valent onD = {z : |z| < 2} and we have|a(0)| = 0 and |a(1.5)| = 3.

Theorem 6.2([5]). If a functionf = h+ ḡ given by (6.1) satisfies the condition

(6.2)
∞∑

n=1

(n+m− 1) (|an+m−1|+ |bn+m−1|) ≤ 2m

wheream = 1 andm ≥ 1, thenf is harmonic and sense preserving in∆ andf ∈ SH(m).

Let TH(m), m ≥ 1, denote the class of functionsf = h + ḡ in SH(m) so thath andg are
of the form

h(z) = zm −
∞∑

n=2

an+m−1z
n+m−1, an+m−1 ≥ 0,(6.3)

g(z) =
∞∑

n=1

bn+m−1z
n+m−1, bn+m−1 ≥ 0.

It was proved in [5] that a functionf = h+ ḡ given by (6.3) is in the classTH(m) if and only
if condition (6.2) is satisfied. They also determined the extreme points, distortion and covering
theorems, convolution and convex combination conditions for the functions inTH(m).

During the last five years, there have been several papers on multivalent harmonic functions
in the open unit disc. For example, see ([4], [7], [53]).

7. M EROMORPHIC HARMONIC FUNCTIONS

To begin let us turn our attention to the special classes of harmonic functions which are
defined on the exterior of the unit disc̃∆ = {z : |z| > 1} for whichf(∞) = limz→∞f(z) = ∞.
Such functions were recently studied by Hengartner and Schober who obtained the main idea
in the following:

Theorem 7.1([36]). Let f be a complex-valued, harmonic, orientation-preserving, univalent
function defined oñ∆, satisfyingf(∞) = ∞. Thenf must admit the representation

(7.1) f(z) = h(z) + g (z) + A log |z| ,

whereA ∈ C and

(7.2) h(z) = αz +
∞∑

n=0

anz
−n and g(z) = βz +

∞∑
n=1

bnz
−n

are analytic in∆̃ and0 ≤ |β| < |α| . In addition,w = f̄z̄/fz is analytic and satisfies|w(z)| < 1.

In view of the aforementioned result, the researchers in [45] found the following sufficient
coefficient condition for which functions of the form (7.1) are univalent.

Theorem 7.2. If f given by (7.1) together with (7.2) satisfies the inequality
∞∑

n=1

n (|an|+ |bn|) ≤ |α| − |β| − |A| ,

thenf is orientation-preserving and univalent iñ∆.
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By applying an affine transformation
(
ᾱf − βf − ᾱa0 + βa0

) /(
|α|2 − |β|2

)
, we may nor-

malizef so thatα = 1, β = 0,anda0 = 0 in (7.2). In view of Theorem 7.1,w = f̄z̄/fz

is analytic and satisfies|w(z)| < 1. Therefore letΣ′
H be the set of all harmonic, orientation-

preserving, univalent mappingsf given by (7.1), where

(7.3) h(z) = z +
∞∑

n=1

anz
−n and g(z) =

∞∑
n=1

bnz
−n

are analytic in∆̃. Also, let ΣH = {f ∈ Σ′
H : A = 0} , that is, the subclass without logarith-

mic singularity. Note that in contrast to analytic univalent functions, there is no elementary
isomorphism betweenSH andΣH . Finally, letΣ0

H denote the non-vanishing class defined by

Σ0
H =

{
f − c : f ∈ Σ′

H and c /∈ f(∆̃)
}
.

Using Schwarz’s lemma and Theorem 7.1, Hengartner and Schober proved the following esti-
mates:

Theorem 7.3([36]).
(a) f ∈ Σ′

H ⇒ |A| ≤ 2 and |b1| ≤ 1.

(b) f ∈ ΣH ⇒ |b1| ≤ 1 and|b2| ≤ 1
2

(
1− |b1|2

)
≤ 1

2
.

(c) f ∈ Σ′
H has expansion (7.1) together with (7.3)⇒

∑∞
k=1 k

(
|ak|2 − |bk|2

)
≤ 1+2 Re b1.

All the results are sharp.

The next result gives the distortion theorem:

Theorem 7.4([36]). If f − c ∈ Σ0
H , then|f (z)| ≤ 4

(
1 + |z|2

)
/|z|for all z ∈ ∆̃, f(∆̃)contains

the set{w : |w| > 16} , and |c| ≤ 16.

The bound forc in Theorem 7.4 is equivalent to the following

Corollary 7.5 ([36]). If f ∈ ΣH , thenf
(
∆̃
)
⊇ {w : |w| > 16} .

The next result concerns the compactness of the families.

Theorem 7.6([36]). The familiesΣ0
H ,Σ

′
H , andΣH are compact with respect to the topology

of locally uniform convergence.

Related to the famous classical area theorem (see [32]), we have the following result.

Theorem 7.7([36]). If f ∈ Σ′
H has expansion (7.1) along with (7.3), then
∞∑

n=1

n
(
|an|2 − |bn|2

)2 ≤ 1 + 2 Re b1.

Equality occurs if and only ifC\f(∆̃) has area never zero.

Comparable to the subclasses ofSH andS0
H , it may be possible to define and study subclasses

of the meromorphic harmonic functions. Denote byΣ∗
H the subfamily ofΣH consisting of

functions that are starlike with respect to the origin in∆̃. Also, letΣ∗
RH denote the subfamily of

Σ∗
H consisting of functionsf of the formf = h+ ḡ for whichh andg are restricted by

(7.4) h(z) = z +
∞∑

n=1

anz
−n and g(z) = −

∞∑
n=1

bnz
−n, an ≥ 0, bn ≥ 0.
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The classesΣ∗
H , Σ∗

RH and their subclasses were studied in [45]. In particular, it was found in
[45] thatf ∈ Σ∗

RH if and only if
∑∞

n=1 (an + bn) ≤ 1. Analogous results were also found for
the convex case. These results were generalized in [10] for the classΣHR (α, λ) consisting of
functionsf = h+ ḡ which satisfy the condition

Re

{
(1− λ)

f(z)

z
+ λ

∂
∂θ
f(z)
∂
∂θ
z

}
> α, 0 ≤ α < 1, λ ≥ 0, z ∈ ∆̄.

These authors obtained sufficient conditions, coefficient characterizations, inclusion and con-
vexity conditions, and extreme properties forΣHR (α, λ) and its subclasses [10]. In this area,
one may also refer to the papers in ([9], [59], [68]).

8. OTHER FUNCTION CLASSES RELATED TO HARMONIC M APPINGS

In this section we discuss certain other function classes related to harmonic mappings. First
let us look at a special subclass of the familyS. Sakaguchi introduced a subclass ofS consisting
of functions which are starlike with respect to symmetrical points (e.g. see [32, p. 165]). Can
such a strategy be implemented for the harmonic mappings? In [6], this concept was extended
to include the harmonic functions. For0 ≤ α < 1, let SH (α) denote the class of complex-
valued, orientation-preserving, harmonic univalent functionsf of the form (3.2) which satisfy
the condition

Re

(
2 ∂

∂θ
f(reiθ)

f(reiθ)− f(−reiθ)

)
≥ α,

wherez = reiθ, 0 ≤ r < 1 and0 ≤ θ < 2π. A functionf ∈ SH(α) is called aSakaguchi-type
harmonic function.In [6], the authors obtained the following sufficient condition for functions
in the familySH(α).

Theorem 8.1. If a functionf = h+ ḡ given by (3.2) satisfies the inequality
∞∑

n=1

{
2 (n− 1)

1− α
(|a2n−2|+ |b2n−2|)+

2n− 1− α

1− α
|a2n−1|+

2n− 1 + α

1− α
|b2n−1|

}
≤ 2,

wherea1 = 1 and0 ≤ α < 1, thenf is orientation-preserving harmonic univalent in∆ and
f ∈ SH(α).

Theorem 8.1 is fundamental in the proof of the following characterization of functions in
SH(α).

Theorem 8.2([6]). A harmonic functionf = h+ ḡ of the form (3.2) is inSH(α), 0 ≤ α < 1,
if and only if

h(z) ∗ (1− α) z + (α+ ξ) z2

(1− z)2 (1 + z)
− g(z) ∗ (α+ ξ) z̄ + (1− α) z̄2

(1− z̄)2 (1 + z̄)
6= 0,

where|ξ| = 1, ξ 6= −1, and0 < |z| < 1.

Goodman in [30] introduced the geometrically defined classUCV of uniformly convex func-
tions. Analogous toUCV is the classUST of uniformly starlike functions that was studied in
[58]. It is a natural question to ask whether it is possible to extend the known results of the
classesUCV andUST and their subclasses to include harmonic functions. Generalizing the
classUST to include harmonic functions, letGH(γ) denote the subclass ofSH consisting of
functionsf = h+ ḡ ∈ SH that satisfy the condition

Re

{(
1 + eiα

) zf ′(z)
z′f(z)

− eiα

}
≥ γ, 0 ≤ γ < 1,
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wherez′ = ∂
∂θ

(
z = reiθ

)
, f ′(z) = ∂

∂θ

(
f(z) = f(reiθ

)
, 0 ≤ r < 1, andα andθ are real. Also,

let GRH(γ) denote the subclass ofGH(γ) consisting of functionsf = h + ḡ such thath and
g are of the form (5.1). The classGRH(γ) was studied in [60] where they found coefficient
conditions, extreme points, convolution conditions, and convex combinations of the functions
inGRH(γ). An analogous class of complex-valued harmonic convex univalent functions related
to the classUCV was studied in [47].

Finally, although the connections between the theory of familyS and hypergeometric func-
tions have been investigated by several researchers, the corresponding connections between the
family SH (or its subclasses) and hypergeometric functions have not been explored. Recently,
the author and Silverman [16] have discovered some of the inequalities associating hypergeo-
metric functions with planar harmonic mappings.

9. CONCLUSION

In this article, we have made an attempt to present a survey of the newly emerging theory of
harmonic mappings in the plane. We have been compelled to omit a number of related areas and
interesting problems. However, we hope that this article may serve as a useful guide for new
and old researchers in the theory of planar harmonic mappings and related areas. This article
may also be useful to pure and applied mathematicians working in several diverse areas.
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