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Abstract

The main object of the present paper is to investigate several interesting prop-
erties of a linear operator H, , ;(a;) associated with the generalized hypergeo-
metric function.
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Let A(p) denote the class of functions of the form

(1.1) f(z) =27+ Z a,z", (pe N={1,2,3,...})

n=p+1

which are analytic in the open unit digk= {z: z € C' and|z| < 1}.

Let f(z) andg(z) be analytic inU. Then we say that the functiog(z)
is subordinate tg(z) if there exists an analytic functiom(z) in U such that
lw(z)| < 1 (for z € U) andg(z) = f(w(z)). This relation is denoted(z) <
f(2). In casef(z) is univalent inU we have that the subordinatigiiz) < f(z)
is equivalent tgy(0) = f(0) andg(U) C f(U).

For analytic functions

f) =Y and g(z) = 3 b
n=0 n=0

by f * g we denote the Hadamard product or convolutiorf ahdg, defined by

o0

(1.2) (fx9)(2) = anbuz" = (g% f)(2).

n=0

Next, for real parameterd and B such that-1 < B < A < 1, we define
the function
1+ Az
1+ Bz

(1.3) h(A, B;z) = (z€U).
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It is well known thath(A, B; z) for —1 < B < 1 is the conformal map of the
unit disk onto the disk symmetrical with respect to the real axis having the center
(1-AB)/(1— B?) and the radiu$A — B) /(1 — B?) for B # ¥1. The boundary
circle cuts the real axis at the poiriis— A)/(1 — B) and(1 + A)/(1 + B).

For complex parametets, ..., o, andfy, ..., 3 (6; #0,—-1,-2,...;5 =

1,...,s), we define the generalized hypergeometric functibf(cy, . .., a,;
ﬁla"'aﬂs;z) by
. . _00(0‘1>n"'(0‘q)n a On Subordinations for Certai
oo e = Y G I umorinatons o Ceian
n=0 Associated with the Generalized
(1_4) ((] S s+ 1; q,s € NO =NU {0}; = U), Hypergeometric Function
where(z),, is the Pochhammer symbol, defined, in terms of the Gamma func- i
tionI', by
Title Page
(2), = Lx+n) [ 1 (n =0),
"T T r@)  \z@+1)---(z+n—1) (neN). Contents
Corresponding to a functio#, (a4, . .., ay; 01, . . ., Bs; 2) defined by « dd
< 4
fjozp(ala' N aaq;ﬁla s 7/68;2) = quFs(ala e '70411;617 s 75532)7
Go Back
we consider a linear operator
Close
Hp(ah‘"aaq;ﬁlu"'?ﬁs) A(p> _>A(p)7 Qu|t
defined by the convolution Page 4 of 13
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For convenience, we write

(1.6) H,gs(ow)=Hploa,...,04,...,0001,...,0s) (1=1,2,...,q).

Thus, after some calculations, we have

Z(Hp,q,s(ai)f(z)), = a;iHy g s(ai +1)f(2) = (i = p)Hp g.s(i) f(2)

2.7) (1=1,2,...,q).
It should be remarked that the linear operatfy, .(c;) (i = 1,2,...,q) is Tvaront Anairte Punctone
a generalization of many operators considered earlier.qFer2 ands = 1 Assaciated with the <F3-ener_alized
Carlson and Shaffer studied this operator under certain restrictions on the pa- ' Per9eometre runcton
rametersay, ap and 3y in [1]. A more general operator was studied by Pon- Jin-Lin Liu
nusamy and Rgnning i]. Also, many interesting subclasses of analytic func-
tions', associated wi.th the' operatd, , (o) (¢ = 1,2,...,¢) and its many Title Page
special cases, were investigated recently by (for example) Dziok and Srivastava
[2, 3, 4], Gangadharan et al5], Liu [ 7], Liu and Srivastavad, 9] and others Contents
(see alsoq, 12, 15, 16, 17)). <« (13
In the present sequel to these earlier works, we shall use the method of differ- P >
ential subordination to derive several interesting properties and characteristics
of the operatofd, , s(«;) (i = 1,2,...,q). Go Back
Close
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We begin by recalling each of the following lemmas which will be required in
our present investigation.

Lemma 2.1 (see](]). Leth(z) be analytic and convex univalentin, i (0) =
1andletg(z) =1+ bz + by2? + - - - be analytic inU. If

(2.1) 9(2) + 2g'(2)/c < h(z) (2 € Usc#0),

then forRec > 0,

(2.2)

ZC

g(z) < < /0 ()t

Lemma 2.2 (see [4]). The function(1 — z)? = ¢7198(-2) ~ £ 0, is univalent
in U if and only if~y is either in the closed disky — 1| < 1 or in the closed disk
[y +1 < 1.

Lemma 2.3 (see [1]). Letq(z) be univalent inU and letd(w) and ¢(w) be
analytic in a domainD containingq(U) with ¢(w) # 0 whenw € ¢(U). Set

Q(2) = 2¢'(2)6(a(2)), h(z) = 0(q(2)) + Q(z) and suppose that
1. Q(z) is starlike (univalent) irlU;

®) ) Re( ())))+z8((,§)> >0 (zel).

is analytic |nU with p(0) = ¢(0), p(U) C D, and

0(p(2)) + 2p'(2)p(p(2)) < 0(q(2)) + 2¢'(2)6(q(2)) = h(2),
thenp(z) <

2. Re (ZQ
If p(z)

q(z) andq(z) is the best dominant.
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We now prove our first result given by Theorerd below.

Theorem 2.4.Leto; >0 (i =1,2,...,¢9), A >0,and—1 < B < A< 1. If
f(z) € A(p) satisfies

(23) (1 i )\) Hp,q,s(ai)f(z) + )\Hp,q,s(a/i + 1)f(z) = h(A,B,Z)

2P 2P ’

then

@4 R ((M))

The result is sharp.

Proof. Let

Hp,q,s (az)f<2)

zp

(2.5) 9(z) =

for f(z) € A(p). Then the functiory(z) = 1 + b1z + - - - is analytic inU. By
making use of{.7) and @.5), we obtain

(2.6) Hpgoli £ DI _ oy, 29

2P o
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From 2.3, (2.5 and @.6) we get

(2.7) g(z) + izg'(z) < h(A, B;z).

7

Now an application of Lemma.1leads to

1
% _ % ﬂ_l 1+At
28) 9lz) < o /o a (1 +Bt> o
or
Hpgs(ai)f(2) o /1 oy 14+ Auw(z)
2. TIPS\ AT T 1
(2.9) 2P A Jo v 1 + Buw(z) du,

wherew(z) is analytic inU with w(0) = 0 and|w(z)| < 1 (z € U).
Inviewof —1 < B < A < 1andq; > 0, it follows from (2.9) that

(2.10) Re (M> > %/Olu?l (1:22) du (2 €U).

zP

Therefore, with the aid of the elementary inequalty(w'/™) > (Rew)'/™ for
Rew > 0 andm > 1, the inequality 2.4) follows directly from @.10).
To show the sharpness d¢f.4), we takef(z) € A(p) defined by

1
Hyqs(oi)f(2) %/ y (1 —I—Auz) du
0

zP A 1+ Buz

For this function, we find that

(1- ) H,,s(oi)f(2) n /\Hp7q7s(ai + 1) f(2) _ 14+ Az
2P zP 1+ Bz
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and

R N =

Hence the proof of the theorem is complete.

Next we prove our second theorem.

Theorem 2.5.Leta; >0 (i = 1,2,...,9),and0 < p < 1. Lety be a complex
number withy # 0 and satisfy eithef2y(1—p)a; —1| < 1or|2y(1—p)a;+1] <

1(i=1,2,...,9). If f(z) € A(p) satisfies the condition

Hpqs(ai +1) f(2) o
(2.11) Re ( H,, (0] (2) ) >p (z€U;i=1,2,...,q),
then
(2.12) (Hp,q,s(Zo;)f(Z))7
1
= (1_Z>27(1—p)ai :C_I(Z) (ZE U77’:172a7q)7

whereqg(z) is the best dominant.

Proof. Let

zp

(2.13) p(z) = <M)7 (z€eU;i=1,2,...,q).
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Then, by making use ofi(7), (2.11) and .13, we have

zp'(2) 1+ (1—2p)z
(2.14) L+ T (z€U).
If we take
1 1
) = e B =1 and o) =

yow’

theng(z) is univalent by the condition of the theorem and Lenttria Further,
it is easy to show thaf(z), f(w) and¢(w) satisfy the conditions of Lemnia3.

Since o(1
Q) = = (2)oa() = 20222
is univalent starlike irt/ and
h(z) = 0(a()) + Qz) = L2

It may be readily checked that the conditions (1) and (2) of Lenn3aare
satisfied. Thus the result follows froi.(4) immediately. The proof is com-
plete. O

Corollary 2.6. Leta; > 0 (i = 1,2,...,q) and0 < p < 1. Lety be a real
number andy > 1. If f(z) € A(p) satisfies the conditior2(11), then

H,, (o m _ .
Re( pyq, (Oé)f(Z)) >2 1/~ (ZGU,Z:172;7q)

2P

The boun®~'/7 is the best possible.
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